
1. Introduction

Three-dimensional network present in cross-linked

polymers improves their performance, including me-

chanical properties, chemical resistance and thermal

stability. On the other hand, these features caused

that cross-linked polymers, such as thermosetting

resins, cross-linked polyolefins, polyurethane foams

and vulcanized rubbers are very difficult to recycle

[1]. As a consequence, recycling of these materials

is still very limited and the principal method of

reusing them is through energy recovery or landfill-

ing. Landfilling is illegal in the European Commu-

nity and many countries.

The presented work is focused on the problem of

waste rubbers recycling as a continuation of the au-

thors’ research in this field [2–6]. According to data

provided by The Freedonia Group – Industry Market

Research, the global production of tires is projected

to rise by 4.1% per year through 2019. This indicates

that the demand on tires is continuously increasing 
every year, corresponding to the dynamic develop-

ment of automotive industry which grows in number 
of total vehicles and the increase in average annual 
vehicle mileage, boosting tire replacement rates. Si-

multaneously, around 1000 million of waste tires are 
discarded worldwide each year and more than 50%

of them are directly discarded, landfilled or burned. 
Moreover, estimated data shows that in 2030, this 
number can reach 1200 million annually [7, 8]. It 
should be mentioned that illegally dumped or stock-

piled waste tires can collect stagnant rain water pools 
in their curvy structures, where the rubber can leach 
compounds that are toxic to aquatic organisms [9]. 
Additionally, the high humidity existing inside land-

filled waste tires creates ideal breeding grounds for 
rodents and mosquitoes, which can carry diseases [10]. 
Uncontrolled fire of disposed waste tires constitutes 
another serious threat, which affects the environment
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and human health. Although tires are materials rela-

tively difficult to ignite, their fire is very hard to ex-

tinguish [11]. Many incidents have been reported, for

example in 2016 the biggest illegal waste tire landfill

in European Union caught fire. It was happened in

Seseña a village near to Madrid (Spain), where

70000–90000 tons of tires had been illegally accumu-

lated for more than 15 years. The fire of that illegal

landfill caused evacuation of that around 9000 people

from their houses due to environmental pollution by

gaseous products, such as polycyclic aromatic hydro-

carbons and other hazardous compounds [12, 13]. The

increasing number of waste tires is a serious threat for

the environment and currently one of the biggest chal-

lenges of the 21st century waste management.

Several attempts have been made in order to manage

the recycling of the whole end-of-life tires. Recently,

Grupa Recykl S.A. (Poland) opened an interesting on-

line shop called ‘OPONUM’ which sells used tires

for the automotive sector. Prior to reuse, the recycled

tires are subjected to a meticulous quality control.

The company estimates that the annual scale of used

tires trade in Poland is around 1.5–2 million tires

(several thousand tons).

In terms of currently conducted research work, the

recycling of waste tires can be categorized into three

main strategies: i) grinding technologies and appli-
cation of ground rubber; ii) pyrolysis and iii) re-
claiming/devulcanization of waste tires.
The size reduction of waste tires in the form of

grinding is among the most commonly applied recy-

cling technologies [14]. The mechanical disintegra-

tion of the cross-linked rubber is generally conduct-

ed at ambient temperature until the required particle

size has been reached. In some cases, cryogenic con-

ditions with liquid nitrogen as freezing medium are

also applied. However, ground tire rubber (GTR) ob-

tained via ambient grinding possesses better devel-

oped surface than ground rubber obtained by cryo-

genic method [15]. Surface area and particle size of

cross-linked waste rubber are the most important pa-

rameters affecting the interphase interactions be-

tween matrix and ground tire rubber. The limitations

in particle size are related to the energy consumption

of the grinding process, which is obviously increased

with the size reduction of waste tires, strongly affect-

ing the final costs of GTR.

GTR can be moulded in simple shapes by application

of high pressure and temperature causing reactive

sintering [16]. This process can be performed in the

presence of a curing system or without any additives.

However, this method is limited, as mentioned above,

to the production of low-cost products with simple

shapes and low quality requirements. In order to im-

prove their processing and performance properties,

GTR particles need to be modified or blended with

other polymeric matrix.

With the purpose of obtaining materials able to be

used in applications with higher added value, attempts

to include GTR as filler in elastomers, thermoplastic

polymers and thermosets have been made. The results

show that a high amount of GTR in polymer compo-

sitions deteriorate their mechanical properties, what

is related to the weak interfacial interactions between

the polymer matrix and GTR filler. Therefore, pro-

moting interfacial interaction between GTR and

polymer matrix is necessary and can be induced by

the use of appropriate compatibilizers. The structure-

property relationships of various polymer/GTR sys-

tems and different strategies to enhance the compat-

ibility of studied materials have been comprehensively

described in works [17–19].

The idea of combining GTR with a matrix has been

also applied to the inclusion of GTR in construction

and building materials, usually as modifier of ce-

ment, concrete and bitumen [20]. The literature data

have confirmed that road pavements modified with

GTR exhibit higher toughness and resistance to cli-

matic factors, which have a beneficial influence on

their durability and maintenance costs. The main fac-

tors limiting the common use of bitumen modified

with GTR are the low stability and high viscosity

causing some inconveniences in its storage and con-

sequent further application. Comprehensive litera-

ture reviews about recent progress in this field have

been presented in works [21, 22].

Other promising routes for industrial recycling of

waste rubber are pyrolysis or reclaiming/devulcan-

ization technologies. Both methods allow a controlled

decomposition of waste rubber. Pyrolysis is the ther-

mal decomposition (~500°C or more) of waste rub-

ber conducted under an inert atmosphere. The ob-

tained products can be categorized into three main

streams: gaseous products, pyrolytic oils and py-

rolytic carbon. The research works in this area are

dedicated mostly to the kinetics of waste rubber de-

composition (optimization of the process) and val-

orization/activation of pyrolytic carbon in order to

improve its further application as active carbon or

reinforcing filler.
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Comparing to pyrolysis the temperature during re-

claiming (sometimes called in the literature as de-

vulcanization process) is much lower (~200°C) and

usually do not use inert atmosphere. This process in-

volves destruction of the three-dimensional network

present in cross-linked rubber by using thermal, me-

chanical or chemical energy. The obtained products,

called reclaimed rubbers, can be easily processed,

shaped and vulcanized. Moreover, the final proper-

ties of obtained reclaimed rubber can be successfully

tailored by changing the reclaiming conditions [23,

24]. Many attempts in this field have been described

in the literature, what was comprehensively summa-

rized in works [25–27].

Saiwari et al. [28] investigated the effect of the tem-

perature on the reclaiming efficiency of different un-

filled elastomers. The devulcanization of four types

of unfilled vulcanizates based on styrene-butadiene

rubber, butadiene rubber, natural rubber and chlori-

nated butyl rubber (all commonly used in tires) was

examined. The results indicated that devulcanization

should be performed at a reasonably low tempera-

ture, which allows a high ratio of cross-linking bonds

to main chain scission, and a homogenous break-

down of the vulcanized network. Gągol et al. [29]

indicated that low temperature during reclaiming of

GTR reduces the amount of volatile organic com-

pounds emitted during reclaiming. Other advantages

of low temperature devulcanization are related to re-

duction of energetic costs (heat is generated by high

shear forces) and limitation of secondary cross-link-

ing. Song et al. [30] examined the samples of GTR

with a variable content of soybean oil, which were

treated by hot-air at 150°C for 4 h. The results showed

that the cross-linked network present in GTR was

destroyed heterogeneously at relatively low temper-

ature, due to the synergistic effects of the soybean

oil and controlled oxidation. Moreover, it was found

that carbon black separated from the cross-linked

network of GTR in highly degraded samples. On the

other hand, the low temperature during devulcaniza-

tion might cause technological problems with further

processing of reclaimed GTR [31].

Recently, Dobrotă and Dobrotă [32] described a

grinding technology supported by ultrasonic treat-

ment, which allows the production of ultrafine rub-

ber particles with dimensions in the range of 100–

150 μm. The authors pointed that ultrafine rubber

particles (probably with partially devulcanized sur-

face) can be successfully incorporated as a substitute

of reclaimed rubber in rubber compounds. The physi-

co-mechanical properties of vulcanizates with ultra-

fine rubber particles were higher (or comparable) to

those determined for reference sample. In addition,

the application of the ultrasound treatment during the

grinding of waste rubber reduced energy consump-

tion in 2–2.5 times comparing to conventional grind-

ing and simultaneously increased the process

throughput.

The works mentioned above confirm that the re-

search performed on low temperature ‘green’ reclaim-

ing/devulcanization methods should aim to the opti-

mization of the process, especially on devulcanization

time in order to reduce the energy consumption and

also to the improvement of the properties of obtained

reclaimed rubbers. This approach would allow the

sustainable development of the reclaiming/devulcan-

ization technologies and would fulfill the strict re-

quirements of the environment protection. There-

fore, further research studies in this field is fully

justified.

