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SELECTED LIST OF SYMBOLS AND ACRONYMS

Symbols
Certain symbols which are used only locally within a section, or whose meaning is clear 
from the context, are not included in this list.
Cbd	 –	body-drain capacitance
Cbs	 –	body-source capacitance
Cbc	 –	quasi-static body-to-channel capacitance, Sec. 3.7.3
Cds	 –	drain-source capacitance
Cgb	 –	gate-body capacitance
Cgc	 –	quasi-static gate-to-channel capacitance, Sec. 3.7.2
Cgd	 –	gate-drain capacitance
Cgs	 –	gate-source capacitance
DC	 –	dynamic coupling factor of the channel, Sec. 3.3.1
Dp	 –	diffusivity of holes
DV	 –	dynamic channel-to-current coupling factor, Sec. 3.3.1
DS	 –	dynamic channel deformation factor, Sec. 3.3.1
dl	 –	 longitudinal dynamic carrier-to-channel coupling factor
E	 –	electric field vector
E	 –	 total longitudinal electric field in the channel
E0	 –	steady-state longitudinal electric field in the channel
E1	 –	small-signal longitudinal electric field component in the channel
ECB	 –	 total transverse electric field on the bottom channel surface, see Fig. 3.3
ECB0	 –	steady-state transverse electric field on the bottom channel surface, see Fig. 3.3
Ecb	 –	small-signal transverse electric field component on the bottom channel surface, 

see Fig. 3.3
ECG	 –	 total transverse electric field on the top channel surface, see Fig. 3.3
ECG0	 –	steady-state transverse electric field on the top channel surface, see Fig. 3.3
Ecg	 –	small-signal transverse electric field component on the top channel surface, see 

Fig. 3.3
gds	 –	quasi-static small-signal drain-source conductance
gdsD	 –	DIBL part of gds

gdso	 –	ohmic part of gds

gm	 –	quasi-static gate small-signal transconductance
gmb	 –	quasi-static body small-signal transconductance
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Selected list of symbols and acronyms6

Ich	 –	channel current
ib	 –	small-signal body-terminal current
id	 –	small-signal drain-terminal current
ig	 –	small-signal gate-terminal current
is	 –	small-signal source-terminal current
J	 –	current density vector field
J	 –	 total conduction current density, see (3.60)
J0	 –	steady-state conduction current density
J1	 –	small-signal conduction current density
Jt	 –	 total current density, see (3.59)
Jt1	 –	 total small-signal current density, see (3.67)
Jdis	 –	displacement current density
Jdis1	 –	small-signal displacement current density = displacement current density Jdis

L	 –	channel length
LG	 –	gate length
kD	 –	dimensionless factor, kD = gdsD / gds

Nd	 –	concentration of ionized donors
p	 –	 total concentration of holes at Q-point, see (3.4)
p0	 –	steady-state concentration of holes at Q-point
p1	 –	small-signal concentration of holes at Q-point
QB	 –	 total body charge per unit area at Q-point, see (3.13)
QB0	 –	steady-state body charge per unit area at Q-point
Qb	 –	small-signal body charge per unit area at Q-point
QG	 –	 total gate charge per unit area at Q-point, see (3.12)
QG0	 –	steady-state gate charge per unit area at Q-point
Qg	 –	small-signal gate charge per unit area at Q-point
q	 –	magnitude of the elementary charge
qb	 –	overall excess depletion region charge, see (3.143)
qg	 –	overall excess gate charge, see (3.142)
S	 –	dimensionless parameter, see (4.2)
tox	 –	oxide thickness
VBC	 –	dc body-channel voltage, see Fig. 3.5
VBS	 –	dc body-source voltage
VCS	 –	dc voltage drop across the channel, see Fig. 3.5
VDS	 –	dc drain-source voltage
VGC	 –	dc gate-channel voltage, see Fig. 3.5
VGS	 –	dc gate-source voltage
VT	 –	 threshold voltage
υbs	 –	small-signal body-source voltage
υds	 –	small-signal drain-source voltage
υgs	 –	small-signal gate-source voltage
X	 –	 total thickness of the channel at Q-point, see (3.6)
X0	 –	steady-state thickness of the channel at Q-point
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Selected list of symbols and acronyms 7

X1	 –	small-signal thickness of the channel at Q-point
Xch	 –	average channel thickness, see (4.16)
XD	 –	channel thickness at the drain
Xd	 –	 total thickness of the depletion region at Q-point, see (3.11)
Xd0	 –	steady-state thickness of the depletion region at Q-point
Xd1	 –	small-signal thickness of the depletion region at Q-point
XS	 –	channel thickness at the source
ybs	 –	small-signal body-source admittance, see (4.107)
yDb	 –	small-signal body-to-source transadmittance, determined by DIBL see (4.123)
yDg	 –	small-signal gate-to-source transadmittance determined by DIBL, see (4.122)
yds	 –	small-signal drain-source admittance, see (4.121)
ygs	 –	small-signal gate-source admittance, see (4.95)
ym	 –	gate small-signal transadmittance, see (4.94)
ymb	 –	body small-signal transadmittance, see (4.106)
W	 –	width of transistor
ε0	 –	permittivity of free space
εs	 –	 relative permittivity of solicon
η	 –	dimensionless factor, η = gmb / gm
ξ	 –	distance (from the source) along the channel
μ(ξ, t)	 –	 total bias-dependent mobility of holes at Q-point, see (3.5)
μ1(ξ, t)	 –	differential of μq at Q-point, see (3.70) and (4.8)
μd	 –	differential mobility at Q-point, see (4.10)
μq, μq(ξ)	–	mobility of holes at Q-point
τ	 –	 relaxation time
τtr	 –	 transit time of carriers across the channel
υ	 –	velocity of carriers
ω	 –	angular frequency

Acronyms
2D	 –	Two-Dimensional
AC, ac	 –	Alternating Current
ACP	 –	Air Coplanar Probe
BSIM	 –	Berkeley Short-channel IGFET Model
CLE	 –	Channel-Lengthening Effect
CSE	 –	Channel-Shortening Effect
CTME	 –	Channel Thickness Modulation Effect
DC, dc	 –	Direct Current
DCTME	 –	Dynamic Channel Thickness Modulation Effect
DIBL	 –	Drain-Induced Barrier Lowering
GCA	 –	Gradual Channel Approximation
GCDE	 –	Gradual Channel Detachment Effect
HSDMAGFET	 –	Horizontally-Split-Drain Magnetic Field-Effect Transistor
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Selected list of symbols and acronyms8

MOS	 –	Metal Oxide Semiconductor
MOSFET	 –	Metal Oxide Semiconductor Field-Effect Transistor
NQS	 –	Non-Quasi-Static
NQSCCPR	 –	Non-Quasi-Static Channel Charge Partition Rule
Q-point	 –	Quiescent Point
QS	 –	Quasi-Static
QSCCPR	 –	Quasi-Static Channel Charge Partition Rule
RF	 –	Radio Frequency
VNA	 –	Vector Network Analyzer
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Chapter 1

INTRODUCTION
Wiesław Kordalski

This monagraph deals with modeling the small-signal operation of the MOS transistor, 
and presents original, not yet fully published, results of our research on time- and frequen-
cy-domain physics-based small-signal MOSFET models.

To design reliably circuits for communications in the range of radio or microwave fre-
quencies, an adequate non-quasi-static (NQS) MOSFET model is indispensable. Quasi-static 
(QS) approaches do not accurately describe the operation of the MOSFET at high frequencies 
or under fast transients. This stems from the fact that the QS approximations assume the 
movable carriers in the channel of the transistor to respond instantaneously to the perturba-
tions induced by a time-varying external bias, thereby neglecting the delay, dynamic prop-
erties of the channel and the coupling between the perturbed carrier beam and the transistor 
structure (the gate and the body).

Passing over the narrow-channel effects, the MOS transistor is inherently a two-dimen-
sional (2D) device. Thus, to derive an NQS four-terminal small-signal MOSFET model valid 
in time and frequency domains, one should solve a closed set of partial differential equations, 
namely: continuity, transport and Poisson’s equations. The set of equations cannot be exactly 
solved in the analytical form in 2D space, which implies the necessity for researchers to 
decompose the 2D problem into simplified ones.

An adequate model of the channel, especially its shape, is one of the most important 
issues in the derivation of a small-signal model of the transistor.

In models whose derivation is based, either explicitly or implicitly, on the gradual chan-
nel approximation (GCA), presented in e.g. [1–8], the shape of the channel is unrealistic, 
because its thickness decreases as the distance from the source of the transistor increases, 
see, e.g. [2–4]. The GCA is one of the assumptions which are most commonly put forward 
in analytical and semi-analytical approaches to the calculation of the value of the charge 
induced in the channel. The GCA amounts to the assumption that the surface density of the 
total uncompensated semiconductor charge, and thus of the channel, is determined only by 
the transversal electric field acting on the semiconductor surface. For this reason, apparent 
physical contradictions can appear if the approximation is used, which was pointed out, for 
instance, in [9–12]. It is the GCA that leads in consequence to such non-realistic phenomena 
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1. Introduction10

as the channel pinch-off or the channel-shortening effect (CSE). Therefore, a more compre-
hensive analysis on the channel shape is an obvious need.

In so-called charge-based or surface-potential-based models, e.g. [13–16], the channel 
is assumed to be a charge sheet of negligible thickness; however it is difficult to find physical 
reasons justifying this shape of the channel.

Some attempts were undertaken in order to overcome limitations imposed by the GCA. 
For example, the question of how changes of the longitudinal electric field component in 
the drain-to-source region affect the channel charge were considered in several works, e.g. 
[9–12], however, in each of them there were made some restrictive assumptions dealing 
with the shape of the depletion region. Namely, in all the works the depletion region and the 
channel were assumed to be rectangular, which is an unrealistic assumption.

In derivation of quasi-2D dc MOSFET models, which are briefly presented in [17–21], 
the MOSFET is considered as a 2D object in which the channel has also a 2D nature. The 
GCA is abandoned in this approach (non-GCA models). In description of these models, there 
are no such unrealistic terms as pinch-off and channel-shortening effect. According to these 
models, the channel has the shape of a curvilinear tetragon, and its thickness increases as 
the distance from the source of the transistor increases. This shape of the channel results 
from the qualitative and quantitative analysis carried out in detail in the next chapter. {It is 
worth mentioning that the key features of these quasi-2D dc MOSFET models are the main 
assumptions of the concept of a new horizontally-split-drain magnetic field-effect transistor 
(HSDMAGFET) described in works [22–26]}

Other few problems emerge when the exact knowledge of the small-signal behavior of 
the MOSFET and an adequate small-signal model of the device for radio and microwave 
frequencies are needed [27]. In addition to an appropriate channel model of the transistor, 
an adequate small-signal MOSFET model should take into account: the velocity saturation 
effect of carriers in the channel of the transistor; the field-dependent mobility; the electri-
cal coupling between the perturbed charge in the channel and the gate and the body; local 
variations in the channel thickness; and the drain-induced barrier lowering (DIBL) effect.

Known small-signal MOSFET models used in designing integrated circuits in the radio 
frequency (RF) range can be split into two groups: quasi-static (QS) and non-quasi-static 
(NQS) models. The QS approaches do not aptly describe operation of the MOSFET at high 
frequencies or under fast transients. This stems from the fact that the QS approximations 
assume the movable carriers in the channel of the transistor to respond instantaneously to 
the perturbations induced by a time-varying external voltage, thereby neglecting the delay, 
dynamic properties of the channel, and the coupling between the perturbed carrier beam and 
the structure (the gate and the body). As a result, serious inconsistencies arise when the QS 
approach is used to modeling an RF MOS transistor. For instance, according to the model 
presented in [28], magnitudes of transadmittances of voltage-controlled current sources tend 
to infinity as frequency increases, which is an apparent contradiction.

To overcome the limitations, various models have been proposed in [29–36]. Howe
ver, there are also weak points in those models. For instance, one can infer from the results 
presented in [32–35] that the magnitude of the gate transadmittance (ym) does not decrease 
as the angular frequency ω tends to infinity. The widely used NQS BSIM3 model [36] is 
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1. Introduction 11

a charge-based model developed on the channel charge relaxation time approach. Moreover, 
the channel of the MOSFET is modeled in work [36] as an RC distributed transmission line, 
which is not an adequate model of the transistor because any line of this type is not unilateral 
(i.e., the two-port admittance parameter y12 ≠ 0). The intrinsic MOSFET (without parasitic 
elements) has to be unilateral (y12 = 0) for the reason that the charge carriers (electrons or 
holes) are injected only through the source-channel potential barrier. Besides, the transport 
equation for current carriers injected into the channel differs substantially from that for the 
current in the resistive layer of an RCline (ohmic transport mechanism). This is the funda-
mental reason for which any RC-line-based small-signal model of the intrinsic MOSFET is 
not adequate.

A phenomenon that is not included in known small-signal models is the dynamic chan-
nel thickness modulation effect (DCTME), see, e.g. [29–31].

The DIBL effect is also not included in the vast majority of known small-signal mo
dels, see, e.g. [28–36], and if it is considered, the applicability of these models is limited to 
a low-frequency range. For example, this phenomenon is included in the model presented 
in [37], but the model is quasi-static and its validity is restricted to a quasi-static frequency 
range.

To surmount the above-mentioned weak points of existing models, an attempt has been 
made to derive from first principles a new DIBL-included physics-based quasi-2D NQS fre-
quency-domain small-signal model of the four-terminal MOSFET operating at an arbitrarily 
located quiescent point (Q-point). The model is briefly reported in [27, 38–42]. The new 
model is valid from zero Hz to well above the cut-off frequency fT and takes into account: 
the velocity saturation effect of carriers in the channel; the dependence of the mobility on 
electric field; the electrical coupling between the perturbed charge in the channel and the 
gate and the body; local variations in the channel thickness; and the DIBL effect. According 
to the author’s knowledge, there is no small-signal model in the literature that takes into 
account all these effects together. Moreover, there are no non-reciprocal capacitances in the 
new model, and the GCA is abandoned.

The purpose of this monograph is to present a detailed derivation and results of exper-
imental verification of the new time- and frequency-domain quasi-2D NQS four-terminal 
small-signal MOSFET models which take into account the DIBL effect.

The monograph is arranged as follows.
The purpose of Chapter 2 is to give a physical background to the new time- and frequen-

cy-domain small-signal models. Theoretical discussion and results of numerical analysis in 
2D space are given in order to introduce the following three phenomena: gradual channel de-
tachment effect (GCDE), channel thickness modulation effect (CTME), and channel-length-
ening effect (CLE). Based on these phenomena, a quasi-2D dc channel representation and 
a quasi-2D dc representation of the MOSFET are defined.

In Chapter 3, a novel quasi-2D NQS four-terminal time-domain small-signal MOS-
FET model is presented. A set of partial differential equations for the new physics-based 
small-signal model is derived. The set consists of a quasi-2D small-signal continuity equa-
tion, a quasi-2D small-signal Poisson’s equation, and a quasi-2D small-signal transport 
equation. All the equations give a mathematical description of the behavior of the carriers 
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1. Introduction12

in the channel and charges in the gate and the body. A set of supplementary equations for 
coupling and non-capacitive displacement currents in the MOSFET under dynamic operation 
is also derived. Based on the quasi-2D dc MOSFET representation, a useful formula for the 
gate-to-body capacitance Cgb is derived, and some rules dealing with channel-to-gate and 
channel-to-body coupling currents are established. Reciprocal capacitances occurring in this 
model are defined. The model we propose in this chapter provides the background to a novel 
frequency-domain small-signal MOSFET model.

In Chapter 4, a novel DIBL-included quasi-2D NQS four-terminal frequency-domain 
small-signal MOSFET model is proposed. The model takes into account: the velocity satu-
ration effect of carriers in the channel; the dependence of the mobility on electric field; the 
electrical coupling between the perturbed charge in the channel and the gate and the body; 
local variations in the channel thickness; and the DIBL effect. Unlike other models, this one 
is composed only of reciprocal capacitances. A closed set of partial differential equations 
defining the model in the time domain is formulated and solved in the frequency domain. 
The solution indicates that two types of waves can propagate from the source to the drain, 
viz., a longitudinal wave of a disturbance in the carrier density and a transverse wave of 
a disturbance in the channel thickness. A closed set of equations for frequency-domain 
non-capacitive terminal currents in the MOSFET under dynamic operation is also derived.