Application of microwave radiation for low tempera-

ture and short-term devulcanization technologies

seems to be promising approach. The first tests using

of microwave devulcanization of waste rubber were

patented by Novotny et al. [33] from The Goodyear

Tire & Rubber Company. The microwave radiation,

acting on the GTR, causes its controlled thermal

degradation/oxidation in a process of high efficiency

and environmentally-friendly character. Besides, com-

pared to other heating methods based on convection

or conduction, microwaves allow a precise and fast in-

crease of the temperature inside the heated material.

Although the use of microwave energy in waste rub-

ber recycling is known for 40 years, its industrial ap-

plication is still very limited. In this work, the recent

progress in microwave-induced waste rubber devul-

canization and pyrolysis is presented, including a

discussion of their advantages and limitations. The

influence of the microwave treatment parameters on

the final properties of waste tires recycling products

is also exposed.

2. Microwave treatment of rubber – basic

concepts

The efficient use of the energy is a priority in industry.

In chemical processes, the importance of achieving a

way of providing a precise amount of energy, in a spe-

cific location, is paramount in order to obtain a better

control of the chemical reactions. Microwaves have
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been used in laboratories and industry because of

their efficiency, easiness of application, possibilities

of energy regulation and temperature control.

These advantages have motivated the use of mi-

crowaves to the vulcanization and devulcanization

of rubber as an alternative to conventional heating.

In a microwave heater, the magnetron is the source

of microwaves. The radiation produced is driven to

a cavity, where the waves interact with the sample.

The electric field of the microwaves generates heat

in the sample by:

 i) Dipole rotation: the dipoles present in the sample

tend to align following the oscillating electric

field, this rotation results in an increase of tem-

perature of the sample.

ii) Ionic conduction: if there are any free ions or

ionic species in the sample, the electric field gen-

erates ionic motion. Metals, very conductive, can

cause an explosion when introduced into a mi-

crowave oven. They act as reflectants of the mi-

crowave energy. The microwaves do not pene-

trate the metal surface, instead the waves are

reflected and the induced voltage generates elec-

trical discharges.

iii) Interfacial polarization (so-called Maxwell-Wag-

ner effect): it is observed in systems where inclu-

sions of conductive materials in a nonconductive

matrix are present. In this situation, the material

exhibits good absorption of the microwave radi-

ation.

The behavior of a sample, when exposed to a mi-

crowave radiation, depends on its participation in

those mechanisms. The material can be conductive,

as in case of metals, and then acts as an opaque ma-

terial, reflecting the radiation. Other materials be-

have as insulators, like the hydrocarbons. They are

transparent to the microwaves, which pass through

them without any interaction. Finally, the absorbers

are characterized as high dielectric loss materials and

are susceptible to heating (e.g. water).

The main parameter related to the susceptibility of a

material to being heated by microwaves is the loss

tangent which is defined as Equation (1):

(1)

where ε′ and ε″ are respectively the dielectric con-

stant and dielectric loss of the material. That defines

the capacitive and conductive components of the

complex relative permittivity ε*, as presented in

Equation (2):

(2)

According to these considerations, microwaves dif-

fer from conventional heating in several aspects that

acquire special relevance when applied to chemical

reactions or controlled decomposition of waste rub-

bers. First, the microwaves interact directly with the

polar molecules or ions, the heat is generated from

the inside of the material to the outside. Instead, in

conventional heating, the heat is transferred to the

surface and then into the material following conduc-

tion, convection, and radiation mechanisms. In case

of microwave radiation, the increase of temperature

is faster than in conventional heating and a high en-

ergy amount can be applied in a short time. The ex-

istence of materials that are transparent to the mi-

crowaves opens the possibility of constructing vessels

and containers that are not affected by the radiation.

Plastic materials as polypropylene, polyethylene

have been used and also, because of its resistance to

high temperatures, polytetrafluoroethylene.

As mentioned previously, the devulcanization process-

es aim to achieve the breakage of the sulfide bonds

with the minimum degradation of the main polymer-

ic chains of the rubber. This objective is based on the

lower dissociation energy of the monosulfidic, disul-

fidic and polysulfidic cross-links (285, 268 and below

268 kJ/mol, respectively) compared to the main C–C

(351 kJ/mol) [34]. The possibility of controlling pre-

cisely the amount of microwave energy delivered,

by tuning the processing parameters (e.g. magnetron

power, treatment time), increases the selectivity of

the sulfidic cross-linking bonds scission vs main

chain degradation, which allows the tailoring of the

final properties of prepared reclaimed rubber.

The application of microwaves to the devulcaniza-

tion of rubber has also drawbacks. First the rubber

must be exempt of metals impurities. This is partic-

ularly relevant in case of scrap tire rubbers, because

they contain inherently wires that are removed when

the tires are processed for recycling. However, the

process does not always ensure their complete re-

moval, leaving a small amount of metallic impurities

inside the ground rubber. Second, some rubbers are

non-polar (e.g. EPDM) and non-affected by the mi-

crowave radiation. In some cases, the presence of

tand f
f=
l
m

j
*f f f= -l m
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common fillers like carbon black (an excellent mi-

crowave absorbent) induces the heating of non-polar

rubbers.

The microwaves technology has been applied since

1950 to several industrial processes. In the field of

polymer chemistry and technology, continuous and

periodic microwave-induced vulcanization is one of

the most important applications of microwave heating

to polymeric materials [35]. In case of applying mi-

crowaves to the synthesis and preparation of other

polymeric materials, the development was rather slow

due to the lack of reproducibility of the results. In an

attempt to solve this problem, different types of mi-

crowave ovens have been designed and modified.

The two main types of microwave ovens are the mul-

timode and the single mode. The multimode type is

the equivalent to the domestic microwave ovens.

There is a cavity where the radiation produced by the

magnetron is transmitted. The walls of the cavity are

built on metal, a microwave reflective material. When

the microwaves are irradiated in the cavity, they are

reflected by the opposite wall and there is a constant

bouncing of the radiation that produces a permanent

transit of the waves in two opposite directions. Fur-

thermore, only few microwave frequencies are ded-

icated for devices used in industry, science and med-

icine (the most common MW frequencies are 0.915

and 2.45 GHz). Based on these specifications, the

chamber of the oven is designed with appropriate di-

mensions in order to achieve the resonance of the

waves within the frequency width of the band. An op-

timized design aspires to achieve a constant intensity

through the cavity. This implies that the cavity should

be designed with a shape and dimensions that pro-

duce many modes to be excited at the same time and

the overlapping of the areas of high and low energy

produced by each individual mode can act compen-

sating the lower energy of one mode with the higher

of the other and resulting in each area of the cavity

recieving equal amount of energy. In practice, this is

difficult to achieve, because some parts receive more

energy than others and relatively small changes in

shape might result in big differences in the number of

excited modes or field patterns. More homogenous

results are obtained with the inclusion of stirrers or

ventilation fans which act at the same time as wave

reflectors. The existence of areas receiving high en-

ergy or hot spots in microwaves ovens has been

comprehasively described in work [36]. As a result,

the use of microwaves to induce chemical reactions

(e.g. rubber decomposition) has been often regarded

as a procedure with scarce reproducibility.

The single mode ovens have been designed in order

to improve the reproducibility of the multimode

ovens. In the single mode ovens, only one wave is

generated during the irradiation and the cavity is de-

signed for the length of only that wave. The energy

inside the cavity can be then distributed homoge-

neously and is usually higher than in multimode

ovens. These ovens include usually control of tem-

perature and pressure.

The devices used normally in the literature related to

waste rubber recycling are prototypes and variations

of domestic ovens. In most studies, the cavity of the

oven is basically empty, a relatively small amount of

sample is deposited inside and it is irradiated. If the

sample is large, the differences in the amount of en-

ergy existing in different points of the cavity can be

compensated by the movement and volume of the

sample, which absorbs most of the energy produced.

If the sample is very small, a big part of the micro -

wave energy is wasted and the incidence of the hot

spots is higher, the position of the sample in the cav-

ity is also relevant. This implies that the reproducibil-

ity of the tests performed might be difficult when a

slight change in the equipment takes place. A good

practice that could help to the comparison of these

data would be the inclusion of a temperature map of

the sample after the treatment. While accepting that

this information can be difficult to obtain in many

cases, these data could be used to compare the effect

produced by the microwave radiation in a sample in-

dependently from the piece of equipment used and

some of the process variables.

The differences in composition of tires, their com-

plex nature, due to the presence of other compounds,

such as extender process oil, fillers, additives, curing

agents and plasticizers, the size of the particles and

their shape, all these factors can affect significantly

to the behavior in a microwave field and consequent-

ly reproducibility of obtained results.

3. Microwave devulcanization of variable

waste rubbers

3.1. Model compounds

Kleps et al. [37] investigated the effect of microwave

exposure time on structural changes in model vulcan-

izates based on natural rubber (NR), styrene-butadi-

ene rubber (SBR) and ethylene-propylene-diene rub-

ber (EPDM). In this work, for the first time,
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thermogravimetric analysis (TGA) as analytical tech-

nique was used for evaluation of microwave devul-

canization efficiency in cross-linked rubbers. It was

found that, regardless of rubber type, MW treatment

of studied vulcanizates resulted in a decrease of the

total content of organic component and a simultane-

ously increase of carbon black/carbon residue. In ad-

dition, the authors confirmed that TGA is a very use-

ful tool to establish the optimal parameters of the

devulcanization process.

Hirayama and coworkers [38, 39] examined the im-

pact of carbon black content (in the range of: 0–

100 phr) on microwave devulcanization of SBR

model compounds. It is important to notice that car-

bon black particles (as conductive filler) in the rubber

matrix are responsible for the heating of vulcanizates

during microwave processing. Figure 1 presents the

correlation between temperature after MW treatment

and carbon black content. The results showed that

microwave devulcanization is more effective for

SBR vulcanizates with higher content of carbon

black and was verified in samples with more than

60 phr of this reinforcing filler.

These observations correspond with work of de Sousa

and Scuracchio [40], who studied the role of carbon

black on MW devulcanization of natural rubber. The

authors pointed out an important issue. In case of

microwave treatment applied to ground rubber, the

differences in particles size should not have an im-

pact on the devulcanization process, because mi-

crowave heating is volumetric and less dependent of

conduction or convection phenomena. Figure 2

shows samples with variable content of carbon black

(in the range of: 0–80 phr). As could be observed,

temperatures achieved by 2 or 5 min of microwave

treatment increase with the carbon black content.

The carbon black promotes increase of temperature

during MW treatment of waste rubber. The values of

gel content for sample with the MW irradiation for

2 min do not show a big change. As the gel content

is related to the cross-linking of the sample, the re-

sults indicate that the energy produced by the mi-

crowave treatment in 2 min is not enough to signif-

icantly alter the cross-linked structure of the samples.

On the other hand, when the MW treatment is pro-

longed to 5 min, an increase of temperature after MW

treatment and consequently decrease of the gel con-

tent are observed. This indicates that the increase of

temperature after MW treatment of the vulcanizates

is the main factor affecting devulcanization efficien-

cy (measured as change of gel content), which is de-

pendent on microwave exposure time and carbon

black content.

Based on the literature data, the MW devulcanization

efficiency of SBR and NR model compounds was

compared and summarized in Table 1. As could be ob-

served, under the studied conditions, the changes in

temperature after MW treatment and gel fraction con-

tent values for SBR were noticeably higher com-

pared to NR. This indicates that the efficiency of SBR

devulcanization was higher than for NR, although

NR is more prone to thermal degradation than syn-

thetic rubbers [41]. This phenomenon could be related

to differences in: i) level of carbon black dispersion

and its distribution into both rubbers, ii) microwave
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Figure 1. The effect of carbon black content on temperature

of reclaimed SBR based model vulcanizates after

MW treatment (devulcanization conditions: Mag-

netron power: 700 W, time: 2 minutes, speed of stir-

ring: 40 rpm) (Data adopted from [38, 39]).

Figure 2. The correlation between temperature after MW

treatment and gel fraction as functions of carbon

black content and MW treatment time (Data adopt-

ed from [40]).
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specific energy E value [Wh/kg] (the parameter dis-

cussed in Equation (3)) or iii) design of the mi-

crowave oven (e.g. chamber dimensions, stirring, hot

spots issues, etc.), which could affect the microwave

treatment efficiency. However, that should be ex-

plained during further research studies in this field.

3.2. Waste tire rubber

The final properties of waste tire recycling products

and the repeatability strongly depend on their chem-

ical structure and composition. As presented in Table 2

composition of tires is very complex and obvious

differences between passenger car tires and truck

tires can be observed.

Truck tires contain more natural rubber and less car-

bon black comparing to passenger car tires. This is

due to the different requirements on the properties

of passenger car tires (e.g. low rolling resistance,

improved skid resistance and good wear) [42]. The

results obtained for model compounds presented in

the previous sub-section, indicate that the differences

in composition (especially in carbon black content)

affect the MW devulcanization process. Additional-

ly, truck tires include a higher content of steel rein-

forcement and the metal impurities remaining in the

GTR might cause uncontrolled discharge during MW

treatment. The information about carbon black con-

tent and presence of metal impurities is very impor-

tant in order to achieve reproducibility of the exper-

iments performed by different research groups.

Another influential factor that should be considered

during research is the weight of sample. The mi-

crowave specific energy E [Wh/kg] during mi-

crowave treatment can be estimated by Equation (3):

(3)

where P – microwave power [W], t – radiation time

[h] and m – weight of sample [kg].

When planning and designing experimental works

in this field, these technological issues should be

taken into account.

Scuracchio et al. [43] perfomed thermal analysis of

GTR devulcanized by microwaves. GTR obtained

from the treads and sidewalls of passenger car tires

was treated by microwaves at constant power of

magnetron (700 W) and a variable time (in the range

of: 1–5 minutes). The obtained results are summa-

rized in Table 3. Generally, it was found that longer

microwave exposure time increases maximal tem-

perature of GTR after MW treatment and at the same

E m
P t$=
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Table 1. Comparison of MW devulcanization efficiency of SBR and NR model compounds (Data adopted from [38–40]).

MW devulcanization

conditions

Rubber

matrix

Carbon black

content

[phr]

Temperature after

MW treatment

[°C]

Gel content

[%] Ref.

Vulcanized rubber Devulcanized rubber

Magnetron power: 700 W,

time: 2 minutes,

speed of stirring: 40 rpm

SBR
0 73 90.5 90.5

[38, 39]
60 185 87.0 77.1

NR
0 56 83.0 79.2

[40]
60 109 82.7 79.8

Table 2. Typical composition of passenger and truck tires in

Europe [42].

Composition
Passenger

car tire
Truck tire

Natural rubber 22% 30%

Synthetic rubber 23% 15%

Carbon black 28% 20%

Other additives (e.g. curing system,

fibers, processing aids, etc.)
14% 10%

Steel 13% 25%

Estimated average weight of new tire 8.5 kg 65 kg

Table 3. Temperature after MW treatment, gel content, mass loss between 200–350 °C and Tg of GTR as function of MW

radiation (Data adopted from [43]).

Sample

Temperature after

MW treatment

[°C]

Gel content

[%]

Mass loss between 200–350°C

determined by TGA

[%]

Tg determined by DSC

[°C]

Untreated GTR – 85 17.1 –59.7

GTR 1 95 85 16.6 –

GTR 2 141 84 12.3 –59.6

GTR 3 236 64 10.1 –60.1

GTR 4 282 54 10.3 –46.8

GTR 5 312 GTR turned to char 4.9 Not detected
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time decreases gel content in the sample, that con-

firms more efficient degradation of three-dimension-

al network present in GTR. On the other hand, glass

transition temperature (Tg) determined by differential

scanning calorimetry (DSC) increased after 4 minutes

of treatment, while after 5 minutes of the exposure

the parameter cannot be determined due to GTR car-

bonization. These observations are in agreement

with the values of mass loss between 200–350 °C

measured by TGA, which confirms that this tech-

nique can be successfully applied for the evaluation

of devulcanization process.

Garcia et al. [44] studied the physico-chemical

changes that occur in GTR after different microwave

exposure periods (in the range of: 3–7 minutes). Used

GTR (0.25 mm) was obtained by grinding of truck

tires tread layers. The microwave specific energy (E)

during MW treatment of the studied samples varied

in the range of: 227.8–1594.4 Wh/kg. It was con-

firmed that a long time of microwave treatment re-

sults in many structural changes in GTR. The follow-

ing conclusions can be drawn: i) a partial decompo-

sition of NR chains resulted in increase of carbon

black content; ii) carbon black adsorbs the volatile

degradation products formed during MW treatment,

which enhances thermostability of reclaimed GTR;

iii) high temperature and pressure during rheological

analysis did not revulcanize treated GTR; iv) carbon

black particles migrate from NR to SBR phase in

case of samples treated at higher microwave specific

energy and v) the morphology of reclaimed GTR is

very similar to a droplet dispersion, NR drops in a

continuous phase of SBR.

Colom et al. [45] evaluated the impact of MW treat-

ment on GTR with different contents of organic com-

pounds (elastomers, plasticizers, etc.), carbon black

and ash. The analysis of chemical structure using

FTIR spectroscopy indicates that the microwave

treatment of GTR resulted in thermal oxidation re-

action which converts part of carbon black into car-

bon dioxide. Additionally, a correlation between the

amount of silica present in GTR and degree of devul-

canization was observed. GTR with higher content

of silica was characterized by higher degree of de-

vulcanization, which indicates that hydrophilic silica

enhanced microwave treatment efficiency. This phe-

nomenon suggests that water absorbed by hydrophilic

silica (e.g. during storage of GTR) evaporate when

GTR is treated by microwaves, enhancing its devul-

canization process.

Ateeq and Al-Shamma’a [46] investigated the impact

of MW treatment parameters on the morphology of

reclaimed GTR and its interactions with bitumen.