In Chapter 5, the results of experimental verification of the new DIBL-included qua-
si-2D NQS four-terminal frequency-domain small-signal MOSFET model are presented. 
For the purpose of the verification, test transistors and dummy structures were designed 
and fabricated in 0.35-μm technology. The de-embedding procedure is based on the open-
short method, optimized for RF measurement up to 30 GHz of scattering parameters of the 
transistors in the common source configuration with the use of air coplanar probes (ACPs).

The last part includes a summary.
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Chapter 2

QUASI-2D REPRESENTATION OF THE MOSFET
Wiesław Kordalski

2.1. Introduction
In this chapter, theoretical considerations and the results of a numerical analysis in 2D space 
are given in order to introduce the following three phenomena: gradual channel detachment 
effect (GCDE), channel thickness modulation effect (CTME), and channel-lengthening effect 
(CLE). These phenomena are physical foundations for defining a quasi-2D dc representation 
of the channel and subsequently for transforming a 2D dc representation of the MOSFET 
into a quasi-2D dc representation of the device. 

We assume in our analysis that no generation-recombination processes occur, and the 
tunneling and leakage currents are negligibly small.

2.2. 2D–into–quasi-2D transformation of the MOSFET
In this section, we define a quasi-2D representation of the channel, then a modified 2D dc 
MOSFET representation, and in the end a quasi-2D dc MOSFET representation.

2.2.1. Quasi-2D representation of the channel
In the MOSFET modeling, concepts such as the actual channel length (also referred to as the 
effective or electrical channel length), the magnitude and distribution of movable charges 
carrying the current in the channel, or velocity of carriers are of key importance. In this 
section, we define these and other concepts referring to a quasi-2D representation of the 
MOSFET channel, basing on the results of two-dimensional numerical analyses.

Two-dimensional phenomena
Let us consider a four-terminal p-type channel MOSFET carrying the source-to-drain cur-
rent in a stationary electric field, which is depicted in Fig. 2.1, where the shaded p+-type re-
gions are electrically neutral parts of the source-body and drain-body junctions. The picture 
corresponds to the transistor that operates in the saturation regime.

Holes are injected into the channel through the source-channel potential barrier, and the 
current is controlled by the gate-source voltage VGS, the body-source voltage VBS, or by both 
of them. Note that the drain is a collecting electrode, which stems from the bias conditions.
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2.2. 2D–into–quasi-2D transformation of the MOSFET 17

Fig. 2.1.	 Layers of current in a p-channel MOSFET under consideration. O(0, 0) is the origin 
of both Cartesian coordinates and curvilinear ones. The metallurgical junctions are 
not shown.
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Fig. 2.2.	 Simulated electron concentration profiles for various cross-sections of the transistor 
channel of an n-MOSFET with the channel length L = 1 μm, unpublished [4];  
effective gate-source voltage VGS – VT = 0.5V, VDS = 5V, and y is the distance  
from the transistor source.

The two-dimensional nature of kinetic processes in the transistor manifests itself par-
ticularly when the magnitude of drain-source voltage |VDS | is greater than |VGS |. Under this 
condition, the direction of the transverse component of the electric field acting on the semi-
conductor surface in the vicinity of the drain is opposite to that in the vicinity of the source. 
This leads to repelling the positively charged holes from the semiconductor surface. As 
a result, trajectories of movable channel carriers are deflected downwards. Therefore, this 
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2. Quasi-2D representation of the MOSFET18

phenomenon can be called the gradual channel detachment effect (GCDE). The concept of 
the GCDE was originally introduced in [1].

In turn, due to the GCDE and diffusion of the non-uniformly distributed carriers, the 
channel of the transistor spreads out, leading to the channel thickness modulation effect 
(CTME). Numerical simulations confirm the two phenomena illustrated in Figs. 2.1 and 2.2; 
see also, e.g., Fig. 7 in [2] and Fig. 1 in [3].

Including these two effects into consideration enables us to gain a deeper insight into 
the principle of operation of the MOS transistor.

Layers of current and their description
An orthogonal curvilinear system of coordinates ξ′⊥ and ξ′|| can be introduced if we note 
that a vector field, denoted by J(P), is constituted by the current density vector J at each 
point P in the channel. Due to stationary conditions, the vector field is solenoidal if genera-
tion-recombination processes are neglected at all points of the channel [5]. It means that the 
divergence of the vector J(P) is equal to zero, i.e.:

0)( =⋅∇ PJ (2.1)

where ∇ is the nabla operator. Since all vector lines of a given solenoidal field J(P) do not 
intersect, one can associate with them a set of longitudinal ξ′||-coordinates; see Fig. 2.1.

Moreover, if we assume that the vector field is irrotational, i.e.:

0)( =×∇ PJ (2.2)

then there exists a function u(P) whose gradient equals J(P),

)()( PuP ∇=J (2.3)

The function u(P) is called the potential or the potential function of a vector field J(P). 
Equating the function u(P) with a constant, u(P) = const, we obtain an equipotential line 
(a surface in 3Dspace) that is perpendicular to all the vector lines of agiven field J(P). Its 
shape depends on the distance from the source and biasing voltages. It is the equipotential 
line that is a ξ′⊥-coordinate. The other ξ′⊥-coordinate lines can be constructed by equating 
u(P) with various constants. Thus, one can obtain an orthogonal curvilinear system of coor-
dinates ξ′⊥ and ξ′|| in this way, a so-called system of natural coordinates; see Fig. 2.1.

Taking into account the properties of the vector field J(P), the total current of the hole 
beam injected into the channel can be divided into infinitesimally thin layers of the current 
(i.e., infinitesimally thin channels or elementary channels); see Fig. 2.1. The width of the 
layers, W, is equal to the width of the transistor. Obviously, the ξ′||-coordinate lines of the or-
thogonal curvilinear system coincide with the trajectories of carriers moving from the source 
to the drain. The origin O(0, 0) of both the curvilinear and Cartesian coordinate systems is 
placed on the semiconductor surface at the point where the transition between the source 
and the space charge region of the body-source pn junction occurs; see Fig. 2.1. For clarity, 
the source and the drain are the regions of the transistor in which the condition of electrical 
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2.2. 2D–into–quasi-2D transformation of the MOSFET 19

neutrality is fulfilled; they are reservoirs of carriers. No electric field is assumed to be in the 
source and the drain.

For a point located on an arbitrarily chosen layer, let say, on the kth layer denoted by 
(ξ′⊥ k , ξ′|| ), we can exactly specify the distance of the point from the source, ξ′||, and the 
velocity of carriers at the point, υ′||. It is worth emphasizing that the velocity of carriers at 
the point is a tangent vector to the vector line. In this way, a field of carrier velocities in the 
channel is introduced.

The following boundary condition is satisfied for each of the layers:

D

drain

source k VdE =′′′′− ∫ ⊥ |||||| ),( ξξξ S (2.4)

where E′|| (ξ′⊥ k , ξ′|| ) is the longitudinal component of the electric field in a given (kth) layer 
of current.

The current continuity equation and Gauss’s law are fulfilled within each layer of cur-
rent (see Figs. 2.3 and 2.4), i.e.:

22|12|2|111|11|1|1 ),(),(),(),( AdpAdp ξξυξξξξυξξ ′′′′′′=′′′′′′ ⊥⊥⊥⊥ | | | | | | (2.5)

∫∫ Ω∆ ⊥ Ω′′′+=⋅ dpNqd dAs ),([ |0 ξξεε AE | ] (2.6)

where ∆ Ω is an element of volume bounded by surfaces ξ′|| = ξ′|| 1, ξ′|| = ξ′|| 2, ξ′⊥ = ξ′⊥ 1  and 
ξ′⊥ = ξ′⊥ 1 +∆ξ′⊥ ; A is the closed surface bounding the volume ∆ Ω; p′(⋅) and Nd are, respectively, 
spatial charge density distributions of holes and ionized donors; ε0 and εs are, respectively, 
the permittivity of free space and the relative permittivity of semiconductor substrate, E is 
the electric field vector, and q is the magnitude of the elementary charge.

Fig. 2.3.	 A scheme illustrating the current continuity equation for a separated p-type layer of 
current.

Looking at the p-type layers of current shown in Figs. 2.4 and 2.5, an essential differ-
ence between the one- and two-dimensional approaches to determining the distribution of 
carriers along the channel can be noticed. First, let us consider the 2D case.

In Fig. 2.5, directions of transverse components of the electric field E′⊥(⋅) acting on the 
surfaces enclosing the parts of space marked as Δ Ω1 and Δ Ω2 are opposite but it does not 
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2. Quasi-2D representation of the MOSFET20

mean that the resultant fluxes of these transverse components through the upper and lower 
surfaces of Δ Ω1 and Δ Ω2 are also opposite. On the contrary, the resultant fluxes of these 
transverse components of the electric field can have the same algebraic signs. What is more, 
we are sure that the signs of both these fluxes are the same, because the current continui-
ty equation must be satisfied in an arbitrarily chosen cross-section of the layer of current. 
Thus, applying Gauss’s theorem to Δ Ω1 and Δ Ω2, and taking into account the results of 
two-dimensional numerical 2D simulations of the MOSFET, we can write the following 
inequalities:

0),([
11

||0 >Ω′′′+=⋅ ∫∫ Ω∆ ⊥ dpNqd dAs ξξεε AE ] (2.7)

0),([
22

||0 >Ω′′′+=⋅ ∫∫ Ω∆ ⊥ dpNqd dAs ξξεε AE ] (2.8)

where A1 and A2 are the surfaces enclosing Δ Ω1 and Δ Ω2, respectively. Depending on the 
bias conditions and concentration of dopants in the substrate, the integral (2.7) can be greater, 
lesser, or equal to the integral (2.8), but there still exist conditions for the current flowing 
through the channel. However, the problem is formulated in a totally different way when the 
GCA is applied to calculate the distribution of carriers along the channel.

Fig. 2.4.	 A scheme illustrating of Gauss’s law for a separated p-type layer of current;  
only transverse components of the electric field are shown.  
The transistor operates in the saturation regime.

Fig. 2.5.	 A layer of current with two distinguished volume elements Δ Ω1  
and Δ Ω2; only transverse components of the electric field are shown.  
The transistor operates in the saturation regime.
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2.2. 2D–into–quasi-2D transformation of the MOSFET 21

According to the GCA (the one-dimensional case), total charges which are inside the 
given volumes Δ Ω1 and Δ Ω2 (see Fig. 2.5) should have different signs because transverse 
electric fields acting on the surfaces enclosing Δ Ω1 and Δ Ω2 are oppositely directed. Con-
sequently, it implies that only the positively charged holes can appear in the volume Δ Ω1 
because the GCA imposes only a negative charge in the volume Δ Ω2. Therefore, we can 
say that the GCA “makes it impossible” for the MOSFET to operate when the magnitude 
of the drain-source voltage VDS is greater than the gate-source voltage VGS (it corresponds 
to the saturation range of the output voltage–current characteristics), which is an obvious 
contradiction.

The channel, channel line, channel length, arc-thickness of channel,  
channel charge and channel-lengthening effect
In general, the channel is the region of the transistor where a non-zero current flows between 
the source and the drain. Neglecting the narrow-channel effects, it can be considered as 
a two-dimensional object that is bounded by four surfaces displayed in Fig. 2.6: an inject-
ing wall, a collecting wall, a top channel surface (t. ch. s.), and a bottom channel surface 
(b. ch. s.). The injecting wall, through which carriers are injected into the channel, separates 
the space charge region lying under the semiconductor surface from the electrically neutral 
source region. The collecting wall separates the space charge region lying under the semi-
conductor surface from the electrically neutral drain region that collects carriers. The top and 
bottom channel surfaces are the outer surfaces bounding, respectively, the top and bottom 
layers of current. Positions and shapes of the four surfaces depend on voltages biasing the 
transistor. If the drain-source voltage is small, VDS ≈ 0, the top and bottom channel surfaces 
as well as the current lines run almost parallel to the semiconductor surface and the system 
of natural coordinates ξ′⊥ and ξ′|| tends to the Cartesian one. However, if VDS is increasing, 
the GCDE and CTME are intensified and subsequently the shape of the channel is becoming 
more irregular, as seen in Fig. 2.6.

Fig. 2.6.	 The MOSFET channel and its characteristic bounding surfaces.

Referring to Fig. 2.1, one can see that the length of, let say, the kth layer Lk, being the 
length of the kth subchannel, is different from the length of the other layers. The length of 
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2. Quasi-2D representation of the MOSFET22

the shortest subchannel, Lmin, is the smallest distance between the electrically neutral regions 
of the source and the drain or, in other words, between reservoirs of carriers in the source 
and the drain. Obviously, any average length of the channel, Lav, is greater than Lmin. Simi-
larly, any effective channel length, Leff, is expected to be greater than Lmin. Thus, after [6–7], 
the metallurgical channel length, Lmet, can be defined as the distance between the points at 
which the metallurgical junctions of the source and drain intersect the silicon surface. We 
can state that Lmin, Lav, and Leff should be greater than Lmet. This statement is confirmed by 
the results presented in Fig. 11 in [6] and in Fig. 3 in [7]. What is more, the considerations 
and results of two-dimensional numerical computations show that the GCDE intensifies 
as the drain-source voltage VDS is increasing [2–4], which means that elementary channels 
are getting longer and subsequently Lmin, Lav, and Leff become greater. We can thus say that 
a channel-lengthening effect (CLE) occurs, which is the opposite to the channel-shortening 
effect. The CLE is produced by the GCDE and CTME.

A measure of the length of the channel in the quasi-2D approach to the MOSFET ope
rating under dc conditions is closely related to an average trajectory of movable channel car-
riers, in other words, to an average channel current line, or simply to a channel line. Strictly 
speaking, the channel line is a line in the cross-sectional view of the transistor, but in reality 
it represents a cylindrical surface in a three-dimensional space. The channel line, denoted 
by lch, is illustrated by a dashed curve in Fig. 2.1, and its length is equal to the channel length 
L of the MOS transistor in the quasi-2D representation.

The channel line lch can be obtained as follows. First, we divide equally the channel 
current, Ich, into k layers of current so that each layer, lk, is carrying the current equal to Ich /k. 
Then, we choose a point M (ξ′⊥1, ξ′||M ) belonging to the first current layer l1 and equidistant 
from the injecting and collecting walls; see Figs. 2.6 and 2.7.

Fig. 2.7.	 A fragment of the channel; the highlighted elements are necessary to determine  
the channel line lch. The transistor operates in the saturation regime.  
The shaded p+-region is an electrically neutral part of the drain-body junction;  
the metallurgical p-n junction is not depicted.

Then, we choose a surface SM that perpendicularly intersects all the channel current 
lines and passes through the point M; the surface SM is represented by a line pM in Fig. 2.7. 
The behavior of the longitudinal component of current density as a function of a point over 
the surface SM when ξ′⊥ is varied and ξ′|| = ξ′|| M  is described by J′|| (ξ′⊥, ξ′||M ). The distribution 
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2.2. 2D–into–quasi-2D transformation of the MOSFET 23

of the current density J′|| (ξ′⊥, ξ′||M ) versus ξ′⊥ (along the line pM) is just employed to determine 
the point C (ξ′⊥C , ξ′||C) through which the channel line lch is passing; see Fig. 2.7.

Namely, the numerical value of the ξ′⊥-coordinate of the point C, ξ′⊥C, is determined by 
the ξ′⊥-coordinate of the centroid of the current density distribution J′|| (ξ′⊥, ξ′||M ), which can 
be written as follows:

∫
∫

⊥⊥

⊥⊥⊥

⊥
′′′′

′′′′′
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(2.9)

where the integration is made along the line pM from the top channel surface (t. ch. s.) to the 
bottom channel surface (b. ch. s.). In other words, the coordinates (ξ′⊥ C, ξ′|| C) are a “center of 
gravity” of the current density distribution along the line pM. The point C (ξ′⊥ C, ξ′|| C) belongs 
to a current line. It is the current line that is the channel line lch of the MOSFET. 

The channel line lch is very useful and suitable for a mathematical description of various 
2D effects and it is the essence of the quasi-2D modeling of the MOS transistor. Therefore, 
it can be considered as a reference line ξ or, simply, as a coordinate ξ.

As previously stated, the channel length L of the MOS transistor in the quasi-2D dc 
representation is equal to the length of the channel line lch, which can be expressed in the 
natural coordinates as

∫=
D

S

dL
ξ

ξ
ξ (2.10)

where ξ S and ξ D are end points of the channel line; see Fig. 2.8.