Used GTR (2–6 mm) was obtained by mechanical

grinding of waste trucks tires. During the experiment,

the authors determined the effects of the following

parameters: i) five different power levels of mag-

netron were applied in range of: 250–1000 W; ii) five

different distances of the sample from the radiation

source (defined as height of samples position in range:

on the turntable to 8.5 cm high) and iii) radiation time

in range of: 0–80 minutes. To the best of our knowl-

edge, the authors used the longest microwave treat-

ment of waste rubber described in the literature. Sam-

ple of GTR (15 g) was treated for 50 minutes when

magnetron power was 750 W (microwave specific

energy E = 41666.7 Wh/kg) and up to 80 minutes for

magnetron power 50 W (microwave specific energy

E = 4444.4 Wh/kg). Novotny et al. [33] in the patent

about microwave devulcanization of rubber claimed

that for microwave frequency between 915 and

2450 MHz, the dose should be in the range of: 90.2–

389.4 Wh/kg, which resulted in elastomer tempera-

ture in the range of: 232–427 °C. Surprisingly, the

authors did not mention the decomposition of the

rubber or its carbonization, although microwave spe-

cific energy used was much higher in comparison to

other previously discussed works. Moreover, the pre-

sented SEM images show that the surface of treated

GTR is smoother compared to unmodified GTR,

while the cross-linked rubber structure seems to be

preserved. These unexpected observations should be

verified and explained.

Recently, de Sousa et al. [47] indicated that the tem-

perature reached by GTR after MW treatment is one

of the most important factors affecting the course of

devulcanization (selective scission of sulfide cross-

linking bonds vs main chain degradation). It was

also confirmed that natural rubber phase in GTR un-

dergoes a higher degree of degradation than styrene

butadiene rubber phase. The authors explained this

phenomenon by higher affinity of carbon black filler

to NR phase compared to the SBR phase.

3.3. EPDM rubber

Bani et al. [48] studied the impact of MW radiation

time (in the range of: 5–7 minutes) and magnetron

power (40 and 80% of maximum power – no infor-

mation about this value) on the devulcanization of

waste EPDM. The results indicated that the effective

Formela et al. – eXPRESS Polymer Letters Vol.13, No.6 (2019) 565–588
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devulcanization process of EPDM starts at tempera-

tures above 300°C and the obtained products showed

satisfactory physico-chemical properties. The au-

thors also mentioned technical problems linked to

the use of the microwave oven in devulcanization at

laboratotry scale. The main difficulties are related to:

i) homogeneous distribution of temperature profile

inside the MW reactor and ii) the design of an af-

fordable temperature record and control system.

Pistor and coworkers [49, 50] analyzed the impact

of paraffinic oil on microwave devulcanization of

EPDM from the automotive industry (average parti-

cles size = 0.71 mm). It was found that temperatures

after MW treatment were higher for waste EPDM

without paraffinic oil than those measured for the

waste EPDM with a plasticizer. This is related to

evaporation of gaseous products from waste EPDM

(low molecular weight additives, e.g. paraffinic oil,

etc. and also volatile degradation products) after

MW treatment. Therefore for a better control of de-

vulcanization process, prior to MW treatment, the

paraffinic oil should be extracted from waste rubber.

Additionally, in order to prevent waste rubber degra-

dation, the microwave treatment time should be very

short (up to 4 minutes). The authors pointed also that

evaporation of low molecular compounds increased

the total carbon black content in processed waste

rubber. This phenomenon has a significant impact

on MW treatment efficiency.

3.4. Other elastomers

Landini et al. [51] applied microwave processing for

recycling of post-production rubber caps (used in

pharmaceutic industry) based on bromo-butyl rubber.

Authors evaluated the effects of magnetron power

(in the range of: 1000–3000 W) and MW treatment

time (in the range of: 9–25 minutes). The measure-

ments of the temperatures of the samples, before and

after the MW treatment, were comprised between

25°C (room temperature) and 550°C. Surprisingly,

the authors did not mention high degradation, car-

bonization or burning of the studied samples. Similar

observations were described in work [46]. This phe-

nomenon could be related to the absence of carbon

black and plasticizers (susceptible to evaporation by

heating) in studied waste rubber. However, the com-

position of examined waste rubber was unknown.

The best results were obtained for the sample treated

at 2000 W and 13 minutes.

Scagliusi et al. [52] evaluated the progress of devul-

canization of waste chloroprene rubber as a function

of microwave treatment time (in the range of: 0.5–

6 minutes) and magnetron power (in the range of:

1000–3000 W). The results showed that MW treat-

ment resulted in significant deterioration of mechan-

ical properties for studied samples. Comparing to

untreated sample (tensile strength: 9.8 MPa, elonga-

tion at break: 500% and hardness: 57°Sh A), the ob-

tained products were characterized by tensile

strength in the range: 0.6–6.1 MPa, elongation at

break in the range: 100–700% and hardness in the

range: 45–52 °Sh A, depending on their MW treat-

ment conditions.

As mentioned above, the results of these works sug-

gest that, regardless of waste rubber type, the most

important factor affecting MW devulcanization is the

temperature reached by the reclaimed rubber after

MW treatment. Based on that assumption, we have

included the literature data in Figure 3, which pres-

ents the temperature after MW treatment of waste

rubber as a function of radiation time, in order to

compare the observations made by independent re-

search groups. However, it should be noticed, that

these results are affected by many factors, such as:

i) design and construction of microwave oven (e.g.

chamber dimensions, Faraday cage effectiveness in

domestic microwave oven with stirring system, etc.);

ii) microwave specific energy applied; iii) tempera-

ture measurement conditions (e.g. used equipment)

and iv) other factors (e.g. composition of used waste

rubber).

As could be observed in Figure 3, the temperatures

achieved by the samples, are not consequent with the
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Figure 3. The effect of time on temperature after MW treat-

ment – a comparison of literature data.
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conditions of the experiments. This indidactes a se-

rious problem with the reproducibility of obtained

results and difficulties with their proper interpreta-

tion. Therefore, in order to avoid that lack of repro-

ducibility and to set a parameter that is directly re-

lated to the devulcanization/reclaiming phenomena

in the sample, we propose to refer to the temperature

of the sample as a more indicative factor than (e.g.

the magnetron power, treatment time, etc.).

4. Additives and modifiers used in MW

devulcanization

The application of variable chemical additives and

modifiers in the microwave treatment of waste rub-

ber is a relatively new approach of research. Recent

progress in this area over the last ten years is sum-

marized in this section. In 2008, Vega et al. [53] in-

vestigated the vulcanization/devulcanization behav-

ior of the squalene (model compound for natural

rubber) modified with diphenyl disulfide (DPDS)

and treated by microwaves. The results indicated that

using of DPDS during rubber compounding en-

hanced devulcanizing ability controlled by micro -

wave treatment power, which affecting devulcaniza-

tion temperature. The authors showed that DPDS by

itself is active only when the scission of disulfidic

bonds occurs (temperature above 180°C). Devulcan-

ization mechanism during microwave treatment of

vulcanizates modified with disulfides is presented in

Figure 4. In the studied case, DPDS radicals are able

to recombine with macro-radicals formed during

MW treatment of cross-linked rubber. This phenom-

enon prevents the unfavorable phenomenon of sec-

ondary cross-linking of waste rubber.

Paulo et al. [54] studied the microwave devulcaniza-

tion of waste rubber modified with inorganic salts

and nitric acid. Microwave treatment conditions were

constant for the studied samples. Changes in the

chemical structure of MW processed waste rubber

were analyzed by Soxhlet extraction and infrared

spectroscopy. The waste rubber modification proce-

dures and the gel content results after MW treatment

are presented in Table 4. As can be observed, using

metallic ions and nitric acid enhanced the microwave

devulcanization of waste rubber (the exception was

CdCl2). FTIR studies showed that microwave treat-

ment leads to the formation of carbonyl (band at

1700 cm–1) and C–O (band at 1200 cm–1) groups in

devulcanized GTR. This confirms the partial oxida-

tion of GTR, which occurs simultaneously with its

devulcanization.

Poyraz et al. [55] present interesting results about

using of microwave treatment for GTR devulcaniza-

tion and subsequently modification with carbon nan-

otubes (CNT). The procedure for the synthesis of de-

vulcanized GTR modified with CNT (CNT/dGTR)

is presented in Figure 5. At the beginning, GTR was

treated by microwaves in order to its partial devul-

canization, which resulted in increased mobility of

rubber chains. In the next steps, devulcanized GTR
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Figure 4. Devulcanization mechanism during microwave

treamtent of vulcanizates modified with disulfides

(Based on [53]).

Table 4. Waste rubber modification procedure and gel content after MW treatment (Data adopted from [54]).

GTR modification procedure Sample code Chemical modifier
Gel content

[%]

Procedure I: The inorganic salts CuSO4, ZnCl2, CdCl2 and Bi(NO3)3 were dissolved

in 60 ml of water and incorporated to 25 g of GTR. Modified GTR

was dried for 4 h at 100°C and than treated by microwave radiation.

GTR – 85.2

GTR-Cu Cu2+ 43.8

GTR-Zn Zn2+ 87.0

GTR-Cd Cd2+ 97.7

GTR-Bi Bi3+ 32.5

Procedure II: The inorganic salts CuSO4, ZnCl2, CdCl2 and Bi(NO3)3 were dis-

solved in 60 ml of a solution of nitric acid at 25% v/v. The inorganic

salts content was calculated based on the hypothetic stoichiometric

reaction between metallic ions and sulfur present in the rubber.

Bi(NO3)3 was used 25% of the stoichiometric weight due to difficult

for dissolution in 60 ml of nitric acid at 25% v/v.

GTR-H HNO3 89.0

GTR-HCu HNO3–Cu2+ 45.1

GTR-HZn HNO3–Zn2+ 35.6

GTR-HCd HNO3–Cd2+ 41.2

GTR-HBi HNO3–Bi3+ 39.7
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was coated with conducting polymer (polypyrrole)

and mixed with organic metallocene precursor (fer-

rocene). In the last operation, coated GTR was treat-

ed by microwave radiation in order to the formation

of CNT on its surface.

Liu et al. [56] modified GTR by barium ferrite ul-

trafine powder. The modification of GTR with vari-

able content barium ferrite ultrafine powder (in the

range of: 0–50 wt%) was performed in high-speed

mixer for 1 hour. Next, the GTR/barium ferrite pow-

der composition (~100 g) was placed in ceramic dish

and microwave treated for various times (in the

range of: 0–4 minutes). Subsequently, prepared sam-

ples were compression molded at 145°C for 10 min-

utes. It was found that barium ferrite, as the magnetic

filler, improved microwave devulcanization and ac-

tivation of GTR. The proposed method allows pro-

ducing the low-cost flexible magnetic materials,

which is a promising approach to extend the up-cy-

cling of waste tire rubber.

Seghar et al. [57] used the ionic liquid (pyrrolidini-

um hydrogen sulfate) in order to improve the mi-

crowave devulcanization efficiency of styrene-buta-

diene rubber vulcanizates. Prior to microwave treat-

ment, ground SBR was mixed for 10 minutes with

10 wt% of ionic liquid pyrrolidinium hydrogen sul-

fate (mixture was left to stand for at least 1 hour).

The results showed that temperature reached by

ground SBR exposed to microwave irradiation was

favored by pyrrolidinium hydrogen sulfate additive,

regardless of used microwave energy value. More-

over, authors indicated that promising approach for

waste rubber devulcanization include also combined

methods based on mechanical (shear forces) and mi-

crowave treatment.

Recently, Mohaved and co-workers performed

comprehensive investigations about application of

variable chemical agents on microwave devulcan-

ization of ground tire rubber [58], waste EPDM

[59] and butyl rubber [60]. Authors evaluated the

combined effects of chemical agent type, its con-

centration and temperature generated during MW

treatment. Devulcanization temperature oscillated in

the range of: 140–280 °C and as chemical agents

CBS (N-cyclohexyl-2-benzothiozyl sulfenamide),

DPTT (dipentamethylenethiuram tetrasulfide), DPDS

(diphenyl disulfide), MBT (mercaptobenzothiazole),

MBTS (2-mercaptobenzothiazole disulfide), TMTD

(tetra methylthiuram disulfide) and HDA (hexadecy-

lamine) were used. Generally, the results confirm

that chemical agents enhanced MW devulcanization

efficiency. The GTR modification procedures and

observations after MW treatment are summarized in

Table 5. The observed differences are related to de-

vulcanization mechanism, which affects the devul-

canization efficiency. Process supported by commer-

cial accelerators (CBS, DPTT, DPDS, MBT, MBTS,

TMTD) as chemical agents is similar to this pro-

posed in Figure 4. In case of waste rubber modified

by HDA ionic devulcanization occurs and proposed

mechanism is presented in Figure 6.

Zedler et al. [61] investigated the synergistic effects

of bitumen plasticization and microwave treatment

on short-term devulcanization of GTR. The selected

properties of GTR modified with bitumen and treat-

ed by microwave are summarized in Table 6. The ob-

tained results showed that bitumen plasticizer (in

range of: 0–2.5 phr) acts as insulator which prevent

oxidation of GTR during microwave treatment and si-

multaneously improves processing and thermal sta-

bility of obtained reclaimed rubber. Additionally, in

studied case, the combined impact of microwave

treatment and bitumen plasticization on tensile prop-

erties of reclaimed GTR was negligible. This indicates

that reclaimed GTR should be considered as a het-

erophase composite composed from: gel fraction

(cross-linked GTR particles that remain after the treat-

ments) and sol fraction (the sum of the devulcanized,

degraded and plasticized rubber phase). Slight dif-

ferences in tensile properties observed for reclaimed

GTR could be related to formation of a network be-

tween cross-linked GTR particles and these different

elastomeric chains (soluble fraction).
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5. Structure and performance properties of

polymer matrix – microwave treated

rubber systems

5.1. Thermoplastics

Hong et al. [62] compared the properties of micro -

wave-treated and ultrasound-treated waste rubber and

their application in LDPE/waste rubber composites.

In the studied conditions, microwave modification

resulted in the higher decrease of gel fraction and

cross-link density of waste rubber, which suggested

higher degree of devulcanization and probable degra-

dation of polymer main chain. Despite that, SEM im-

ages show more regularity in distribution of devul-

canization sites for ultrasound-treated rubber. Simi-

lar effect was also observed at SEM images of fracture

surface of LDPE/waste rubber composites. Samples
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Table 5. Effect of selected chemical agents on microwave-induced devulcanization of variable waste rubber (Data adopted

from [58–60]).

Waste rubber

characteristic

Chemical

agents
GTR modification conditions Observations Ref.

GTR

(passenger car tires)

Median particle size:

0.31 mm

HDA,

DPDS,

CBS,

MBTS

Appropriate amount of devulcanizing

agents were mixed with 30 g oil and then

added to 100 g of above mentioned waste

powder in a 500 ml glass beaker. The waste

powder was soaked in the oil for 12 h at

80°C in an oven to allow it to penetrate

into the rubber fully. Subsequently,

microwave devulcanization of GTR was

performed.

Final temperature after MW treatment in

the range of: 180–280°C.

The best devulcanization parameters were

obtained for compound with 30 phr

aromatic oil and 6 phr DPDS at 240°C.

[58]

Waste EPDM

(mixture of several aged

and new automotive rub-

ber)

Average particle size:

<1 mm

CBS,

DPTT,

HDA,

MBT,

MBTS,

TMTD

Chemical agents were mixed with the

aromatic/aliphatic oil and then added to the

waste powder in a 500 ml glass beaker. The

waste EPDM was soaked in the oil for 24 h

to allow it to penetrate into the rubber fully.

Modified waste EPDM was treated by

microwaves.

Final temperature after MW treatment in

the range of: 200–260°C.

The highest devulcanization efficiency was

obtained with the CBS, HDA, and MBT

additives. On the other hand, the best

mechanical properties of reclaimed rubber

were achieved with the MBTS.

For waste EPDM modified with MBTS, the

devulcanization was better in aromatic oil

than in the aliphatic oil.

[59]

Waste IIR

(waste bicycle and motor-

cycle butyl tubes)

Median particle size:

0.279 mm

HDA,

DPDS,

CBS,

TMTD

Four grams of CBS, DPDS, TMTD, and

HDA which were used as devulcanizing

agents, were mixed with 30 g oil. In next

step, the mixture was added to 100 g waste

powder in a 500 ml glass beaker. The waste

butyl rubber was soaked in the oil for 12 h

at 80°C in an oven to allow it to penetrate

into the rubber fully. Subsequently, waste

butyl rubber was treated by microwaves.

Final temperature after MW treatment in

the range of: 140–260°C.

The best devulcanizing efficiency was

achieved for the compound with paraffinic

oils and 6 phr HDA, when MW

temperature was fixed at 180°C.

[60]

Figure 6. Mechanism of ionic devulcanization of waste rubber modified by HDA (Based on [58]).

Table 6. Selected properties of GTR modified with bitumen and treated by microwave (Data adopted from  [61]).

Property Standard GTR – MW
GTR+0.25

B160/220 – MW

GTR+0.5

B160/220 – MW

GTR+1.0

B160/220 – MW

GTR+2.5

B160/220 – MW

Minimal torque           [dNm] ISO 3417 16.9 17.9 29.5 28.1 24.4

T–2% according TGA  [°C] – 255.8 250.5 253.6 254.6 254.7

Tensile strength          [MPa] ISO 37 5.3 5.9 5.2 6.1 5.9

Hardness                     [°Sh A] ISO 7619-1 64 63 67 67 65
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containing ultrasound-treated rubber show more ho-

mogenous structure, which resulted in the best ten-

sile properties. Authors stated that both methods of

waste rubber modification are effectively enhancing

performance of composites, however presented re-

sults suggest that ultrasound treatment is more suit-

able. Such effect can be associated with lower ener-

gy of ultrasound waves, which effectively break S-S

bonds, leading to devulcanization, but do not cause

decomposition of the polymer main chain.

de Sousa and coworkers [63, 64] prepared dynami-

cally vulcanized HDPE/GTR blends and analyzed the

influence of devulcanization process, as well as ad-

ditional effect of clay content on their structure and

properties. Except simple analysis of treatment time,

the authors analyzed also multi-step microwave

treatment comprising of 2 or 3 shorter steps. Analy-

sis of curing process showed that optimum time and

scorch time were noticeably decreased by the appli-

cation of microwave treatment on GTR particles.