Fig. 2.8.	 The MOSFET channel line ξ with its end points. The transistor operates  
in the saturation regime.

Another parameter characterizing geometrically the flow of carriers between the drain 
and the source is the arc-thickness of the channel, Tarc (ξ), understood as the arc-length of the 
front line of the movable channel charges. In this case, each equipotential line of the vector 
field J(P) is the front line. Thus, the arc-thickness Tarc (ξ) is a function of the independent 
variable ξ, and is defined in the natural coordinates as follows:

∫ ⊥′=
.)..(

.)..(
)(

scb

sctarc dT ξξ
h

h (2.11)
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2. Quasi-2D representation of the MOSFET24

where the integration is made along the ξ′⊥-coordinate that intersects the channel line lch 
at ξ and the limits of the integral are the points of intersection of the path of integration 
with the top channel surface (t. ch. s.) and with the bottom channel surface (b. ch. s.); see 
Figs. 2.1, 2.6, and 2.7.

Of high importance for modeling electrical MOSFET characteristics is an integral 
measure of the movable-charge density, measured in C/m2, in the channel. It is defined in a 
similar way as in [8]:

∫ ⊥⊥ ′′′=
.)..(

.)..(
),()(

scb

sctC dpqQ ξξξξ'
h

h (2.12)

where the integration is made in the same way as described in the comment on (2.11) and 
p′ (ξ′⊥, ξ) is the hole density distribution over the path (contour) of integration.

Integral form of the dc continuity equation
Assuming that the MOSFET operates under dc condition and neglecting the generation-re-
combination phenomena, the channel current Ich must satisfy the continuity equation in the 
integral form that can be written in the Cartesian coordinates as 

∫ ⋅=
Ac dyxI AJ ),(h (2.13)

where the surface integral is taken over an arbitrary surface A intersecting the channel, and 
J(x, y) is the current density vector in the channel. The magnitude of the integral is indepen-
dent of the choice of the integration surface A. In particular, we can write a simpler equiva-
lent formula for the channel current in the natural coordinates (ξ′⊥, ξ ), viz.: 

∫ ⊥⊥ ′′′=
.)..(

.)..( || ),(
sct

scbc dJWI ξξξh

h

h (2.14)

where the integration is made in the same way as described in the comment on (2.11).

Other quantities of the quasi-2D dc representation of the channel
As already stated, it is impossible to mathematically describe in an analytical form with abso-
lute precision in 2D-space the kinetic phenomena occurring in the MOS transistor. Therefore, 
we need to simplify the problem, while accounting for the essential aspects of the two-di-
mensional nature of the transistor.

For the purposes of the quasi-2D analysis, we introduce a rectilinear system of coordi-
nates ξ ⊥ and ξ in which ξ-coordinate coincides with the channel line lch, and ξ ⊥-coordinate is 
an auxiliary axis that is used for describing quantities and phenomena versus the coordinate 
perpendicular to the channel line.

A quasi-2D dc representation of the channel presented here is defined by the channel 
length L, carrier concentration (holes in this case) p (ξ), longitudinal electric field E (ξ ), ve-
locity of carriers υ (ξ ), current density J (ξ ), and effective channel thickness X (ξ ).
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2.2. 2D–into–quasi-2D transformation of the MOSFET 25

Since the channel line lch is the reference line in our considerations, it is reasonable 
to assume that functional dependences on ξ-coordinate of p(ξ), E(ξ), and υ(ξ) are the same 
as those of, respectively, the carrier concentration, longitudinal electric field, and carrier 
velocity over the channel line ξ in 2D-space; see Fig. 2.8 and also Figs. 2.1, 2.6, 2.7. This 
assumption enables us to preserve the well-known form of the current density equation:

)()()( ξυξξ pqJ = (2.15)

If we assume further that the channel current Ich is known, an effective channel thick-
ness X(ξ) is defined as follows: 

Wpq
IX c

)()(
)(

ξυξ
ξ = h (2.16)

Denoted by QC(ξ), the channel charge per unit area in the quasi-2D representation, 
cf. (2.12), is given by

)()()( ξξξ XpqQC = (2.17)

The continuity equation for the quasi-2D representation of the channel has the form: 

WXJIc )()( ξξ=h (2.18)

where the channel current Ich is independent of ξ.
The longitudinal electric field E(ξ) in the channel is related to the distribution of poten-

tial along the channel, V(ξ), through the following formula:

ξ
ξξ

d
dE )()( −=
V

(2.19)

and satisfies the boundary condition, cf. (2.4),

D

drain

source
VdE =− ∫ ξξ )( S (2.20)

Obviously, parameter values of the quasi-2D dc channel representation can also be 
determined by best fitting the experimental characteristics with the theoretical ones. 

Finally, based on the results of two-dimensional numerical dc MOSFET analyses and 
the discussion carried out in this section, we can derive the quasi-2D dc MOSFET channel 
representation which is illustrated in Fig. 2.9.

The quasi-2D dc channel representation is characterized by the channel line ξ, channel 
length L, channel width W, effective channel thickness X(ξ), hole concentration p(ξ), carrier 
velocity υ(ξ), longitudinal electric field E(ξ), and current density J(ξ).
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2. Quasi-2D representation of the MOSFET26

Fig. 2.9.	 The quasi-2D representation of a p-type channel of the MOSFET.

2.2.2. Modified 2D dc MOSFET representation

Basing on the quasi-2D representation of the channel and using some rules, a modified 2D dc 
representation of the MOSFET is defined in this section.

“Domain” and “image” of a 2D–into–quasi-2D transformation
As stated in Sec. 2.2.1, with increasing |VDS |, the transistor channel extends. To take into 
account the CLE, we must transform a part of the 2D transistor representation into an ap-
propriate part of a modified 2D transistor representation. The general concept of the trans-
formation is shown in Fig. 2.10.
The following symbols of Fig. 2.10a: Nd

*(x, y), Na
*(x, y), p*(x, y), and n*(x, y) represent the 

density of, respectively, positively ionized donors, negatively ionized acceptors, electrons, 
and holes, whereas their counterparts of Fig. 2.10b are denoted by Nd (ξ ⊥, ξ ), Na (ξ ⊥, ξ ), 
p (ξ ⊥, ξ ), and n (ξ⊥, ξ ), respectively; LDS is the smallest distance between the electrically neu-
tral regions of the source and the drain. The electrically neutral part of the n-type substrate 
is separated from the depletion region of the transistor by a surface represented by Xd

*( y) in 
Fig. 2.10a, and by Xd (ξ ) in Fig. 2.10b.

The “domain” of the transformation, denoted by R2D, is the region defined as follows 
(see Fig. 2.10a):

}0,:),{2 DbgD LytxtyxR ≤≤≤≤−= ∗∗( S (2.21)

and the “image” of the transformation is the region denoted by Rq2D and defined as (see 
Fig. 2.10b):

}0,:),{2 LttR bgDq ≤≤≤≤−= ⊥⊥ ξξξξ( (2.22)

The transformation is defined as follows:

1/,, ≥===⊥ DLLyx λλξξ S (2.23)
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2.2. 2D–into–quasi-2D transformation of the MOSFET 27

Relationships (2.21)–(2.23) enable us to determine quantities of the modified 2D representa-
tion of the transistor.

a)

b)

Fig. 2.10.	Transformation of the 2D MOSFET representation into a modified 2D MOSFET 
representation. (a) Two-dimensional picture of a real p-channel MOSFET.  
(b) Modified 2D representation of the p-channel MOSFET.
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2. Quasi-2D representation of the MOSFET28

Obvious transformation of some quantities
According to (2.23), we have the following relationships:

1, ≥= λλ DLL S (2.24)
∗= GG LL λ (2.25)

)/()( λξξ ∗= dd XX (2.26)







= ∗

λ
ξψξψ ,0),0( ss (2.27)

∗∗∗ === bbggoo tttttt ,,x x (2.28)

Transformation of the other quantities
In the modified 2D MOSFET representation presented here, the transformation of NA

*(x, y), 
ND

*(x, y) Na
*(x, y), Nd

*(x, y), n*(x, y), and p*(x, y), determined in the region

}0,0:),{2 DbD LytxyxS ≤≤≤≤= ∗( S (2.29)

into their equivalents NA (ξ ⊥, ξ ), ND (ξ ⊥, ξ ), Na (ξ ⊥, ξ ), Nd (ξ ⊥, ξ ), n (ξ ⊥, ξ ), and p (ξ ⊥, ξ ), 
determined in the region

}0,0:),{2 LtS bDq ≤≤≤≤= ⊥⊥ ξξξξ( (2.30)

is governed by a principle that the numbers of dopants, ionized dopants, and carriers in their 
respective regions (S2D and Sq2D) are equal; NA

*(x, y) and NA (ξ ⊥, ξ ) as well as ND
*(x, y) and 

ND (ξ ⊥, ξ ) stand for density of acceptors and donors, respectively.
Applying this principle, for instance, to donors, we have:

∫∫ ⊥⊥
∗ =

DqD S DS D ddNydxdyxN
22

),(),( ξξξξ (2.31)

Reducing double integrals in (2.31) to iterated ones, we get:

∫∫∫∫ ⊥⊥
∗ =

∗
bbD t

D

Lt

D

L
dNdxdyxNyd

0000
),(),( ξξξξS (2.32)

Changing variables in the integral of the left-hand side of (2.32) according to the transfor-
mation (2.23), we can write:

∫∫∫∫ ⊥
⊥

⊥
∗∗

∂
∂







=

∗
bbD t

D

Lt

D

L
dyxNdxdyxNyd

0000 ),(
),(,),( ξ
ξξλ

ξξξS
(2.33)
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2.2. 2D–into–quasi-2D transformation of the MOSFET 29

where

λξξ
ξξ

ξξ
ξξ

1
),(
),(:here,

),(
),(

=
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

⊥

⊥

⊥

⊥

yx
yy

xx
yx

(2.34)

is the Jacobian of (2.23).
If we replace the Jacobian in (2.33) by its value, 1/λ, then:

∫∫∫∫ ⊥⊥
∗∗ 






=

∗
bbD t

D

Lt

D

L
dNdxdyxNyd

0000
,1),( ξ
λ
ξξ

λ
ξS

(2.35)

When comparing (2.32) with (2.35), we obtain the following formula for the transformation 
of ND

*(x, y) to ND (ξ ⊥, ξ ):







= ⊥

∗
⊥ λ

ξξ
λ

ξξ ,1),( DD NN (2.36)

Then, it can be shown by an argument analogous to the one that leads to (2.36) that







= ⊥

∗
⊥ λ

ξξ
λ

ξξ ,1),( AA NN (2.37)







= ⊥

∗
⊥ λ

ξξ
λ

ξξ ,1),( aa NN (2.38)







= ⊥

∗
⊥ λ

ξξ
λ

ξξ ,1),( dd NN (2.39)







= ⊥

∗
⊥ λ

ξξ
λ

ξξ ,1),( nn (2.40)







= ⊥

∗
⊥ λ

ξξ
λ

ξξ ,1),( pp (2.41)

Transformation of x-component of the electric field vector on the semiconductor surface, 
Ex

*(0, y), into its analog, ET(0, ξ), is depicted in Fig. 2.11.
It is worth noticing that if LDS is many times greater than thickness of the gate oxide 

tox then a good approximation for Ex
*(0, y) is as follows, see, e.g., [8, p. 302], [9], [10, p. 133],

o

sG
x t

yVyE ),0(),0(
∗

∗ −
=

ψ

x
(2.42)

where VG denotes the electrostatic potential at the gate, and ψs
*(0, y) is the electrostatic po-

tential at the semiconductor-oxide interface.
The transformation Ex

*(0, y) → ET (0, ξ) is based on the assumption that total amounts 
of charges in the region D2D (see the curvilinear trapezoid in Fig. 2.11a),

}0)(0:),{2 DdD LyyXxyxD ≤≤≤≤= ∗
S,( (2.43)
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2. Quasi-2D representation of the MOSFET30

and in the region Dq2D (see the curvilinear trapezoid in Fig. 2.11b),

}0)(0:),{2 LXD dDq ≤≤≤≤= ⊥⊥ ξξξξξ( , (2.44)
are equal.

Thus, making use of the assumption, referring to Fig. 2.11, and applying Gauss’s law to 
the transistor of a unit width, we can write:

∫∫∫

∫∫∫
⊥⊥⊥⊥

∗∗∗

−+−=

−+−
∗∗

)0(

00

)(

0000

)0(

00

)(

0000

)0,(),(),0(

)0,(),(),0(

dd

dDdD

X

Ls

LX

Ls

L

To

X

ys

LX

Dys

L

xo

dEdLEdE

xdxExdLxEydyE

ξξεεξξεεξξεε

εεεεεε S

x

S

Sx
(2.45)

If we assume that fluxes of the electric displacement through the corresponding surfaces 
(see Fig. 2.11) are equal, i.e.:

∫∫ ⊥⊥
∗ =

∗ )(

0 0

)(

0 0 ),(),(
LX

Ls

LX

Dys
dDd dLExdLxE ξξεεεεS

S (2.46)

∫∫ ⊥⊥
∗ −=−

∗ )0(

0 0

)0(

0 0 )0,()0,( dd X

Ls

X

ys dExdxE ξξεεεε (2.47)

then (2.45) can be reduced to:

∫∫ =∗ L

T

L

x dEydyED

00
),0(),0( ξξS

(2.48)

Changing the variable in the integral of the left-hand side of (2.48) according to (2.23), we get:

ξξξ
λ
ξ

λ
dEdE

L

T

L

x ∫∫ =





∗

00
),0(,01

(2.49)

and hence







= ∗

λ
ξ

λ
ξ ,01),0( xT EE (2.50)

Transformation of the charge per unit area on the inner gate surface, QG
*(y), into its 

counterpart, QG (ξ), is based on the assumption that the charge induced on the gate surface 
by Ex

*(0, y) is equal to that which is induced by ET (0, ξ); see Fig. 2.11. Relying on this as-
sumption, we can write:

∫∫ =∗ L

G

L

G dQydyQD

00
)()( ξξS

(2.51)

Changing the variable in the integral of the left-hand side of (2.51) according to (2,23), we 
have:

∫∫ =





∗ L

G

L

G dQdQ
00

)(1 ξξξ
λ
ξ

λ
(2.52)

and this in turn results in:
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2.2. 2D–into–quasi-2D transformation of the MOSFET 31







= ∗

λ
ξ

λ
ξ GG QQ 1)( (2.53)

a)

b)

Fig. 2.11.	Transformation of {Ex
*(0, y), QG

*(y)} into {ET (0, ξ), QG(ξ)}; only transverse  
components of the electric field are shown.
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2. Quasi-2D representation of the MOSFET32

2.2.3. Quasi-2D dc MOSFET representation

Under dc conditions, almost all quantities of the quasi-2D MOSFET representation depend 
on bias voltages, and are functions of the spatial variable ξ.

Geometrical parameters as well as physical quantities characterizing the quasi-2D dc 
representation of the channel are defined and comprehensively discussed in Sec. 2.2.1. 

Based on the modified 2D representation of the device, some useful quantities of the 
quasi-2D MOSFET representation, such as Xd (ξ ), ψs (0, ξ), ET (0, ξ ), and QG (ξ), have already 
been defined in Sec. 2.2.2.

Now, we proceed to define the other quantities of the quasi-2D representation of the 
transistor.

Effective spatial densities of donors, acceptors, ionized donors, and ionized acceptors in 
the depletion region (region Dq2D in Fig. 2.11b), denoted, respectively, by ND (ξ) , NA (ξ), Nd (ξ), 
and Na (ξ), are determined as follows:

)(

),(
)(

)(

0

ξ

ξξξ
ξ

ξ

d

X

D

D X

dN
N

d

∫ ⊥⊥
= (2.54)

)(

),(
)(

)(

0

ξ

ξξξ
ξ

ξ

d

X

A

A X

dN
N

d

∫ ⊥⊥
= (2.55)

)(

),(
)(

)(

0

ξ

ξξξ
ξ

ξ

d

X

d

d X

dN
N

d

∫ ⊥⊥
= (2.56)

)(

),(
)(

)(

0

ξ

ξξξ
ξ

ξ

d

X

a

a X

dN
N

d

∫ ⊥⊥
= (2.57)

Denoted by N(ξ), the net effective spatial density of positively ionized donors and neg-
atively ionized acceptors in the region Dq2D (see Fig. 2.11b) are given by

)()()( ξξξ ad NNN −= (2.58)

As in [2, 7], the surface charge densities (C/cm2) of uncompensated ionized dopants, 
QB (ξ), holes, Qp (ξ), and electrons, Qn (ξ), in the depletion region Dq2D are defined as follows:

)()()( ξξξ dB XNqQ = (2.59)

∫ ⊥⊥=
)(

0
),()(

ξ
ξξξξ dX

p dpqQ (2.60)

∫ ⊥⊥−=
)(

0
),()(

ξ
ξξξξ dX

n dnqQ (2.61)
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2.3. Conclusion 33

The charges denoted by Q(ξ) with proper subscripts are interpreted as charges per unit 
area that are seen in ξ ⊥ direction across an infinitesimal element of area of the plane ξ ⊥ = 0. 
They are commonly found in theory of the MOSFET.

It is worth emphasizing that functions Qp (ξ) and QC (ξ) are slightly different from each 
other, but the following formula holds:

∫∫ =
L

C

L

p dQdQ
00

)()( ξξξξ (2.62)

For the purposes of further quasi-2D analysis, we propose a quasi-2D representation of 
the device, which is shown in Fig. 2.12.

The symbols ECB(ξ) and ECG(ξ) denote, respectively, the vertical electric field on the 
bottom channel surface and the vertical electric field on the top channel surface. We present 
the vector ECB(ξ) as an arrow “attached” to a point belonging to the bottom channel surface, 
and the vector ECG(ξ) as an arrow “attached” to a point belonging to the top channel surface.

Fig. 2.12.	The quasi-2D dc MOSFET representation.

2.3. Conclusion

A quasi-2D dc MOSFET representation has been proposed in this chapter. The representa-
tion is a result of a 2D–into–quasi-2D transformation that is governed by some principles 
we have established, and takes into account three newly introduced phenomena: the gradual 
channel detachment effect (GCDE), the channel thickness modulation effect (CTME), a and 
the channel-lengthening effect (CLE). 

The quasi-2D representation of the MOS transistor lays the foundations for new qua-
si-2D non-quasi-static four-terminal small-signal MOSFET models that are developed in 
Chapters 3 and 4.
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Chapter 3

TIME-DOMAIN MODEL
Wiesław Kordalski

3.1. Introduction

Basing on the quasi-2D MOSFET representation proposed in Chapter 2, derivation of a novel 
quasi-2D NQS four-terminal time-domain small-signal MOSFET model is presented in this 
chapter. 

In Section 3.2, physics of the transistor under small signal excitation is described. In 
Sections 3.3, 3.4, and 3.5, respectively, a quasi-2D continuity equation, a quasi-2D Poisson’s 
equation, and a transport equation are derived from first principles. Capacitive and non-ca-
pacitive terminal currents are analyzed in Section 3.6. A formula for the gate-to-body capac-
itance Cgb is derived in Section 3.7. Supplementary equations and useful rules are established 
in Section 3.8. Section 3.9 provides main conclusions.

In this chapter, we assume that the gate, drain, source, and electrically neutral part of 
the substrate are perfect conductors, no generation-recombination processes occur, and the 
tunneling and leakage currents are negligibly small.

3.2. MOSFET under small excitation

In the dc state, neither the channel-gate nor the channel-body displacement current occurs—
no dynamic electrical coupling exists. However, if terminal voltages change with time, then 
perturbations in carrier distribution, velocity of carriers, electric field, and channel thickness 
occur. A transverse coupling appears between the channel and the structure. The coupling is 
produced by the transverse electric field, and hence displacement currents flow between the 
channel, the gate and the body. Furthermore, a regrouping of carriers in the channel in the 
perpendicular direction occurs, which causes the current lines to deflect in the transistor. As 
a result, the channel thickness X(ξ), conduction current density J(ξ), electric field, and the 
other parameters that uniquely determine the quasi-2D dc representation of the MOSFET 
change.

Let us consider a p-channel MOSFET operating in the saturation region of its output 
characteristics under the dc and small-signal conditions, which is shown in Fig. 3.1.
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3. Time-domain model36

When the MOS transistor is biased with constant terminal voltages, all quantities of the 
quasi-2D model of the transistor related to the channel, gate, and body depend only on the 
spatial variable ξ, as shown in Fig. 3.1a. Under the steady-state conditions, the displacement 
current occurs neither at the gate nor in the body, because electric charges on the gate and 
in the body do not vary. 

If we add in series small time-varying voltage sources υgs(t), υds(t), and υbs(t) to their 
respective biasing voltages VGS, VDS, and VBS  (see Fig. 3.1b) then the total magnitudes of, re-
spectively, the gate-source voltage υGS(t), drain-source voltage υDS(t), and body-source voltage 
υBS(t) can be written as follows:

( ) ( )GS GS gst V tυ υ= + (3.1)

( ) ( )DS DS dst V tυ υ= + (3.2)

( ) ( )BS BS bst V tυ υ= + (3.3)

The time-varying terminal voltages cause perturbations in: concentration and velocity 
of holes in the channel, electric field distribution in the transistor structure, thickness of the 
channel, as well as in the gate and body charges. A transverse electrical coupling appears 
between the channel and the transistor structure, which produces coupling currents in the 
gate and the body.

For the purposes of further analysis, we introduce the following symbols: p(ξ, t), μ(ξ, t), 
X(ξ, t), E(ξ, t), ECB (ξ, t), ECG (ξ, t), J(ξ, t), Xd (ξ, t), QG (ξ, t), and QB (ξ, t), for denoting the to-
tal quantities of, respectively, the hole density, effective bias-dependent mobility of holes, 
thickness of the channel (see Fig. 3.2), longitudinal electric field in the channel (see Fig. 3.3), 
transverse electric field on the bottom channel surface (see Fig. 3.3), transverse electric field 
on the top channel surface (see Fig. 3.3), conduction current density of holes, thickness of the 
depletion region, gate charge per unit area, and body charge per unit area. Small departures 
p1(ξ, t), μ1(ξ, t), X1(ξ, t), E1(ξ, t), Ecb (ξ, t), Ecg (ξ, t), J1(ξ, t), Xd1 (ξ, t), Qg (ξ, t), and Qb (ξ, t) of the 
total quantities from their dc values at the Q-point (quiescent point) , respectively, p0(ξ), 
μq(ξ), X0(ξ), E0(ξ), ECB0(ξ), ECG0(ξ), J0(ξ), Xd0 (ξ), QG0 (ξ), and QB0 (ξ) can be written as follows:

1 0( , ) ( , ) ( )p t p t pξ ξ ξ= − (3.4)

1( , ) ( , ) ( )qt tµ ξ µ ξ µ ξ= − (3.5)

1 0( , ) ( , ) ( )X t X t Xξ ξ ξ= − (3.6)

)(),(),( 01 ξξξ EtEtE −= (3.7)

)(),(),( 0 ξξξ CCc EtEtE −=b B B (3.8)

)(),(),( 0 ξξξ CCc EtEtE −= G Gg (3.9)

1 0( , ) ( , ) ( )J t J t Jξ ξ ξ= − (3.10)

)(),(),( 01 ξξξ ddd XtXtX −= (3.11)
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373.2. MOSFET under small excitation

0( , ) ( , ) ( )g G GQ t Q t Qξ ξ ξ= − (3.12)

0( , ) ( , ) ( )b B BQ t Q t Qξ ξ ξ= − (3.13)

a)

b)

Fig. 3.1.	 The quasi-2D representation of a p-channel MOSFET operating in saturation region 
of its output characteristics (|VDS| > |VGS|). (a) dc conditions. (b) dc and small-signal 
conditions.
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3. Time-domain model38

To give a mathematical description of the dynamic behavior of carriers in the channel 
as well as to calculate terminal and coupling currents, we need to use a quasi-2D continuity 
equation for carriers in the channel, Poisson’s equation for the quasi-2D representation of 
the transistor, and current transport equation. These equations are derived in Secs. 3.3–3.5.

3.3. Quasi-2D continuity equation

In this section, we derive quasi-2D continuity equations for current carriers in the channel 
under dc and small-signal conditions, and propose some simplifications of the continuity 
equation for small-signal conditions. The derivation is based on the quasi-2D representation 
of the MOSFET channel, which is presented in Sec. 2.2.

3.3.1. Basic equations

Let us consider a sector of the quasi-2D representation of a p-type channel that is cut out by 
planes perpendicular to the channel line ξ, with Δξ being the length of the sector; see Fig. 3.2. 
The equations describe the flow of carriers in the channel in terms of two independent vari-
ables: ξ-coordinate and time denoted by t. As stated, generation-recombination processes in 
the transistor are neglected in this work.

Let the steady-state concentration of carriers (holes) p0(ξ) be lightly disturbed in a 
macroscopic volume ∆Ω0(ξ, ∆ξ) shown in Fig. 3.2. A small perturbation (departure) in the 
carrier concentration causes small variations in the channel thickness and conduction current 
density in the channel. Using (3.4), (3.6), and (3.10), the total quantities p(ξ, t), X(ξ, t), and 
J(ξ, t) can be written as follows:

0 1( , ) ( ) ( , )p t p p tξ ξ ξ= + (3.14)

0 1( , ) ( ) ( , )X t X X tξ ξ ξ= + (3.15)

0 1( , ) ( ) ( , )J t J J tξ ξ ξ= + (3.16)                       

According to (3.15), the macroscopic volume element ∆Ω0(ξ, ∆ξ ) highlighted in Fig. 3.2 also 
changes its volume with time because the top and bottom channel surfaces change their 
positions. Therefore, by analogy with (3.14)–(3.16), we can write:

0 1( , , ) ( , ) ( , , )t tξ ξ ξ ξ ξ ξ∆Ω ∆ = ∆Ω ∆ + ∆Ω ∆ (3.17)

where ∆Ω1(ξ, ∆ξ, t) is the time-dependent departure of the total macroscopic volume 
∆Ω (ξ, ∆ξ, t) from its dc value.

Since the perturbations are assumed to be small, the following inequalities are true:

0 1( ) ( , )p p tξ ξ>> (3.18)

0 1( ) ( , )X X tξ ξ>> (3.19)
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393.3. Quasi-2D continuity equation

0 1( ) ( , )J J tξ ξ>> (3.20)

For small perturbations, we can assume that relative time-dependent changes of the car-
rier concentration in the channel are directly proportional to relative time-dependent changes 
of the channel thickness. Thus, we may introduce a dimensionless ratio of the proportionality 
DC (ξ, t), which can be called a dynamic coupling factor of the channel,

1

0

1

0

( , )1
( )( , ) ( , )1
( )

C

X t
X tD t p t
p t

ξ
ξ

ξ
ξ

ξ

∂
∂

=
∂

∂

(3.21)

We proceed to the mathematical formulation of the law of conservation of carriers in 
the volume ∆Ω(ξ, ∆ξ, t) highlighted in Fig. 3.2. The law states that the number of holes in the 
volume may increase because of the net flow into the volume.

Fig. 3.2.	 The channel with a time-dependent macroscopic volume element that is subjected  
to a small perturbation, where J(ξ, t) is the conduction current density.

Denoted by PV(t), the number of holes contained in the volume ∆Ω(ξ, ∆ξ, t) at a time t 
is as follows:

( ) ( , ) ( , )VP t W p t X t d
ξ ξ

ξ
ξ ξ ξ

+∆
= ∫ (3.22)

An infinitesimal increase of PV(t), denoted by dPV(t), corresponding to an infinitesimal 
time interval, denoted by dt, can be written as

[ ]( ) ( , ) ( , )VdP t dt W p t X t d
t

ξ ξ

ξ
ξ ξ ξ

+∆ ∂
=

∂∫ (3.23)

with W being the channel width.
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3. Time-domain model40

On the other hand, d PV (t) is equal to the flux of the holes through the surface bounding 
the volume ∆Ω (ξ, ∆ξ, t) multiplied by dt. Hence, we have:

( ) ( , ) ( , ) ( , ) ( , )V
W WdP t dt X t J t X t J t
q q

ξ ξ ξ ξ ξ ξ
 

= − + ∆ + ∆ 
 

(3.24)

Equating the two expressions for d PV (t), canceling out dt, and then dividing the result 
by ∆ξ W/q, we obtain:

[ ]

[ ]

1 ( , ) ( , )

1 ( , ) ( , ) ( , ) ( , )

q p t X t d
t

X t J t X t J t

ξ ξ

ξ
ξ ξ ξ

ξ

ξ ξ ξ ξ ξ ξ
ξ

+∆ ∂
∆ ∂

= − + ∆ + ∆
∆

∫
(3.25)

Assuming that all the functions appearing in (3.25) are differentiable, passing to the 
limit with ∆ξ → 0, performing the necessary calculations (details are given in Appendix A), 
referring to (A12) and (A13), and omitting the mixed terms X1(ξ, t)∙[∂J1(ξ, t) ∕ ∂ξ ] and J1(ξ, t)∙ 
[∂X1(ξ, t) ∕ ∂ξ ] in (A13), we may write the quasi-2D continuity equation for a small departure 
of hole concentration:

[ ] 1 01 1

0

0 01 1

0 0

( , ) ( )( , ) ( , )1 ( , )
( )

( ) ( )( , ) ( , )
( ) ( )

C

p t d XJ t J tq D t
t X d

d J JX t X t
X d X

ξ ξξ ξ
ξ

ξ ξ ξ
ξ ξξ ξ

ξ ξ ξ ξ

∂ ∂
+ = − −

∂ ∂

∂
− −

∂

(3.26)

and for dc conditions

0 0 0

0

( ) ( ) ( ) 0
( )

d J J d X
d X d
ξ ξ ξ
ξ ξ ξ

+ = (3.27)

Similarly, it can be shown that for the n-channel MOSFET of which the source, drain, 
and ξ-coordinate have the same orientation as in Fig. 3.2, the quasi-2D continuity equation 
for a small departure of electron concentration n1(ξ, t) is as follows:

[ ] 1 01 1

0

0 01 1

0 0

( , ) ( )( , ) ( , )1 ( , )
( )

( ) ( )( , ) ( , )
( ) ( )

C

n t d XJ t J tq D t
t X d

d J JX t X t
X d X

ξ ξξ ξ
ξ

ξ ξ ξ
ξ ξξ ξ

ξ ξ ξ ξ

∂ ∂
+ = +

∂ ∂

∂
+ +

∂

(3.28)

and (3.27) is still held for dc conditions.
Based on (3.26) and (3.28), one can see that the rate of changes in the excess carrier 

concentration depends on: the dc channel thickness, as well as its gradients of the dc and 
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413.3. Quasi-2D continuity equation

small-signal values. Moreover, it depends on the dc conduction current density, as well as its 
gradients of the dc and small-signal values, and the dynamic coupling factor of the channel.

The right-hand sides of (3.26) and (3.28) can be written in terms of J1(ξ, t), X0(ξ), and 
d X0(ξ) ∕ dξ if we introduce two factors DV (ξ, t) and DS (ξ, t) which interrelate variations in the 
shape and thickness of the channel with the perturbations in the conduction current density.

Let the dynamic channel-to-current coupling factor DV (ξ, t) be defined by

1 1

0 0

( , ) ( , )( , )
( ) ( )V

X t J tD t
X J
ξ ξξ
ξ ξ

= − (3.29)

and the dynamic channel deformation factor DS (ξ, t) by

1

0

1

0

( , )1
( )( , ) ( , )1
( )

S

X t
XD t J t
J

ξ
ξ ξ

ξ
ξ

ξ ξ

∂
∂

=
∂

∂

(3.30)

Then, using (3.27) and inserting (3.29) and (3.30) into (3.26) and (3.28), the quasi-2D 
continuity equations for the small excess carrier concentrations may be rewritten in the form:

[ ] [ ]1 01
1

0

( , ) 1 ( , ) ( )( , )1 ( , ) 1 ( , ) ( , )
( )

V
C S

p t D t d XJ tq D t D t J t
t X d
ξ ξ ξξ

ξ ξ ξ
ξ ξ ξ

∂ +∂
+ = − + −

∂ ∂
(3.31)

for the p-channel transistor, and

[ ] [ ]1 01
1

0

( , ) 1 ( , ) ( )( , )1 ( , ) 1 ( , ) ( , )
( )

V
C S

n t D t d XJ tq D t D t J t
t X d
ξ ξ ξξ

ξ ξ ξ
ξ ξ ξ

∂ +∂
+ = + +

∂ ∂
(3.32)

for the n-channel transistor.
As in the case of DC (ξ, t), the coupling factors DV (ξ, t) and DS (ξ, t) are functions of ξ 

and t, however, the behavior of DV (ξ, t) and DS (ξ, t) versus ξ and t is an open question and the 
definitive answer to the problem requires an additional (numerical) analysis.