Also, one-step exposure caused stronger effect that

multi-step one with the same total time. Such effect

can be related to higher temperature inside the ma-

terial for longer exposure periods. The addition of

5 wt% of clay to the blends did not have any signif-

icant impact of curing characteristics. Regarding

thermal properties, the highest crystallinity of HDPE

phase was observed for samples in which GTR was

exposed to micro waves for a longer time. Such effect

was ascribed to the more developed surface of par-

ticles, hence higher possibility of nucleation. In

some cases similar effect was observed with addition

of clay, however crystallinity of HDPE was more

sensitive to changes in the GTR particles. Such ef-

fect resulted in the enhanced stiffness of materials

and Young’s modulus increasing with the exposure

time and with the addition of clay.

de Sousa et al. [65] studied the influence of extru-

sion parameters (e.g. screw speed, feeding mode) on

the final properties of dynamically vulcanized HDPE/

microwave treated GTR blends (in ratio 40/60 wt%).

As curing system, sulfur and accelerator N-tert-butyl-

2-benzothiazole sulfenamide (TBBS) were used. It

was found that the finest morphology and the best

performance properties were obtained for samples

prepared at high screw speed, when microwave treat-

ed GTR was feeded directly to molten HDPE (not

dosed together with HDPE to hopper). The results

confirmed that extrusion parameters allowed match-

ing the residence time with dynamic curing kinetics,

what strongly affected cross-linking efficiency of mi-

crowave treated GTR and its distribution in thermo-

plastic matrix. Moreover, authors indicated unsatis-

factory compatibility and adhesion between HDPE

and microwave treated GTR (regardless of extrusion

parameter), what limit potential application of pre-

pared blends.

Simon et al. [66] investigated polypropylene based

thermoplastic dynamic vulcanizates obtained by twin-

screw extrusion. At first they prepared materials con-

taining model rubber comprising in 70% of SBR and

in 30% of NR, which was then replaced partially (10,

20 and 30 wt%) by microwave-treated crumb rubber.

Introduction of devulcanized crumb rubber resulted

in the deterioration of tensile performance of mate-

rial, however for 10 and 20 wt% content, decrease of

tensile strength and elongation at break was very

modest. Addition of modified rubber hardly affected

hardness, since hardness of microwave-treated rub-

ber was very similar to final hardness of material.

Garcia et al. [67] also analyzed the influence of mi-

crowave treatment of GTR particles on the structure

and properties of PP/GTR blends. Authors confirmed

the results presented in other research works, which

indicated the increase of the degree of devulcaniza-

tion with the elongation of microwave treatment,

which consequently resulted in decrease of rubber’s

viscosity. Such effect can be very beneficial during

manufacturing of blends and composites containing

devulcanized GTR. SEM analysis revealed that the

shortest devulcanization times and lowest devulcan-

ization level led to blends with more irregular parti-

cles. Longer modification time impacted positively

on breaking of GTR particles and avoiding agglom-

eration during processing. Such effect was later con-

firmed by 3D images obtained from X-ray microto-

mography.

It should be pointed out that microwave treatment of

GTR could be also very interesting approach for

modificiation of asphalts, which similar like thermo-

plastics, have ability to flow when heated. For exam-

ple, Yu et al. [68] used microwave treatment to mod-

ify crumb rubber used in preparation of modified

asphalt. Authors applied 5 minute microwave treat-

ment and analyzed the changes in rubber particles

with FTIR analysis. It revealed the noticeable de-

crease of the intensity of signals associated with the

S-S bonds, which pointed to successfull devulcan-

ization. Such effect was confirmed by increased equi-

librium swelling index. Next, authors analyzed the
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properties of unmodified asphalt and modified with

neat and microwave-treated crumb rubber. Addition

of crumb rubber led to 15 °C increase of softening

point, but microwave treatment increased this effect

by additional 6 °C. Modification allowed also 21%

increase and 13% decrease of ductility and penetra-

tion, respectively. Such positive effects was ascribed

to cleavage of S-S bonds, hence better swelling of

modified crumb rubber in asphalt. Authors analyzed

also stability of prepared asphalt/crumb rubber mix-

tures, which showed that for sample containing mod-

ified rubber, difference in softening point between

top and bottom of material was 1.2 and 1.6 °C, re-

spectively after 48 and 72 hours. Such result is a

great improvement comparing to 8.6 and 10.8°C for

asphalt containing unmodified crumb rubber. Pre-

sented results clearly indicate that application of mi-

crowave treatment might significantly enhance the

properties of asphalt/waste rubber mixtures.

5.2. Elastomers

Zanchet et al. [69] analyzed the impact of micro -

wave treatment time on the structure and properties

of SBR scraps, which were then vulcanized and com-

pared to control sample (primary product). Authors

analyzed the effect of MW processing times in the

range of: 2–4 minutes. For all times successful de-

vulcanization was observed, which was confirmed

by the values of gel content in material, however ma-

terial obtained after 2 minutes of treatment was not

used for vulcanization, because of its low homogene-

ity with curing system. Vulcanization process of sam-

ples was analyzed, which revealed that maximum

torque was noticeably decreased due to the reduced

cross-link density. Positive aspect of microwave treat-

ment was elongation of scorch time, which enables

achieving better process control. Mechanical prop-

erties of studied materials were noticeably lower com-

paring to reference sample. Moreover, elongation of

microwave treatment resulted in the slight deterio-

ration of mechanical performance, which is related

to the partial degradation of polymer main chain.

In the next work, the same research group [70] se-

lected particular fraction of SBR scraps with the par-

ticle size ~0.6 mm and analyzed the impact of micro -

wave treatment on the curing, structure and properties

of SBR rubber filled with 80 phr of treated SBR

scraps. A decrease of the maximum torque was no-

ticed with the incorporation of SBR scraps. That was

related to the reduction of virgin rubber content and

the generation of a physical barrier for the cross-link-

ing reactions, which led to the decrease of cross-link

density of composites. This phenomenon resulted in

a noticeable decrease of compression set values de-

termined for studied composites. Moreover, SBR

scraps acted as reinforcing agents, so increase of ten-

sile strength was noted, however microwave treat-

ment had slightly negative effect on its value. In case

of elongation at break, treatment of SBR scraps led to

the increase of this parameter, however elongation of

MW treatment reduced it, probably due to the degra-

dation of polymer main chain. Very interesting was

also that authors analyzed the impact of accelerated

aging on the mechanical performance of composites.

Results indicated that control sample, neat rubber,

was more sensitive to the aging effects, than compos-

ites containing microwave-treated SBR scraps.

In works published by Karabork and coworkers [71,

72] microwave-treated GTR was used during prepa-

ration of SBR-based composites. Authors investigat-

ed the effect of MW treatment time (from 1 to 5 min-

utes) on the properties of modified GTR and its

blend with SBR matrix. For preparation of SBR-

based composites, samples after 4 and 5 minutes of

treatment were used, due to the highest sol content,

hence extent of devulcanization. SEM analysis of

modified and unmodified GTR particles indicated

that microwave-treatment noticeably enhanced the

roughness and development of their surface. Such

assumptions were confirmed by BET analysis, which

revealed that 4 and 5 minutes of treatment increased

surface area of particles from 0.0169 to 0.295 and

0.204 m2/g, respectively. It was revealed that addi-

tion of microwave-treated GTR to rubber compounds

reduced the scorch time, which according to authors,

was associated with the presence of active cross-

linking sites on devulcanized GTR particles and pos-

sible diffusion of accelerator from GTR to virgin rub-

ber. Optimum vulcanization time was also decreased,

which confirms the assumption related to the pres-

ence of active functional sites in MW treated GTR.

Such effect was also confirmed by the SEM analysis,

which pointed the improved adhesion between SBR

matrix and micro wave-treated GTR. Elongation of

MW treatment time had noticeable, positive effect on

morphology, which in contrary to samples containing

unmodified GTR did not show as much cracks and

cavities. This phenomenon strongly affected tensile

performance of studied materials. Microwave-treat-

ment increased also friction coefficient of analyzed
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materials (analysis of non-abrasive surface), which

was due to the enhanced strength of interface. On the

other hand, the same phenomenon was the reason of

deterioration in abrasion resistance after modifica-

tion of GTR particles.