3.3.2. Some simplifications

Under some assumptions, simplifications of (3.26) and (3.28) are possible.

Channel-shape-conserved approximation
Differentiating (3.15) with respect to ξ yields:

0 1( ) ( , )( , ) d X X tX t
d

ξ ξξ
ξ ξ ξ

∂∂
= +

∂ ∂
(3.33)
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3. Time-domain model42

If we assume that the shape of the channel is conserved during perturbations, as shown 
in Fig. 3.2, i.e.:

0 ( )( , ) d XX t
d

ξξ
ξ ξ

∂
=

∂
(3.34)

then taking account of (3.33) leads to ∂X1(ξ, t) ∕ ∂ξ = 0. As a result, (3.26) and (3.28) take their 
respective forms:

[ ] 1 0 01 1 1

0 0

( , ) ( ) ( )( , ) ( , ) ( , )1 ( , )
( ) ( )C

p t d X d JJ t J t X tq D t
t X d X d
ξ ξ ξξ ξ ξξ

ξ ξ ξ ξ ξ
∂ ∂

+ = − − −
∂ ∂

(3.35)

and

[ ] 1 0 01 1 1

0 0

( , ) ( ) ( )( , ) ( , ) ( , )1 ( , )
( ) ( )C

n t d X d JJ t J t X tq D t
t X d X d
ξ ξ ξξ ξ ξξ

ξ ξ ξ ξ ξ
∂ ∂

+ = + +
∂ ∂

(3.36)

Gradually-thickened-channel approximation
Equation (3.27) can be rewritten as

0 0 0

0

( ) ( ) ( )
( )

d J J d X
d X d
ξ ξ ξ
ξ ξ ξ

= − (3.37)

If we assume in (3.37) that the CTME can be neglected, d X0(ξ ) / dξ = 0, the channel is 
thick enough, and the conduction current density J0(ξ ) is small, then the term d J0(ξ ) ∕ dξ can 
be ignored. Therefore, the second and third term in (3.26) and (3.28) can be ignored, and as 
a consequence the equations take their respective forms:

[ ] 1 01 1

0

( , ) ( )( , ) ( , )1 ( , )
( )C

p t JJ t X tq D t
t X
ξ ξξ ξ

ξ
ξ ξ ξ

∂ ∂ ∂
+ = − −

∂ ∂ ∂
(3.38)

and

[ ] 1 01 1

0

( , ) ( )( , ) ( , )1 ( , )
( )C

n t JJ t X tq D t
t X
ξ ξξ ξξ

ξ ξ ξ
∂ ∂ ∂

+ = +
∂ ∂ ∂

(3.39)

Gradually-thickened-and-slightly-deformed-channel approximation
We can considerably simplify (3.26) and (3.28) if we simultaneously apply both of the 
above-introduced approximations, i.e., if we assume that the channel is thick enough, 
∂X1(ξ, t) ∕ ∂ξ = 0, and d X0(ξ ) / dξ = 0. Then, (3.26) and (3.28) become, respectively,

[ ] 1 1
( , ) ( , )1 ( , )C

p t J tq D t
t
ξ ξ

ξ
ξ

∂ ∂
+ = −

∂ ∂
(3.40)
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433.3. Quasi-2D continuity equation

and

[ ] 1 1
( , ) ( , )1 ( , )C

n t J tq D t
t
ξ ξξ

ξ
∂ ∂

+ =
∂ ∂

(3.41)

It is worth noticing that (3.31) and (3.32) are becoming identical to (3.40) and (3.41), 
respectively, if the factors DV (ξ, t) and DS (ξ, t) tend to zero and d X0(ξ) / dξ ≈ 0.

Gradually-thickened-and-strongly-deformed-channel approximation 
If the channel thickness changes gradually, dX0(ξ ) / dξ ≈ 0, the dynamic channel-to-current 
coupling factor DV (ξ, t) is sufficiently small, and the dynamic channel deformation factor 
DS (ξ, t) cannot be neglected, then (3.31) and (3.32) are as follows:

[ ] [ ]1 1
( , ) ( , )1 ( , ) 1 ( , )C S

p t J tq D t D t
t
ξ ξ

ξ ξ
ξ

∂ ∂
+ = − +

∂ ∂
(3.42)

and

[ ] [ ]1 1
( , ) ( , )1 ( , ) 1 ( , )C S

n t J tq D t D t
t
ξ ξ

ξ ξ
ξ

∂ ∂
+ = +

∂ ∂
(3.43)

Slightly-deformed-channel approximation
If the dynamic channel-to-current coupling factor DV(ξ, t) is large enough and the dynamic 
channel deformation factor DS(ξ, t) can be neglected, then (3.31) and (3.32) can be reduced 
to, respectively,

[ ] 1 01
1

0

( , ) 1 ( , ) ( )( , )1 ( , ) ( , )
( )

V
C

p t D t d XJ tq D t J t
t X d
ξ ξ ξξ

ξ ξ
ξ ξ ξ

∂ +∂
+ = − −

∂ ∂
(3.44)

and

[ ] 1 01
1

0

( , ) 1 ( , ) ( )( , )1 ( , ) ( , )
( )

V
C

n t D t d XJ tq D t J t
t X d
ξ ξ ξξξ ξ

ξ ξ ξ
∂ +∂

+ = +
∂ ∂

(3.45)

Slightly-deformed-channel-and-weakly-coupled-channel-to-current approximation
If both the dynamic channel-to-current coupling factor DV(ξ, t) and the dynamic channel 
deformation factor DS(ξ, t) are sufficiently small, then (3.31) and (3.32) simplify to:

[ ] 1 01
1

0

( , ) ( )( , ) 11 ( , ) ( , )
( )C

p t d XJ tq D t J t
t X d
ξ ξξ

ξ ξ
ξ ξ ξ

∂ ∂
+ = − −

∂ ∂
(3.46)

and

[ ] 1 01
1

0

( , ) ( )( , ) 11 ( , ) ( , )
( )C

n t d XJ tq D t J t
t X d
ξ ξξ

ξ ξ
ξ ξ ξ

∂ ∂
+ = +

∂ ∂
(3.47)
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3. Time-domain model44

3.4. Quasi-2D Poisson’s equations

In this section, we derive quasi-2D Poisson’s equations for dc and small-signal conditions, 
and propose some simplified versions of these equations.

3.4.1. Equations for steady-state (dc) and small-signal conditions

If voltages at the transistor terminals change with time, one can observe perturbations in 
carrier concentration, channel thickness, longitudinal and transverse electric field, and the 
other quantities shown in Fig. 3.1b.

Let us consider a volume ∆Ω (ξ, ∆ξ, t) depicted in Fig. 3.3.

Fig. 3.3.	 A time-dependent macroscopic volume element of the channel  
under a small perturbation.

Applying Gauss’s theorem to the volume, we can write: 

A ( , , )

[ ( ) ( , )]
t

d q N p t d
ξ ξ

ξ ξ
∆Ω ∆

⋅ = + Ω∫ ∫D AÑ (3.48)

where A is the closed surface bounding the volume ∆Ω (ξ, ∆ξ, t), N(ξ) is the effective concen-
tration of ionized impurities in the substrate [see (2.58)], D is the displacement vector, and q 
is the magnitude of the electronic charge.

Due to regularity of the domain ∆Ω (ξ, ∆ξ, t), (3.48) can be transformed into:

0 0

0

( , ) [ ( ) ( , )] ( , ) ( , )

[ ( , ) ( , ) ( , ) ( , )]

s CB s CG

s

q X t N p t d E t d E t d

X t E t X t E t

ξ ξ ξ ξ ξ ξ

ξ ξ ξ
ξ ξ ξ ξ ε ε ξ ξ ε ε ξ ξ

ε ε ξ ξ ξ ξ ξ ξ

+∆ +∆ +∆
+ = +

+ + ∆ + ∆ −

∫ ∫ ∫

(3.49)
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453.4. Quasi-2D Poisson’s equations

with ε0 and εs being, respectively, the permittivity of free space and the relative permittivity 
of the semiconductor substrate.

Dividing (3.49) by ∆ξ, we have:

[ ]

0 0

0

( , )[ ( ) ( , )] ( , ) ( , )

( , ) ( , ) ( , ) ( , )

s s
CB CG

s

q X t N p t d E t d E t d

X t E t X t E t

ξ ξ ξ ξ ξ ξ

ξ ξ ξ

ε ε ε ε
ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ
ε ε

ξ ξ ξ ξ ξ ξ
ξ

+∆ +∆ +∆
+ = +

∆ ∆ ∆

+ + ∆ + ∆ −
∆

∫ ∫ ∫

(3.50)

Assuming that all the functions appearing in (3.50) are continuously differentiable, 
passing to the limit with ∆ξ → 0, performing the necessary calculations (details are given 
in Appendix B), and omitting the mixed terms—p1(ξ, t)∙X1(ξ, t), X1(ξ, t)∙[∂E1(ξ, t) ∕ ∂ξ], and 
E1(ξ, t)∙[∂X1(ξ, t) ∕ ∂ξ]—in the analysis, we obtain a quasi-2D Poisson’s equation for dc con-
ditions [refer to (A29)]:

0
0 0 0 0 0

0
0 0 0

( )
[ ( ) ( ) ( ) ( )] ( )

( )( ) ( ) ( )

s

CG CB

d E
q X N X p X

d

d XE E E
d

ξ
ξ ξ ξ ξ ε ε ξ

ξ

ξ
ξ ξ ξ

ξ


+ = 




+ + + 


(3.51)

and a quasi-2D Poisson’s equation for small-signal time-varying conditions [see (A30)]:

1
0 1 1 0 1 0 0

0 01
1 0 1

( , )
[ ( ) ( , ) ( ) ( , ) ( ) ( , )] ( )

( ) ( )( , )( , ) ( , ) ( , ) ( ) ( , )

s

cg cb

E t
q X p t N X t p X t X

d E d XX tX t E t E t E E t
d d

ξ
ξ ξ ξ ξ ξ ξ ε ε ξ

ξ

ξ ξξξ ξ ξ ξ ξ
ξ ξ ξ

∂
+ + =  ∂

∂
+ + + + + ∂ 

(3.52)

The quasi-2D dc Poisson’s equation (3.51) can be written in a more convenient form:

0 0 0 0 0
0

0 0 0
0 0

0

( )( ) ( ) 1 ( ) ( )
( )

( ) ( ) ( )( )
( )

s CG CB

s

Nq p X E E
p

d E E d XX
d X d

ξξ ξ ε ε ξ ξ
ξ

ξ ξ ξ
ε ε ξ

ξ ξ ξ

 
 + = +   

 
 

+ + 
 

(3.53)

Likewise, the quasi-2D small-signal Poisson’s equation (3.52) can be rearranged as fol-
lows: 
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3. Time-domain model46

1 0 0
0

0 1 0 101 1
0 0

0 0 0

( )( , ) ( ) 1 ( , ) 1 [ ( , ) ( , )]
( )

( ) ( , ) ( ) ( , )( )( , ) ( , )( )
( ) ( ) ( )

C s cg cb

s

Nq p t X P t E t E t
p

E E t d E E td XX t X tX
X X d X d

ξξ ξ ξ ε ε ξ ξ
ξ

ξ ξ ξ ξξξ ξ
ε ε ξ

ξ ξ ξ ξ ξ ξ ξ

  
+ + = +  

   
∂ ∂

+ + + + ∂ ∂ 
(3.54)

where PC (ξ, t) is a dynamic carrier-to-channel coupling factor, defined by

11

0 0

( , )( , )( , )
( ) ( )C

p tX tP t
X p

ξξξ
ξ ξ

= (3.55)

3.4.2. Simplified equations

Useful simplifications of (3.54) are presented in this section.

Thick-channel approximation
If we assume that the transistor channel is thick enough to neglect the last three terms in the 
square brackets of the right-hand side of (3.54), we have:

1 0
0

1
0 0

( )( , ) ( ) 1 ( , ) 1
( )

( , )
( , ) ( , ) ( )

C

s cg cb

Nq p t X P t
p

E t
E t E t X

ξξ ξ ξ
ξ

ξ
ε ε ξ ξ ξ

ξ

  
+ +  

   
∂ 

= + + ∂ 

(3.56)

Weakly-coupled-carrier-to-channel approximation
If the dynamic carrier-to-channel coupling factor PC (ξ, t) is negligibly small, we may reduce 
(3.54) to:

1
1 0 0 0 0

1 0 00 1 1

0 0 0

( , )
( , ) ( ) [ ( , ) ( , )] ( )

( , ) ( ) ( )( ) ( , ) ( , )
( ) ( ) ( )

s cg cb s

E t
q p t X E t E t X

E t d E Ed X X t X t
X d X d X

ξ
ξ ξ ε ε ξ ξ ε ε ξ

ξ

ξ ξ ξξ ξ ξ
ξ ξ ξ ξ ξ ξ

∂
= + +  ∂

∂
+ + + ∂ 

(3.57)

Thick-channel-and-weakly-coupled-carrier-to-channel approximation
If the dynamic carrier-to-channel coupling factor PC (ξ, t) is negligibly small and the thick-
ness of the channel sufficiently large, then (3.54) may be reduced to:
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473.5. Transport equation

1
1 0 0 0 0

( , )( , ) ( ) [ ( , ) ( , )] ( )s cg cb s
E tq p t X E t E t X ξ

ξ ξ ε ε ξ ξ ε ε ξ
ξ

∂
= + +

∂
(3.58)

Other simplifications of (3.54) are also possible.

3.5. Transport equation

We assume that electromagnetic radiation effects can be ignored in our analysis because the 
dimensions of a typical transistor are much smaller than the wavelength corresponding to 
1-THz frequency.

In the time domain, the total current density in the transistor channel Jt (ξ, t) consists of 
two components, namely, the total conduction current density J (ξ, t) and the displacement 
current density Jdis(ξ, t), see, e.g., [1, Ch. 10], [2, Ch. 3]; drift and diffusion are the basic car-
rier transport mechanisms of the conduction current [1–10]. Thus, we can write:

( , ) ( , ) ( , )t disJ t J t J tξ ξ ξ= + (3.59)

( , )( , ) ( , ) ( , ) ( , ) ( , )p
p tJ t q t p t E t q D t ξξ µ ξ ξ ξ ξ
ξ

∂
= −

∂
(3.60)

0
( , )( , )dis s

E tJ t
t
ξξ ε ε ∂

=
∂

(3.61)

where Dp (ξ, t) is the diffusivity of holes.
Combining (3.59)–(3.61), we may write:

0
( , ) ( , )( , ) ( , ) ( , ) ( , ) ( , )t p s
p t E tJ t q t p t E t q D t

t
ξ ξξ µ ξ ξ ξ ξ ε ε
ξ

∂ ∂
= − +

∂ ∂
(3.62)

At a Q-point, we may split the total current density Jt (ξ, t) between the dc conduction 
current density J0(ξ) and the total small-signal current density Jt1(ξ, t):

0 1( , ) ( ) ( , )t tJ t J J tξ ξ ξ= + (3.63)

For small perturbations, we can neglect time-varying changes in the diffusivity of holes 
and subsequently assume that the diffusivity is determined by values of respective quantities 
referring to the dc operating point:

0( , ) ( )p pD t Dξ ξ= (3.64)

in which Dp0(ξ) is the diffusivity of holes at the Q-point.
Using (3.4), (3.5), (3.7), (3.63), and (3.64), we can rewrite (3.62) as follows:
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3. Time-domain model48

0 1 1 0 1 0 1

0 1 0 1
0 0

( ) ( , ) [ ( ) ( , )] [ ( ) ( , )] [ ( ) ( , )]

[ ( ) ( , )] [ ( ) ( , )]
( )

t q

p s

J J t q t p p t E E t

p p t E E t
q D

t

ξ ξ µ ξ µ ξ ξ ξ ξ ξ

ξ ξ ξ ξ
ξ ε ε

ξ

+ = + + +

∂ + ∂ +
− +

∂ ∂

(3.65)

Making some calculations in (3.65), then neglecting higher-order mixed terms, and 
finally separately grouping the zero-order and first-order terms, we have:

0
0 0 0 0

( )
( ) ( ) ( ) ( ) ( )q p

p
J q p E q D

ξ
ξ µ ξ ξ ξ ξ

ξ
∂

= −
∂

(3.66)

for dc conditions at the Q-point, and

1 1 1( , ) ( , ) ( , )t disJ t J t J tξ ξ ξ= + (3.67)

for small-signal conditions, where J1(ξ, t) is the small-signal conduction current density of 
holes, 

1 0 1 0 1

1
0 0 1 0

( , ) ( ) ( ) ( , ) ( ) ( ) ( , )

( , )
( ) ( ) ( , ) ( )

q q

p

J t q E p t q p E t

p t
q p E t q D

ξ µ ξ ξ ξ µ ξ ξ ξ

ξ
ξ ξ µ ξ ξ

ξ

= +

∂
+ −

∂

(3.68)

1
1 0

( , )
( , )dis s

E t
J t

t
ξ

ξ ε ε
∂

=
∂

(3.69)

Obviously, Jdis1(ξ, t) in (3.69) equals Jdis(ξ, t) in (3.61).
We can see from (3.67) to (3.69) that the total small-signal current density consists of 

five terms: the first one represents the drift of the excess holes p1(ξ, t) in the stationary field 
E0(ξ), the second is the drift of the holes of the stationary distribution p0(ξ) in the small-sig-
nal field E1(ξ, t), the third is the drift of the holes of the stationary distribution p0(ξ) moving 
in the stationary field E0(ξ) with the mobility μ1(ξ, t), the fourth is the diffusion component 
of the excess holes p1(ξ, t), and the fifth is the displacement current.

Referring to (3.5) and assuming isothermal conditions, one can see that, for sufficiently 
small perturbations around the Q-point, μ1(ξ, t) is simply the differential of the mobility μq(ξ) 
with respect to the following electric fields: E0(ξ), ECG0(ξ), and ECB0(ξ); see [1–6]. However, 
the impact of ECB0(ξ) on the mobility can be ignored, because the effect of the body-source 
voltage VBS on the mobility is negligibly small; refer to, e.g., [3, Sec. 4.10]. Hence, we can 
write:

1 1
0 0

( ) ( )
( , ) ( , ) ( , )

( ) ( )
q q

cg
C G

t E t E t
E E
µ ξ µ ξ

µ ξ ξ ξ
ξ ξ

∂ ∂
= +
∂ ∂

(3.70)

Thus, (3.67)–(3.70) constitute a set of non-quasi-static time-domain small-signal equations 
describing propagation of excess carriers in the channel.
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493.6. Terminal currents

3.6. Terminal currents

Small-signal currents in the MOSFET can be split into capacitive and non-capacitive ones, 
ignoring generation-recombination processes and the leakage and tunneling, currents. 

The capacitive currents charge capacitances of the transistor.
We can distinguish three types of the non-capacitive currents: the conduction current 

described in the previous section, coupling currents induced on the gate and in the body by 
perturbation in the channel charge (they are analyzed in Sec. 3.8), and the non-capacitive 
displacement current described in Sec. 3.6.2.

By virtue of the principle of superposition, we separately analyze terminal capacitive 
currents and terminal non-capacitive ones.

3.6.1. Capacitive currents

To determine the terminal capacitive currents, we suppose that the relaxation time τ [3, 11],

0 /m mτ ε ε σ= (3.71)

of conducting regions of the gate, body, drain, and source is exceedingly small. Conse-
quently, we may assume that these regions are perfect conductors; with εm and σm being, 
respectively, the relative permittivity and conductivity of the conducting regions. We can 
thus regard the gate, body, drain, and source, as a system of four conductors capacitively 
coupled with each other by six differential (small-signal) reciprocal capacitances Cgs, Cgd, 
Cgb, Cbs, Cbd, and Cds, as shown in Fig. 3.4; see also [12].

It should be emphasized that each of these capacitances does not consist of so-called 
intrinsic, extrinsic, fringing or overlap capacitances. Each of these is simply a reciprocal ca-
pacitance. Obviously, small-signal currents charging the capacitances Cgs, Cgd, Cgb, Cbs, Cbd, 
and Cds appear if small-signal voltages υgs(t), υds(t), and υbs(t) are non-zero ones.

Denoting the small-signal charging currents by ig
cap(t), id 

cap(t), ib
cap(t), and is

cap(t), and 
applying Kirchhoff”s current law to each electrode, we have:

( ) gs gb gdcap
g gs gb gd

d d d
i t C C C

dt dt dt
υ υ υ

= + + (3.72)

( ) dgcap ds db
d ds gd bd

dd di t C C C
dt dt dt

υυ υ
= + + (3.73)

( ) bs bg bdcap
b bs gb bd

d d d
i t C C C

dt dt dt
υ υ υ

= + + (3.74)

( ) bsgscap ds
s gs ds bs

dd di t C C C
dt dt dt

υυ υ
= − − − (3.75)
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3. Time-domain model50

If we transform all the voltages in (3.72)–(3.74) into voltages referenced to the source, 
as shown in Fig. 3.4, then (3.72)–(3.74) can be rewritten as follows:

( ) ( ) bsgscap ds
g gs gb gd gd gb

dd d
i t C C C C C

dt dt dt
υυ υ

= + + − − (3.76)

( ) ( ) bsgscap ds
d gd gd ds bd bd

dd d
i t C C C C C

dt dt dt
υυ υ

= − + + + − (3.77)

( ) ( ) bsgscap ds
b gb bd bs gb bd

dd d
i t C C C C C

dt dt dt
υυ υ

= − − + + + (3.78)

Fig. 3.4.	 The time-domain small-signal representation of the MOSFET with terminal voltages 
referenced to the source.

It is important to note that the algebraic sum of the terminal charging currents entering 
the transistor as a whole is zero [see (3.75)–(3.78)]:

( ) ( ) ( ) ( ) 0cap cap cap cap
s g d bi t i t i t i t+ + + = (3.79)
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513.6. Terminal currents

The result is not surprising, because each of the six reciprocal capacitances stores no net 
charge. This means that the charging currents satisfy Kirchhoff’s current law expressed by 
(3.79).

3.6.2. Drain- and source-terminal non-capacitive currents

By virtue of the principle of superposition, the small-signal terminal currents ig(t), id (t), ib(t), 
and is(t)—see Fig. 3.4—are given by

( ) ( ) ( )cap ind
g g gi t i t i t= + (3.80)

( ) ( ) ( )cap nc
d d di t i t i t= + (3.81)

( ) ( ) ( )cap ind
b b bi t i t i t= + (3.82)

( ) ( ) ( )cap nc
s s si t i t i t= + (3.83)

where ig
ind(t) and ib

ind(t) are the coupling currents induced on the gate and in the body, respec-
tively, and is

nc(t) and id 
nc(t) are, accordingly, the source- and drain-terminal non-capacitive 

currents.
According to Kirchhoff’s current law, the algebraic sum of the currents ig(t), id (t), ib(t), 

and is(t) should be zero,

( ) ( ) ( ) ( ) 0s g d bi t i t i t i t+ + + = (3.84)

If we add the equations from (3.80) to (3.83) and take account of (3.79) and (3.84), we 
obtain:

( ) ( ) ( ) ( ) 0ind nc ind nc
g d b si t i t i t i t+ + + = (3.85)

Equation (3.85) is Kirchhoff’s current law for non-capacitive currents in the MOSFET 
under dynamic operation conditions.

Based on (3.67), the total drain-terminal non-capacitive time-domain small-signal cur-
rent id 

nc(t) and the total source-terminal non-capacitive time-domain small-signal current 
is 
nc(t) are defined by

( ) ( ) ( )nc con nc
d d ddisi t i t i t= + (3.86)

( ) ( ) ( )nc con nc
s s sdisi t i t i t= + (3.87)

where )(ti cond  and )(ti cons  are, respectively,the drain- and source-terminal time-domain 
small-signal conduction currents, described by the two equations: 

1( ) ( , ) ( , )con
di t W X L t J L t= − (3.88)

1( ) (0, ) (0, )con
si t W X t J t= (3.89)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


3. Time-domain model52

whereas )(ti nddis
c  and )(ti nsdis

c  represent, respectively, the drain- and source-terminal time-do-
main small-signal non-capacitive displacement currents.

The current )(ti cond  is not equal to )(ti cons−  in general, because moveable charges can 
be accumulated in or extracted from the channel.

Displacement currents depend on the electric field in the channel including its ends. In 
general, when carriers are injected into the channel and υds(t) is not equal to zero, the electric 
field E1(ξ, t) acting on carriers in the channel can be written as follows:

1 1 1( , ) ( , ) ( , )ext iE t E t E tξ ξ ξ= + (3.90)

where E1ext (ξ, t) is an external field set up by υds(t),

1
( )( , ) ds

ext
tE t

L
υ

ξ = − (3.91)

and E1i (ξ, t) is an inner field set up by the small-signal excess charges p1(ξ, t); see Sec. 4.4.1.
Given (3.69) and (3.90), we have:

1 1
1 0 0

( , ) ( , )
( , ) ext i

dis s s

E t E t
J t

t t
ξ ξ

ξ ε ε ε ε
∂ ∂

= +
∂ ∂

(3.92)

Denoted by ),( tJ cap
dis ξ , the first term on the right-hand side of (3.92), 

1
0

( , )
( , ) extcap

dis s

E t
J t

t
ξ

ξ ε ε
∂

=
∂

(3.93)

represents a displacement current density induced by the external field E1ext (ξ, t) [see (3.91)], 
and therefore it is simply a capacitive current density that is associated with the capacitance 
Cds; see Fig. 3.4. Based on (3.91) and (3.93), one can see that ),( tJ cap

dis ξ  is independent of ξ, 
which confirms the capacitive character of the current. The displacement current density 

),( tJ cap
dis ξ  produces a capacitive current flowing through the capacitance Cds. The capacitive 

current is separately taken into account in the model (see Fig. 3.4) as well as currents id 
cap(t) 

and is
cap(t) in (3.79)–(3.83).

The second term on the right-hand side of (3.92), denoted by

1
0

( , )
( , ) inc

dis s

E t
J t

t
ξ

ξ ε ε
∂

=
∂

(3.94)

is a non-capacitive displacement current density in the channel, which is determined by the 
inner field E1i (ξ, t); see Sec. 4.4.1.

We know from physics of the transistor that the small-signal excess charges p1(ξ, t) 
induce surface charges on the gate, body, drain and source; see Secs. 3.2 and 3.4. In a real 
MOSFET, the distributions of surface charges are nonuniform and the regions of the drain 
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533.7. Gate-to-body capacitance Cgb

and the source are bounded by cylindrical surfaces in a three-dimensional space. It means 
that the distribution of the longitudinal electric field is not confined only to the channel. 
Therefore, in our quasi-2D approach, we assume that the longitudinal electric field E1i (ξ, t), 
set up by the small-signal excess charges p1(ξ, t), is associated with an equivalent paral-
lel-plate capacitor whose capacitance equals Cds and its plates are separated by a distance L 
(L being the channel length). Thus, denoted by Acds, an effective area of each of the two 
plates is:

0

ds
cds

s

LCA
ε ε

= (3.95)

Therefore, based on (3.94), (3.95), and Fig. 3.4, the drain-terminal time-domain 
small-signal non-capacitive displacement current )(ti nddis

c  is:

1 ( , )
( ) inc

ddis ds

E L t
i t LC

t
∂

= −
∂

(3.96)

Similarly, the source-terminal time-domain small-signal non-capacitive displacement 
current )(ti nsdis

c  is:

1 (0, )
( ) inc

sdis ds

E t
i t LC

t
∂

=
∂

(3.97)

The coupling currents ig
ind(t) and ib

ind(t) are analyzed in Sec. 3.8.

3.7. Gate-to-body capacitance Cgb

The quasi-2D dc MOSFET representation enables us to calculate the capacitance Cgb. First, 
we evaluate two circuit elements: a differential (quasi-static) gate-to-channel capacitance Cgc 
and differential (quasi-static) body-to-channel capacitance Cbc, which are subsequently used 
to estimate the differential gate-to-body capacitance Cgb.

3.7.1. Preliminary remarks

In the quasi-static small-signal analysis performed in this section, we assume that variations 
in the terminal voltages VGS and VBS are sufficiently slow, which—after [3]—means that 
charges per unit area at any time on the gate, in the body, and in the channel are identical to 
those that would be found if dc voltages were used instead.

In the case of small harmonic signals exciting the transistor, we may say that the as-
sumption of quasi-static operation is justified if the period T of the signals is over one hun-
dred times greater than the transit time τtr of carriers across the channel:

100 trT τ≥ (3.98)

where τtr is given by

3.7. Gate-to-body capacitance Cgb
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3. Time-domain model54

0 ( )
L

tr
dξτ
υ ξ

= ∫ (3.99)

where υ(ξ) is the velocity of carriers traveling along the channel line; see Figs. 2.8, 2.12, and 
3.5. It is worth pointing out that υ(ξ) is determined by biasing voltages at the Q-point.

Let us consider a quasi-2D picture of a p-channel MOSFET that operates under dc 
conditions, which is shown in Fig. 3.5.

If VGS is large enough, a dc drain current ID flows in the drain-source circuit, which is 
a function of three biasing voltages, i.e., ID = ID (VDS, VGS, VBS).

For any point ξ ∈ [0, L] on the channel line, we can define three voltages: VCS (ξ), VGC (ξ), 
and VBC (ξ) between the point and, respectively, the source, the gate, and the body, as shown 
in Fig. 3.5. Due to potentiality of the electric field in the device, the voltages must satisfy 
Kirchhoff’s voltage law, i.e.:

( ) ( )GS CS GCV V Vξ ξ= + (3.100)

( ) ( )BS CS BCV V Vξ ξ= + (3.101)

Fig. 3.5.	 A quasi-2D picture of a p-channel MOSFET under dc conditions with terminal  
voltages referenced to the source.
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553.7. Gate-to-body capacitance Cgb

A system consisting of the gate, depletion region, and the channel should be electrically 
neutral as a whole. Hence, the overall charge neutrality equation for the quasi-2D MOSFET 
model can be written as follows:

0G C Bq q q+ + = (3.102)

where qG, qC, and qB are, respectively, the charge on the gate, the moveable charge in the 
channel, and the charge being the sum of the uncompensated charge of ionized impurities in 
the body and the effective charge of the (Si–SiO2)-interface.

The charges occurring in (3.102) are defined by

0
( )

L

G Gq W Q dξ ξ= ∫ (3.103)

0
( )

L

C Cq W Q dξ ξ= ∫ (3.104)

00
( )

L

B Bq W Q d WL Qξ ξ= +∫ (3.105)

with W, QG (ξ), QC (ξ), QB (ξ), and Q0 being, respectively, the width of the transistor, the 
surface charge density on the gate, the channel charge per unit area [defined by (2.17)], the 
surface charge density of ionized impurities in the depletion layer [defined by (2.59)], and 
the effective (Si–SiO2)-interface charge per unit area [3].

It is worth emphasizing that charges of the six capacitors of Fig. 3.4 do not bring any-
thing to (3.102) because each of these capacitors is electrically neutral as a whole.

3.7.2. Quasi-static gate-to-channel capacitance Cgc

If VGS is quasi-statically changed by an infinitesimally small voltage dVGS, as illustrated in 
Fig. 3.6, then the charges QC (ξ) and QG (ξ) as well as the drain current ID and the charges on 
the capacitances Cgs and Cgd (see Fig. 3.4) also change. Since dVGS is infinitesimally small 
and the voltages VDS and VBS are fixed, we can take an assumption that distributions of the 
voltage VCS (ξ) and the longitudinal electric field over the channel line (see Fig. 3.5) do not 
change. Taking this into account and differentiating (3.100), we obtain:

( )GC GSdV dVξ = (3.106)

As the gate is equipotential, (3.106) implies that the channel line is also an equipoten-
tial line for small variations in VGS. Consequently, the system consisting of the gate and the 
channel may be regarded as a quasi-static capacitance Cgc.

Let ID-gs, qG-gs, qC-gs, qB-gs, and QC-gs (ξ) denote, respectively, ID qG, qC, qB, and QC (ξ) re-
ferred to the circumstances shown in Fig. 3.6.

The body charge qB does not vary in the circumstances shown in Fig. 3.6. Taking this 
into account and differentiating (3.102), we obtain:

G gs C gsd q d q− −= − (3.107)

3.7. Gate-to-body capacitance Cgb
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3. Time-domain model56

The quasi-static capacitance Cgc is defined as follows:

G gs
gc

GS

C gs

GS

d q
C

dV
dq
dV

−

−

≡

−
=

(3.108)

Before proceeding further, we state that all the terminal currents in this work are de-
fined as entering the device, as shown in Figs. 3.4–3.8. Therefore, for quasi-static condition, 
we can write: 

D chI I= − (3.109)

and combining (2.16), (2.17), and (3.109), we have:

( ) ( )D CI W Qυ ξ ξ= − (3.110)

Fig. 3.6.	 An MOSFET under a small quasi-static excitation dVGS.