Luo et al. [73] analyzed the influence of GTR mod-

ification method on the properties of NR/GTR com-

posites. Authors used sol-gel method for modifica-

tion of untreated GTR and GTR treated by microwave

radiation. Both types of GTR were swollen in tetra -

ethyl orthosilicate at 40°C for 48 h and next soaked

in a 10% aqueous solution of n-butylamine at 40°C

for 24 h. Subsequently, sol-gel modified GTR parti-

cles were dried under reduced pressure at 50°C for

several days until constant weight. Such modified

GTR was used to prepare NR/GTR composites, which

revealed that sol-gel modification was more effective

in enhancing the mechanical performance of compos-

ites than microwave treatment. However, pretreating

of GTR particles with microwaves increased the ef-

fectivity of sol-gel modification and led to the 49%

increase of tensile strength, 13% increase of elonga-

tion at break and 19% increase of tear strength com-

paring to NR/GTR composite filled with unmodified

particles. Furthermore, authors investigated the im-

pact of the content of bis-(3-(triethoxysilyl)-propyl)-

tetrasulfide (TESPT) used to improve the dispersion

of in-situ generated silica during sol-gel modifica-

tion. Addition and increasing of TESPT content re-

sulted in the decrease of scorch time and optimum

cure time, which was related to the breakage of sul-

fur bridges in TESPT and additional cross-linking

reactions occurring inside the material. Such phe-

nomenon led to the enhancement of materials’ mod-

ulus, as well as tensile and tear strength. This effect

was associated with the more homogenous disper-

sion and higher wettability of in-situ generated silica

with rubber matrix, due to the incorporation of

TESPT, which was confirmed by SEM analysis of

cryogenically fractured surface and fracture area

after tensile tests.

de Sousa et al. [74] investigated the reversion process

occurring during vulcanization of NR-based com-

posites containing microwave-treated NR waste. As

in other, above mentioned works, elongation of treat-

ment time resulted in the decrease of gel content and

cross-link density in waste rubber particles. Next,

curing characteristics were determined and the per-

centage of reversion was calculated from the results.

Authors indicated that microwave exposure time of

NR waste and their content have significant influ-

ence on the higher reversion of studied composite

during vulcanization, which confirmed the results of

previous works. Such effect was directly responsible

for deterioration of mechanical properties, such as

tensile strength, elongation at break and Young’s

modulus.

Colom et al. [75] except the investigation of irradi-

ation time, analyzed also the influence of GTR source

on the structure and properties of NR/GTR compos-

ites. Authors used GTR from passenger car tires and

truck tires, which have different composition (see

Table 2). FTIR analysis of composites revealed that

regardless of GTR source, elongation of treatment

time resulted in the partial degradation of GTR. How-

ever, the source of GTR, hence its composition, had

significant impact on formation of unsaturated C=C

bonds during microwave treatment. These results are

in agreement with the values of cross-link density

calculated according to Flory-Rehner equation. As

could be expected, mechanical properties of NR/GTR

composites were deteriorated comparing to reference

sample, due to weak matrix-filler interactions. How-

ever, application of microwave treatment resulted in

the improvement of tensile properties of composites,

because of increased roughness and specific surface

area after treatment, which enhanced the compatibil-

ity between phases. The effect of treatment was

stronger in case of GTR from truck tires, because of

higher content of NR and higher degree of devulcan-

ization.

5.3. Thermosets

Recently, Aoudia et al. [76] investigated the effects

of incorporation (10 wt%) of microwave-treated

GTR into bisphenol-A and bisphenol-F based epoxy

matrix. The impact of exposure time and microwave

power applied during treatment, hence the energy

used for GTR devulcanization on the structure and

performance of composites was determined. Authors

noted that for short microwave treatment time (15 sec-

onds), the level of magnetron power (in the range of:

300–900 W) strongly affected the cross-link density

of GTR (measured by equilibrium swelling). For

longer time (60 seconds), the influence of used mag-

netron power on the degree of swelling of treated

GTR was negligible. Moreover, presented results

show that microwave treatment of GTR enhanced

chemical reactivity of particles’ surface, which pro-

moted interfacial adhesion between matrix and filler.
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Up to 20% enhancement of flexural stress and strain

at break was observed for moderate microwave en-

ergy values. For microwave energy values exceeding

1250 J/kg, increase of mechanical parameters was

noticeably lower. According to authors this is related

to partial degradation of microwave-treated GTR

particles. Other positive aspect of GTR incorpora-

tion into epoxy matrix was enhanced toughness ex-

pressed by the decrease of compressive modulus.

Generally, modulus was decreasing in the linear

manner with the increasing microwave energy. Au-

thors analyzed the structure of materials with SEM

microscopy, which revealed noticeable improvement

of interface between matrix and filler in case of mi-

crowave-treated GTR. Significant enhancement of

interfacial adhesion was related to the higher surface

reactivity in case of treated GTR.

To the best of our knowledge, the published data

about microwave-treated GTR particles into ther-

mosets are very limited. We hope that this review

work, encourages the investigation of the potential

of microwave-treated/functionalized GTR applica-

tion into thermoset composites.

6. Waste rubber pyrolysis

It is worth to notice that burning of the waste tires,

mainly in cement kilns and power stations, allows

only for around 37% of the energy recovery that is

used to produce new tires [77]. Waste tires pyrolysis

offers the advantages of energy recovery in more so-

phisticated and environmentally-friendly manner

comparing to combustion of tires. The products of

waste tires pyrolysis are high value-added com-

pounds (gases, pyrolytic oils and pyrolitic carbons),

which can be refined and than used as a alternative

source of energy or chemical substrates. Compre-

hensive literature reviews about progress in this field

were presented by Williams [78] and Martínez et al.
[79]. Application of microwave energy seems to be

promising approach for further development of in-

dustrial pyrolysis. Microwave-induced pyrolysis over-

comes the disadvantages of conventional pyrolysis

methods such as slow heating and necessity of feed-

stock grinding. At the same time, MW pyrolysis im-

proves the quality of pyrolysis products and signifi-

cantly reduces processing time (energy consumption

costs) [80]. Although, microwave-induced pyrolysis

has many advantages the published research works

about its application in rubber recycling are rather

limited and performed mostly in the laboratory-scale.

In this sub-chapter, recent developments and future

perspectives in field MW pyrolysis of waste rubber

are summarized. A special attention was focused on

the correlation between microwave-pyrolysis condi-

tions and the final properties of obtained products.

Undri et al. [81] examined the microwave pyrolysis

of waste tires and characterized the properties of

solid, liquid and gas products. The results showed that

the process is affected by the MW power (P) and tire

mass (M). The ratio between microwave power and

tire mass square (P/M2) has significant influence on

working temperature (the authors pointed on the tech-

nological issues related to temperature measurement

during MW pyrolysis), which consequently affects the

efficiency and the composition of products. The cor-

relation between MW processing conditions and the

yield of the products is presented in Table 7. The py-

rolytic products yields were: 40.6–65.0 wt% for

solid, 20.7–44.0 wt% for liquid and 9.0–27.4 wt%

for gases. As could be observed, the collected py-

rolytic products were characterized by a high calorif-

ic value, ~34 MJ/kg for solid, ~45 MJ/kg for liquid,

and ~46 MJ/kg for the gas fraction. In the final con-

clusion, the authors indicated that complete MW
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Table 7. The correlation between MW pyrolysis, pyrolytic products yield and their higher heating value (Data adopted from

[81]).

P – MW power; M – tire mass; Tmax – maximal temperature measured by IR thermometer; t – pyrolysis time

P
[kW]

M
[g]

P/M2

[kW/kg2]

Tmax

[°C]

t
[min]

Pyrolytic products yields

[wt%]

High calorific value of pyrolytic products

[MJ/kg]

Solid Liquid Gas Solid Liquid Gas

6 208.8 137.6 573 14 41.1 31.5 27.4 35 47 46

4.8 212.8 106.0 546 15 40.6 43.1 16.3 36 48 49

3 233.3 55.1 522 39 43.2 42.6 14.1 33 44 49

1.5 252.1 23.6 523 100 65.0 20.7 14.3 30 43 49

3 1501.1 1.3 533 70 50.7 39.3 9.0 34 43 43

3 502.8 11.9 513 59 40.6 44.0 13.4 34 43 42

3 64.1 730.1 453 47 47.5 30.1 22.4 – – 44
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pyrolysis of whole tire may be achieved using an ap-

propriate P/M2 ratio and pyrolysis time.

Song et al. [82] investigated microwave-induced py-

rolysis efficiency as function of process time (in the

range of: 10–30 min.), which allowed determination

of yields and composition of obtained products at

different stages of process. The pyrolysis products

yields at different times indicated that waste tire py-

rolysis was relatively complete within 20 min. How-

ever, the samples in the center of the microwave re-

actor were pyrolyzed earlier than those in the sur-

rounding areas. After 24 min, the temperature of GTR

stabilized at ~500°C and remained so until the end

of the pyrolysis. It was observed that solid fraction

content first decreased from 54 wt% at 10 min to

45 wt% at 20 min, followed by an additional slight

decline (43 wt% at 30 min). On the other hand, py-

rolytic gases content was ~12 wt% and liquid frac-

tion content was ~45 wt% after 30 min. Generally,

longer pyrolysis time resulted in increase of yield for

gases and liquid fraction, while solid fraction content

decreased. Furthermore, it is worth to notice that the

limonene content present in liquid fraction obtained

by microwave-induced pyrolysis was evidently higher

than that from conventional pyrolysis. More detailed

investigation about limonene formation during mi-

crowave pyrolysis of waste tire rubber was recently

published in work [83]. The results showed that in the

laboratory scale (batch size: 30 g) the highest effi-

ciency of limonene was up to 23.4%, when optimal

pyrolysis conditions were used (specific micowave

power: 15 W/g; weight hourly space velocity: 3.75 h–1;

ground tire rubber characteristics: particles size –

0.6 mm without steel impurities). More useful infor-

mation about the impact of microwave pyrolysis con-

ditions on the final properties of liquid, solid and gases

pyrolytic products are presented in works [84–86].