As stated previously, the distributions of the voltage VCS(ξ) and longitudinal electric 
field over the channel line do not change in the situation depicted in Fig. 3.6. Thus, we may 
assume the distribution of the carrier velocity υ(ξ) in the channel also not to change, which 
means that the differential dυ(ξ) = 0. Taking this into account and differentiating (3.110), 
we can write the following formula for the differential dIDgs in the circumstances shown in 
Fig. 3.6:
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573.7. Gate-to-body capacitance Cgb

( ) ( )D gs C gsd I W dQυ ξ ξ− −= − (3.111)

Equation (3.111) is true for every ξ ∈ [0, L], because the continuity equation should be ful-
filled also for infinitesimals under quasi-static conditions.

On the other hand, based on the definition of the gate transconductance gm, one can 
write:

D gs m GSd I g dV− = (3.112)

Comparing (3.111) and (3.112), we obtain:

( )
( )

m GS
C gs

g dVdQ
W

ξ
υ ξ− = − (3.113)

Integrating (3.113) and taking account of (3.99), we get the following formula for the 
differential dqC-gs of the channel charge:

0

0

( )

( )

L

C gs C gs

L

m GS

m tr GS

dq W dQ d

dg dV

g dV

ξ ξ

ξ
υ ξ

τ

− −=

= −

= −

∫

∫ (3.114)

Combining (3.108) with (3.114), we get:

gc m trC g τ= (3.115)

The capacitance Cgc is nonuniform, because dQC-gs (ξ) determined by (3.113) is not a con-
stant function of ξ in general.

3.7.3. Quasi-static body-to-channel capacitance Cbc

The method used to derive the formula for Cgc can be directly applied to finding a formula 
for the quasi-static capacitance Cbc.

Let us consider a quasi-2D picture of a p-channel MOSFET that operates under an 
infinitesimally small quasi-static excitation dVBS, as shown in Fig. 3.7.

The small voltage dVBS causes small variations in QC (ξ), QB (ξ), ID, and also in the 
charges on the capacitances Cbs and Cbd (see Fig. 3.4). Since dVBS is infinitesimally small and 
the voltages VDS and VGS are fixed, we can take an assumption that the voltage VCS (ξ) and 
longitudinal electric field over the channel line (see Fig. 3.5) do not change. Taking account 
of the assumption and differentiating (3.101), we obtain:

( )BC BSdV dVξ = (3.116)

3.7. Gate-to-body capacitance Cgb
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3. Time-domain model58

As the gate is equipotential, (3.116) implies that the channel line is also an equipoten-
tial line for small variations in VBS. Consequently, the system consisting of the gate and the 
channel may be regarded as a quasi-static capacitance Cbc.

Let ID-bs, qG-bs, qC-bs, qB-bs, and QC-bs (ξ) denote, respectively, ID qG, qC, qB, and QC (ξ) re-
ferred to the circumstances shown in Fig. 3.7.

In the circuit shown in Fig. 3.7, the gate charge qG does not vary. Taking this into ac-
count and differentiating (3.102), we get:

B bs C bsd q d q− −= − (3.117)

The quasi-static capacitance Cbc is defined as follows:

B bs
bc

BS

C bs

BS

d q
C

dV
dq
dV

−

−

≡

−
=

(3.118)

As stated previously, the distributions of the voltage VCS(ξ) and longitudinal electric 
field over the channel line do not change in the situation depicted in Fig. 3.7. We may thus 
assume the distribution of the carrier velocity υ(ξ) in the channel also not to change, which 
means the differential dυ(ξ) = 0. Taking this into account and differentiating (3.110), we can 
write the following formula for the differential dID-bs in the circumstances shown in Fig. 3.7:

Fig. 3.7.	 An MOSFET under a small quasi-static excitation dVBS.
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593.7. Gate-to-body capacitance Cgb

( ) ( )D bs C bsd I W dQυ ξ ξ− −= − (3.119)

Equation (3.119) is true for every ξ ∈ [0, L], because the continuity equation should be ful-
filled also for infinitesimals under quasi-static conditions.

On the other hand, basing on the definition of the body transconductance gmb, one can 
write

D bs mb BSd I g dV− = (3.120)

Comparing (3.119) and (3.120), we obtain:

( )
( )

mb BS
C bs

g dV
dQ

W
ξ

υ ξ− = − (3.121)

Integrating (3.121) and taking account of (3.99), we get the following formula for the 
differential dqC-bs of the channel charge:

0

0

( )

( )

L

C bs C bs

L

mb BS

mb tr BS

dq W dQ d

dg dV

g dV

ξ ξ

ξ
υ ξ

τ

− −=

= −

= −

∫

∫ (3.122)

Combining (3.118) with (3.122), we get:

bc mb trC g τ= (3.123)

The capacitance Cbc is nonuniform, because the differential dQC-bs (ξ) determined by 
(3.121) is not a constant function of ξ in general.

3.7.4. Gate-to-body capacitance Cgb

The capacitance Cgb is defined by

G
gb

GB

B

GB

d qC
dV
dq
dV

≡

−
=

(3.124)

provided that

G Bd q dq= − (3.125)

To derive a formula for the capacitance Cgb, let us consider the circuit shown in Fig. 3.8.
The infinitesimally small voltages dVGS and dVBS produce infinitesimally small changes 

in qG, qC, qB, and ID whose differentials are dqG, dqC, dqB, and dID , respectively.

3.7. Gate-to-body capacitance Cgb
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3. Time-domain model60

For the same reasons as in the case of the capacitance Cgc or Cbc, the channel line in 
Fig. 3.8 is also an equipotential line for small signals.

The differentials dqG, dqC, and dqB have to satisfy the following equation obtained by 
differentiating (3.102):

0G C Bdq dq dq+ + = (3.126)

If VDS = constant (see Fig. 3.8), the differential dID is:

D m GS mb BSd I g dV g dV= + (3.127)

From Fig. 3.5 and Kirchhoff”s voltage law, we have:

GB GS BSV V V= − (3.128)

Differentiating (3.128), we get:

GB GS BSdV dV dV= − (3.129)

To use (3.124) to calculate the capacitance Cgb, we must prove that the condition (3.125) 
can be satisfied in the circumstances shown in Fig. 3.8.

Fig. 3.8.	 An MOSFET excited by small quasi-static voltages dVGS and dVBS.

Indeed, we infer from (3.125) and (3.126) that dqC should be zero; this implies that dID 
should also be zero, and—by virtue of (3.127)—we get the following condition:
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613.8. Supplementary equations and rules

m GS mb BSg dV g dV= − (3.130)

Thus, if (3.130) is satisfied, the condition (3.125) is fulfilled. Hence, we may use (3.124) 
to calculate Cgb.

Taking 1/Cgb from (3.124) and using (3.129) and (3.125), we obtain:

1 GS BS

gb G G

GS BS

G B

dV dV
C dq dq

dV dV
dq dq

= −

= +
(3.131)

Using (3.108) and (3.118), the previous equation takes the form:

1 1 1

gb gc bcC C C
= + (3.132)

We see that Cgb is the equivalent capacitance of two capacitors Cgc and Cbc connected in 
series, which is illustrated in Fig. 3.8.

Combining (3.115) and (3.123) with (3.132), we get:

1
m tr

gb
gC η τ

η
=

+
(3.133)

where
/mb mg gη = (3.134)

Although derivation of the formula for the differential capacitance Cgb is based on the 
differential (quasi-static) capacitances Cgc and Cbc, the applicability of this formula is not 
limited only to the quasi-static conditions, since the gate and body regions are assumed to 
be good conductors.

3.8. Supplementary equations and rules

Based on the results of Secs. 3.4–3.7, additional equations and rules are formulated in this 
section.

The terminal coupling currents ig
ind(t) and ib

ind(t) are produced by perturbations in carrier 
concentration in the channel or, equivalently, by time-changing in the transverse electric 
fields Ecg(ξ, t) and Ecb(ξ, t); see Fig. 3.3 They are induced between the channel and the gate, 
and between the channel and the body. The densities of these currents are, respectively, 
Jcg(ξ, t) and Jcb(ξ, t), as illustrated in Fig. 3.4. However, in our approach, we derive a rule that 
establishes a relationship between the coupling currents ig

ind(t) and ib
ind(t). This approach 

guarantees that Kirchhoff’s current law for the terminal non-capacitive displacement cur-
rents is satisfied.
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3. Time-domain model62

Analyzing the situation shown in Fig. 3.8 and applying the superposition principle, we 
can write the following equation for the surface charge density dQC (ξ) induced by the volt-
ages dVGS and dVBS that are changed quasi-statically:

( ) ( ) ( )C C gs C bsdQ dQ dQξ ξ ξ− −= + (3.135)

To find a relationship between dQC-gs (ξ) and dQC-bs (ξ), we divide (3.113) by (3.121), 
which leads to the following: 

( )
( )

C gs m GS

C bs mb BS

dQ g dV
dQ g dV

ξ
ξ

−

−

= (3.136)

Taking assumption that dVGS = dVBS in (3.136), we can formulate a quasi-static channel 
charge partition rule (QSCCPR) as follows: the surface density dQC (ξ) of the infinitesimal chan-
nel charge induced by the voltages dVGS and dVBS is divided between dQC-gs (ξ) and dQC-bs (ξ) in 
direct proportion to respective transconductances gm / gmb. The reverse is also true; that is, 
if a quasi-static increase in the surface density dQC (ξ) of the infinitesimal channel charge 
produces surface charge densities dQC-gs (ξ) and dQC-bs (ξ), respectively, on the gate and in the 
body, then the proportion of dQC-gs (ξ) to dQC-bs (ξ) is gm to gmb, provided that the infinitesimal 
increases of VGS and VBS are equal to each other, i.e., dVGS = dVBS.

Hence, if dVGS = dVBS, then:

( ) ( )mb
C bs C gs

m

g
dQ dQ

g
ξ ξ− −= (3.137)

Now, we proceed to analyze the dynamic non-quasi-static coupling between the excess 
channel charge and the transistor structure.

By analogy with (3.12) and (3.13), we can write:

( , ) ( , ) ( )c C CQ t Q t Qξ ξ ξ= − (3.138)

where Qc (ξ, t) is the small excess channel charge (linear approximation) per unit area, 
QC (ξ, t) is the total channel charge per unit area, and QC (ξ) is the channel charge per unit 
area at dc condition (at the Q-point).

Based on Gauss’s law, we may divide the excess channel charge per unit area, Qc (ξ, t), 
into two parts:

( , ) ( , ) ( , )c c c lQ t Q t Q tξ ξ ξ⊥ −= + (3.139)

where Qc⊥(ξ, t) and Qc-l (ξ, t) are excess channel charges per unit area associated with, respec-
tively, the perpendicular and longitudinal component of electric field in the channel. 

Then, we divide the charge Qc⊥(ξ, t) into two parts as follows:

( , ) ( , ) ( , )c cb cgQ t Q t Q tξ ξ ξ⊥ = + (3.140)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


633.9. Conclusion

where Qcb (ξ, t) and Qcg (ξ, t) are excess channel charges per unit area associated with the 
channel-to-body and channel-to-gate coupling, respectively.

Finally, having regard to the results of the quasi-static analysis, we assume that the 
non-quasi-static partitioning of the charge Qc⊥(ξ, t) is also governed by the QSCCPR, which 
is expressed by (3.137), i.e.:

( , ) ( , )mb
cb cg

m

g
Q t Q t

g
ξ ξ= (3.141)

[Obviously, the charges Qcb (ξ, t) and Qcg (ξ, t) have the same algebraic sign.]
Thus, (3.141) reflects the mathematical meaning of the non-quasi-static channel charge 

partition rule (NQSCCPR).
Denoted by qg(t) and qb(t), overall excess charges induced, respectively, on the gate and 

in the body by the excess channel charge can be expressed as

0
( ) ( , )

L

g cgq t W Q t dξ ξ= − ∫ (3.142)

0
( ) ( , )

L

b cbq t W Q t dξ ξ= − ∫ (3.143)

By definition, the terminal coupling currents, ig
ind(t) and ib

ind(t), are:

( ) ( )ind
g g

di t q t
dt

 =   (3.144)

( ) ( )ind
b b

di t q t
dt

 =   (3.145)

Dividing (3.145) by (3.144) and subsequently taking account of (3.142), (3.143), and 
(3.141) in the resultant equation, we get a useful rule for the coupling currents:

( )
( )

ind
b mb
ind

mg

i t g
gi t

= (3.146)

To sum up, in order to fulfill Kirchhoff’s current law, we need to calculate values of the 
coupling and non-capacitive displacement currents [ig

ind(t), ib
ind(t), id 

nc(t), and is 
nc(t)] from 

(3.85)–(3.87) and (3.146).

3.9. Conclusion

A novel quasi-2D non-quasi-static four-terminal time-domain small-signal MOSFET model 
has been established in this chapter.

A set of partial differential equations for the new physics-based quasi-2D time-domain 
small-signal MOSFET model is derived. The set consists of a quasi-2D small-signal continu-
ity equation, a quasi-2D small-signal Poisson’s equation, and a quasi-2D small-signal trans-
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3. Time-domain model64

port equation. All the equations give—in the time domain—a mathematical description of 
the behavior of the carrier concentration in the channel, charges in the gate and body, carrier 
transport in the channel, as well as terminal and coupling currents. A set of supplementary 
equations for coupling and non-capacitive displacement currents in the MOSFET under 
dynamic operation is also derived.

Based on the quasi-2D dc MOSFET representation, a useful formula for the gate-to-
body capacitance Cgb is derived, and some rules dealing with channel-to-gate and channel-
to-body coupling currents are established.

The model presented in this chapter lays the foundations for a novel quasi-2D frequen-
cy-domain small-signal MOSFET model that is developed in Chapter 4.
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Chapter 4

FREQUENCY-DOMAIN MODEL
Wiesław Kordalski

4.1. Introduction

The purpose of this chapter is to present derivation of a novel DIBL-included quasi-2D NQS 
four-terminal frequency-domain small-signal model for the MOSFET with a linearly thick-
ened channel. The GCA is abandoned in this derivation.

Some final results of a simplified version (without the DIBL effect) of the new model 
are briefly reported in [1, 2].

This chapter is organized as follows. In Section 4.2, a set of equations defining the 
model in the time-domain is formulated. A frequency-domain analysis is performed in Sec-
tion 4.3. A DIBL-included model and a four-terminal small-signal equivalent circuit for the 
MOSFET are derived in Section 4.4. A four-terminal small-signal equivalent circuit for the 
long-channel MOSFET is presented in Section 4.5. Section 4.6 contains the main conclu-
sions.

In this chapter, we assume that no generation-recombination processes occur, and the 
tunneling and leakage currents are negligibly small.

A general note: the analysis presented here is carried out for a p-channel MOS transis-
tor, and the symbols for small-signal voltages (υgs, υds, υbs) and currents (i1, id, is, ib, ig, ib

ind, 
ig
ind, id 

ch, is
ch ) occurring in this chapter are consistent with those used in Chapter 3 and have 

the meaning of phasors.

4.2. Formulation of time-domain equations

In this model, the thickness of the channel at the Qpoint, denoted by X0(ξ), is assumed to be 
a linear function of ξ described by

0 ( ) [1 ( 1) ]SX X S Lξ ξ= + − (4.1)

, 1D SS X X S= ≥ (4.2)
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4. Frequency-domain model66

where XS and XD are thicknesses of the channel at the source and the drain, respectively, and 
L denotes the channel length of the quasi-2D dc representation of the channel; see Fig. 4.1 
and Sec. 2.2.

Fig. 4.1.	 A linearly thickened channel of the PMOSFET under consideration.

Basic equations and their simplifications that govern kinetics of carriers in the channel 
under small-signal perturbation for the quasi-2D NQS time-domain model of the MOSFET 
are derived in Chap. 3.

The symbols occurring in this section are exactly the same as those in Secs. 3.2–3.5 
unless otherwise stated.