Song et al. [87] examined the effect of steel wires on

microwave-induced pyrolysis of GTR. It was ob-

served that discharge triggered by metals under mi-

crowave irradiation accelerated the pyrolysis of

ground tire rubber, which consequently affected the

composition of pyrolytic products and their yield.

For example, gas products yield reached up to

35.3 wt%, which is realted to presence of local hot

spots (very high temperature) formed during dis-

charging of metals treated by microwaves.

Song and coworkers [88, 89] comprehensively in-

vestigated the impact of magnetron power on mi-

crowave-assisted pyrolysis of waste tires. The results

showed that pyrolysis efficiency increased with in-

creasing microwave energy. In work [88] the final

temperature of GTR after pyrolysis reached 415, 498

and 574°C at specific microwave energy 9, 15 and

24 W/g, respectively. In the second work of the same

research group [89], the maximum temperatures

after microwave pyrolysis of GTR (batch 30 g) were

350, 365, and 389°C at power levels of 300 (10 W/g),

500 (16.7 W/g) and 700 W (23.3 W/g), respectively.

Observed differences are related with the specifica-

tion of used microwave reactors. For example, max-

imal power of magnetron used in work [88] is

900 W, while in work [89] this value is 3000 W.

The above mentioned and discussed laboratory-scale

trials are very promising. The preliminary results of

investigations about microwave-induced pyrolysis

of waste rubber indicate that this technology will be

successfully developing in next years.

In our opinion, other promising approaches for fur-

ther studies in field of microwave-induced thermal

decomoposition of waste rubber can be devided into

two directions: light pyrolysis and gasification. Light

pyrolysis of waste rubber is relatively novel technol-

ogy and comparing to conventional pyrolysis is per-

formed in lower temperature (usually around 300°C

or less) [90, 91]. In this conditions primary pyrolysis

occurs, which combine devolatilization of rubber ad-

ditives (and other low molecular compounds) and

partial thermal decomposition/degradation of waste

rubber. This indicates that light pyrolysis can be cat-

egorized as a method combining reclaiming and py-

rolysis processes. This allows production of new

group of waste tires recycling products, which could

found application as bitumen modifiers [92], semi-re-

inforcing fillers [93] or reactive plasticizers [94, 95].

Gasification is another interesting approach which

should advance the application of microwave-assist-

ed thermal decomposition in near future. This is a

process in which air, oxygen and or steam support

decomposition of waste tires to produce mainly syn-

gas (CO and H2).  In 2010, Donaj et al. [96] treated

automobile shredder residue by microwave pyrolysis

combined with high temperature steam gasification.

The process was designed in order to improve the

conversion of automobile shredder residue into valu-

able products. Moreover, it should be pointed that

flash heating by microwaves might has beneficial

impact on gasification efficiency. However, recent

development in waste rubber gasification compre-

hensively described by Machin et al. [97] and by
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Oboirien and North [98] indicated that application

of microwave energy during gasification of waste

rubber is still very limited.

7. Advances and limitations in MW

treatment of waste rubber

As presented above, the use of microwaves in rubber

recycling by devulcanization and pyrolysis is gain-

ing more attention of research groups around the

world. Table 8 presents a summary of advantages

and disadvantages of MW treatment of waste rubber,

which strongly affect development and further in-

dustrial application of microwave technology in rub-

ber recycling.

The unique features of the microwaves enable sol-

vent-free, short-time and highly efficient environ-

mentally friendly treatment of waste rubber, which

is a huge advance of this technology. In comparison

to other methods, the microwave heating occurs in the

whole volume of material. It is extremly important

in case of waste rubbers for which the thermal con-

ductivity is usually very low. The dosage of mi-

crowave energy acting on waste rubber can be sim-

ply controlled by magnetron power and time

settings, allowing selective breakage of the cross-link-

ing bonds with minimum degradation of the main

polymeric chains. However, it should be noticed that

settings of time and power do not guarantee com-

pletely the amount of energy irradiated to the sam-

ple. As mentioned above, the cavity of the microwave

oven is not irradiated equally due to presence of hot

spots. Obviously, devulcanization or pyrolysis process

efficiency and the final quality of obtained products

requires a precise control of temperature distribution

during MW treatment, what is a common problem in

this technology. This problem is solved in professional

microwave reactors, but due to high cost their appli-

cation in waste rubber recycling is rather limited.

Other route, commonly used by academic researcher,

is modification of low-cost domestic ovens by addi-

tion of stirring system. However, it should be pointed

out, that such solution might change the microwave

power characteristics (e.g. partial waste of MW en-

ergy by hole in Faraday cage, partial absorbion of

MW energy by parts of stirring system, etc.).

Literature data showed that microwave treatment im-

proved the compatibilty and interfacial adhesion be-

tween polymeric matrix and MW treated waste rub-

ber. This is due to higher mobility of polymer chains

in partially devulcanized waste rubber, which en-

hances the physco-chemical interactions on the phase

boundary.

Another advantage is possibility of modification/

functionalization of GTR by MW treatment, which

could found application as reinforcing fillers or en-

gineering materials. Moreover, the suitable modifi-

cation of atmosphere or temperature conditions dur-

ing MW treatment of waste rubber allow preparation

of novel products, such as reclaimed rubber, oligo -

mers, oils, carbon black and gases with different char-

acteristics.

Although, above discussed laboratory investigations

about application of microwave energy in waste rub-

ber recycling are usually conducted by batch process,

it should be noticed that this technology can be per-

formed in a continuous manner. This promising in-

dustrial approach was described in patents of Hunt In-

dustries Inc. (USA) [99] and Marpo Sp. z o.o. (Poland)

[100]. Hunt Industries Inc. [99] presents rubber re-

cycling technology based on continous MW treat-

ment of waste rubber in vacuum, which allow recov-

ering devulcanized rubber or purified carbon and

volatiles from a ground rubber feed material. In

patent of Marpo Sp. z o.o. [100], waste rubber is sub-

jected to a depolymerization process performed in

microwave tunnel at inert atmosphere. Patented ap-

paratus for recycling is equipped with a fan system

for absorbtion of the process gases and providing a
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Table 8. Advantages and disadvantages of MW treatment of waste rubber – a summary.

Advantages Disadvantages

Heating in the material volume High cost of professional microwave reactors

Short-time of process Problems with efficient mixing

Solvent-free and environmental-friendly process Hot spots issue

Precise control of MW energy dosage by magnetron power and time settings Problems with volatile degradation products emission

Possible to perform in continuous manner

Possible functionalization/modification of GTR

Improvement of the matrix-GTR interactions

Preparation of novel products, such as reclaimed rubber, oligomers, oils, carbon

black and gases
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light negative pressure. In both patents, the inventors

pointed out on the important issue of volatile com-

pounds, which should be collected to condenser dur-

ing MW processing of waste rubber.

8. Conclusions and future perspectives

Over the last 15 years many attempts in MW treat-

ment during devulcanization and pyrolysis of waste

rubber were depicted. The summarized data present-

ed in this paper confirms that MW treatment is cur-

rently one of the most promising methods of waste

rubber recycling. This approach allows solvent-free,

short-time and highly efficient devulcanization and

pyrolysis of waste rubber. These processes resulted

in a full spectrum of novel products with unique prop-

erties, which are suitable for application in different

branches of industry. The state of knowledge present-

ed above indicates that the recycling of waste rubber

by microwave treatment will continue to grow in the

future. However, it seems that the most promising

routes for further investigations can be categorized

into three main directions. First route, is modifica-

tion and functionalization of waste rubber during

MW treatment. This allows preparation of novel prod-

ucts of waste tires recycling, which could found ap-

plication as reinforcing (or semi-reinforcing) fillers,

engineering materials or low-cost flexible magnetic

materials. Furthermore, MW treatment of waste rub-

ber improves its interfacial interactions with differ-

ent polymeric matrix. Second direction for further

reseach should be focused on methodology suitable

for evalution of progress in MW treatment of waste

rubber. In this field the technical problems with meas-

urements of temperature distribution and emission

of volatile organic compounds from waste rubber

after MW treatment should be resolved. Due to very

promising results in laboratory scale, the third ap-

proach will be focused on optimization and up-scal-

ing of microwave devulcanization, pyrolysis or gasi-

fication processes (especially in continuous manner)

in order to facilitate their industrial implementation.
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