4.2.1. Continuity equation

We use the gradually-thickened-and-slightly-deformed-channel approximation of the conti-
nuity equation [see (3.40)], in which the dynamic coupling factor of the channel DC, defined 
by (3.21), is assumed to be a constant at the Q-point, i.e.:

1 1
( , ) ( , )(1 )C

p t J tq D
t
ξ ξ

ξ
∂ ∂

+ = −
∂ ∂

(4.3)

where J1(ξ, t) is the small-signal conduction current density of holes; cf. for instance [3], 
[4, p. 503], [5, eq. (1)], [6, eq. (6)].

4.2.2. Transport equation

We make assumptions that the effective bias-dependent mobility at the Q-point, μq(ξ), and 
the dc component of the longitudinal electric field along the channel line, E0(ξ), are constant 
functions of ξ, and are equal to μq and E0, respectively. Relying on these assumptions and 
taking (3.67)–(3.69) into account, the total small-signal current density Jt1(ξ, t) is:

1 1 1( , ) ( , ) ( , )t disJ t J t J tξ ξ ξ= + (4.4)

where the small-signal conduction current density of holes can be written as follows:

1
1 0 1 0 1 1 0 0 0

( , )( , ) ( , ) ( ) ( , ) ( , ) ( )q q p
p tJ t q E p t q p E t q t E p q D ξξ µ ξ µ ξ ξ µ ξ ξ
ξ

∂
= + + −

∂

(4.5)
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674.2. Formulation of time-domain equations

and

1
1 0

( , )
( , )dis s

E t
J t

t
ξ

ξ ε ε
∂

=
∂

(4.6)

is the small-signal displacement current density. The dc longitudinal electric field E0 along 
the channel is assumed to be:

LVE D /0 −= S (4.7)

where VDS is the dc drain-to-source voltage.
The mobility μ1(ξ, t) in (4.5) is defined by (3.70). However, we assume that μ1(ξ, t) is 

determined by only the first component of (3.70), whereas the mobility μq is only a function 
of E0, i.e., μq = μq (E0). Taking these assumptions into account, we can write:

1 1
0

( , ) ( , )qd
t E t

d E
µ

µ ξ ξ= (4.8)

Employing (4.8), we can rewrite (4.5) as follows:

1
1 0 1 0 0 0 1

0

( , )
( , ) ( , ) ( ) ( , )q

q p q

p t d
J t q E p t q D q p E E t

d E
ξ µ

ξ µ ξ ξ µ ξ
ξ

 ∂
= − + +  ∂  

(4.9)

Equation (4.9) can be written in a simpler form if, after [3, p. 514], the definition of 
differential mobility μd at the Q-point is introduced, i.e.:

0
d

d
d E
υµ = (4.10)

where υ is the velocity of carriers in the channel,

0q Eυ µ= (4.11)

Differentiating (4.11) with respect to E0, we have:

0
0

q
d q

d
E

d E
µ

µ µ= + (4.12)

Given (4.12), we can rewrite (4.9) in the following simpler form:

1
1 0 1 0 0 1

( , )
( , ) ( , ) ( ) ( , )q p d

p t
J t q E p t q D q p E t

ξ
ξ µ ξ µ ξ ξ

ξ
∂

= − +
∂

(4.13)
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4. Frequency-domain model68

The last component of the right-hand side of (4.13) can be expressed through a so-called 
ohmic part of the quasi-static small-signal drain-source conductance, denoted by gds0; see 
(A.39). (Formulas for gds0 and the quasi-static small-signal drain-source conductance gds are 
derived in Appendix C.)

Using (A.39) and assuming that Einstein’s relationship exists between the mobility μq 
and diffusivity Dp0 [3, 4],

0p t qD V µ= (4.14)

where Vt = kT/q is thermal voltage (25.9 mV at 300°K) , we can rewrite (4.13) in the form:

1
1 0 1 1

0

( , )
( , ) ( , ) ( , )

( )
dso

q t

p t g LJ t q E p t V E t
W X

ξ
ξ µ ξ ξ

ξ ξ
∂ 

= − + ∂ 
(4.15)

We can obtain a useful simplification of (4.15) if we replace X0 (ξ) with an average 
channel thickness, denoted by Xch,

( ) / 2ch S DX X X= + (4.16)

, 1D SX S X S= ≥ (4.17)

see Fig. 4.1. As a consequence, we get the following simplified formula for the small-signal 
conduction current density:

1
1 0 1 1

( , )
( , ) ( , ) ( , )dso

q t
ch

p t g LJ t q E p t V E t
W X

ξ
ξ µ ξ ξ

ξ
∂ 

= − + ∂ 
(4.18)

4.2.3. Poisson’s equation

In the model, we choose a simpler version of the quasi-2D small-signal Poisson’s equation 
[see (3.54)]:

1 1

0 0 0

( , ) ( , )( , ) ( , )
( ) ( )

cg cb

s

E t E tE t q p t
X X

ξ ξξ ξ
ξ ε ε ξ ξ

∂
= − −

∂
(4.19)

which is a transformed version of the thick-channel-and-weakly-coupled-carrier-to-channel 
approximation defined by (3.58).

We may rewrite (4.19) in a more convenient form for physical interpretation, i.e.:

0 01
0 1

1 0 1 0

( , ) ( , )( , ) ( , ) 1 .
( , ) ( ) ( , ) ( )

s cg s cb
s

E t E tE t q p t
q p t X q p t X
ε ε ξ ε ε ξξε ε ξ

ξ ξ ξ ξ ξ
 ∂

= − − ∂  

A dimensionless quantity inside the square brackets on the right-hand side of (4.20), 
denoted here by dl (ξ, t),
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694.2. Formulation of time-domain equations

0 0

1 0 1 0

( , ) ( , )( , ) 1
( , ) ( ) ( , ) ( )
s cg s cb

l

E t E td t
q p t X q p t X
ε ε ξ ε ε ξ

ξ
ξ ξ ξ ξ

= − − (4.21)

is a function of ξ and t, and can be termed a longitudinal dynamic carrier-to-channel cou-
pling factor. The quantity dl (ξ, t) shows us what a fraction of the spatial excess charge density 
q · p1(ξ, t) is associated with the longitudinal electric field component E1(ξ, t).

Furthermore, we introduce two other dimensionless factors, dcg (ξ, t) and dcb (ξ, t):

0

1 0

( , )
( , )

( , ) ( )
s cg

cg

E t
d t

q p t X
ε ε ξ

ξ
ξ ξ

= (4.22)

0

1 0

( , )( , )
( , ) ( )

s cb
cb

E td t
q p t X
ε ε ξ

ξ
ξ ξ

= (4.23)

which can be termed, respectively, a dynamic channel-to-gate coupling factor and a dynamic 
channel-to-body coupling factor. These factors tell us what fractions of the surface excess 
charge density, q⋅p1(ξ, t) ⋅X0(ξ ), produce, respectively, the channel-to-gate and channel-to-
body electric field components.

In this approximation of Poisson’s equation, the following inequalities hold:

0 ( , ) 1ld tξ≤ ≤ (4.24)

0 ( , ) ( , ) 1cg cbd t d tξ ξ≤ + ≤ (4.25)

In the model presented here, we assume that these dynamic coupling factors are positive 
constants, denoted by dl, dcg, and dcb. Thus, (4.19) takes the form as follows:

11

0

( , )( , ) l

s

q d p tE t ξξ
ξ ε ε

∂
=

∂
(4.26)

where

1l cg cbd d d= − − (4.27)

Furthermore, we can apply the non-quasi-static channel charge partition rule (NQSCCPR) 
established in Sec. 3.8 to find a relationship between the coupling factors dcg and dcb. Namely, 
dividing (4.23) by (4.22), we get:

),(
),(

0

0

tE
tE

d
d

cs

cs

c

c

ξεε
ξεε

=b
g g

b (4.28)

On the other hand, from (3.141), we have:
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4. Frequency-domain model70

( , )
( , )

cb mb

cg m

Q t g
Q t g

ξ
ξ

= (4.29)

where Qcb (ξ, t) and Qcg (ξ, t) are excess (small-signal) channel charges per unit area associated 
with the channel-to-body and channel-to-gate couplings, respectively.

In accordance with Fig. 4.5, the charges Qcb (ξ, t) and Qcg (ξ, t) are determined by the 
following:

0( , ) ( , )cb s cbQ t E tξ ε ε ξ= (4.30)

0( , ) ( , )cg s cgQ t E tξ ε ε ξ= (4.31)

Thus, combining (4.28)–(4.31), we obtain:

cb mb

cg m

d g
d g

= (4.32)

4.3. Quasi-2D frequency-domain analysis

In this and the next sections, the symbols for small-signal quantities have the meaning of 
phasors unless otherwise stated.

4.3.1. Frequency-domain equations

A set of partial differential equations consisting of (4.3), (4.18), (4.26), (4.4) and (4.6) defines 
the model in the time domain. Transforming the equations into the frequency domain, we 
obtain, respectively:

1
1

( , ) (1 ) ( , )C
dJ j q D j p j

d
ξ ω

ω ξ ω
ξ

= − + (4.33)

1
1 0 1 1

( , )
( , ) ( , ) ( , )dso

q t
ch

d p j g LJ j q E p j V E j
d W X
ξ ω

ξ ω µ ξ ω ξ ω
ξ

 
= − + 

 
(4.34)

11

0

( , )( , ) l

s

q d p jdE j
d

ξ ωξ ω
ξ ε ε

= (4.35)

1 1 1( , ) ( , ) ( , )t disJ j J j J jξ ω ξ ω ξ ω= + (4.36)

1 0 1( , ) ( , )dis sJ j j E jξ ω ωε ε ξ ω= (4.37)

where j is the imaginary unit ( j∙j = –1), and ω is the angular frequency (in rad/s). The 
small-signal displacement current density Jdis1(ξ, jω) is discussed in detail in Sec. 4.4.1.

As a result, we have a system of linear ordinary differential equations for quantities of 
the model in the time-independent phasor notation.
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714.3. Quasi-2D frequency-domain analysis

4.3.2. Solution for p1(ξ, jω)

Differentiating (4.34) with respect to ξ, taking account of (4.35), and then putting the result-
ant equation into (4.33), we obtain:

2
01 1

12
0

(1 )( , ) ( , )0 ( , )l dso C

t q t ch s q t

E d g L j Dd p j dp j p j
d V d V W X V

ωξ ω ξ ω
ξ ω

ξ ξ µ ε ε µ

 +
= − − + 

  
(4.38)

The solutions to (4.38) are given in Appendix D. We write them in the form as follows:

( )1( , ) expp j Kξ ω γ ξ= (4.39)

1 ( , ) exp( )p j Kξ ω γ ξ∗ ∗ ∗= (4.40)

jγ α β= − (4.41)

jγ α β∗ ∗= + (4.42)

where α and α* are real parts, respectively, of γ and γ * [refer to (A.43), (A.45), and (A.46)],

0 2 22
2 4t

E
a a b

V
α = − + + (4.43)

0 2 22
2 4t

E
a a b

V
α∗ = + + + (4.44)

whereas β is defined as fallows [refer to (A.45) and (A.46)]:

2 22
4

a a bβ = − + + (4.45)

Rewriting (A.47), we complete a description of the quantities a and b occurring in 
(4.43)–(4.45):

2
0
2

0

4 l dso

t q t ch s

E d g La
V V W Xµ ε ε

= + (4.46)

4 (1 )C

q t

Db
V

ω
µ
+

= (4.47)

Note that β in (4.45) is an increasing function of the angular frequency ω, and β = 0 if 
ω = 0.
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4. Frequency-domain model72

4.3.3. Wave phenomena in the channel

Using (4.41) and (4.42), we can write (4.39) and (4.40) in the time-dependent phasor notation 
as follows:

[ ]1( , ) exp ( ) exp ( )p j t K j tξ ω αξ ω βξ= − (4.48)

[ ]1 ( , ) exp( ) exp ( )p j t K j tξ ω α ξ ω βξ∗ ∗ ∗= + (4.49)

Equation (4.48) represents a longitudinal wave of a disturbance in the hole density 
traveling in the positive ξ-direction, see Fig. 4.2, whereas (4.49) represents a similar wave 
but traveling in the negative ξ-direction.

Since carriers in the channel of the MOSFET move only from the source to the drain 
(in the positive direction of ξ-coordinate in Fig. 4.2), the wave p1

*(ξ, jωt), described by (4.49), 
is ignored in the analysis.

As seen from (4.48), the wave p1(ξ, jωt) is an exponentially damped (α < 0 for all ω) 
sinusoidal one that travels with a phase velocity υph in the positive ξ-direction,

ph
ωυ
β

= (4.50)

Denoted by λ, the wavelength of p1(ξ, jωt) is:

2π
λ

β
= (4.51)

According to Sec. 3.3, small perturbations in carrier density cause small variations in 
the channel thickness. This means that a transverse wave of a disturbance in the channel 
thickness X1(ξ, jωt) is associated with the wave p1(ξ, jωt).

Assuming that the dynamic coupling factor of the channel DC is a positive real number 
and transforming (3.21) into the frequency domain, we have:

0
1 1

0

( )( , ) ( , )
( )

CD XX j t p j t
p

ξ
ξ ω ξ ω

ξ
= (4.52)

or, using (4.48), we can explicitly write:

[ ]0
1

0

( )( , ) exp( ) exp ( )
( )

CKD XX j t j t
p

ξ
ξ ω αξ ω βξ

ξ
= − (4.53)

As seen from (4.48) and (4.53), these waves are in phase if the product K·DC is a positive 
real number. The waves X1(ξ, jωt) and p1(ξ, jωt) are illustrated in Fig. 4.2.

A comprehensive analysis of the wave phenomena in the MOSFET channel is beyond 
the scope of this work.
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734.4. DIBL-included model

Fig. 4.2.	 A scheme illustrating waves in the MOSFET channel for the case in which  
the product K·DC is a positive real number.

4.3.4. The electric field E1(ξ, jω)

By solving (4.35), we find the longitudinal small-signal electric field in the channel. Details 
of the solution are given in Appendix E.

According to (A.50) and (A.52), we have:

[ ]
1 1

0

exp( ) 1
( , ) (0, ) l

s

q d K
E j E j

γ ξ
ξ ω ω

ε ε γ
−

= + (4.54)

where

[ ]
1 2

0

exp ( ) 1
(0, ) lds

s

q d K L L
E j

L L
γ γυω

ε ε γ
− −

= − − (4.55)

4.4. DIBL-included model

To derive the DIBL-included model, we separately analyze non-capacitive currents and then, 
by virtue of the principle of superposition, add the capacitive terminal currents, which is 
described in Sec. 3.6. In other words, we first develop a four-terminal equivalent circuit for 
the non-capacitive currents, and then include the six reciprocal capacitances described in 
Sec. 3.6.1.

4.4.1. Non-capacitive terminal currents

In order to develop an equivalent circuit of the transistor for non-capacitive small-signal cur-
rents, we first calculate the non-capacitive terminal currents as a response to a small-signal 
control voltage that is turned on in three different configurations. Then, using the principle of 
superposition, we add the results obtained for each of the three configurations, thus obtaining 
the equivalent circuit for the non-capacitive terminal currents.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4. Frequency-domain model74

The drain and source non-capacitive currents, generally
Referring to Sec. 3.6.2 and transforming (3.86)–(3.87) into the frequency domain, we obtain 
the following formulas for phasors of the total drain- and source-terminal non-capacitive 
currents id

nc and is
nc, respectively:

nc con nc
d d ddisi i i= + (4.56)

nc con nc
s s sdisi i i= + (4.57)

where con
di  and con

si  are phasors of the drain- and source-terminal conduction currents, re-
spectively, whereas nc

ddisi  and nc
sdisi  represent phasors of the drain- and source-terminal non-ca-

pacitive displacement currents, respectively.
Ignoring variations in the thickness of the channel at the drain and source ends, trans-

forming (3.88)–(3.89) into the frequency domain, and finally taking account of (4.1), we 
obtain:

1( , )con
d Si W S X J L jω= − (4.58)

1(0, )con
s Si W X J jω= (4.59)

The currents con
di  and con

si  are different for ω > 0 due to the wave phenomena in the channel; 
see Sec. 4.3.3. They are equal only for ω = 0.

To improve the accuracy of the analysis, we transform (4.15) into the frequency domain 
and use the resultant equation in the further analysis. [One can see that (4.15) is more accu-
rate than (4.18).] Hence, we have a more adequate expression to calculate the frequency-do-
main small-signal conduction current density:

1
1 0 1 1

0

( , )
( , ) ( , ) ( , )

( )
dso

q t

p j g LJ j q E p j V E j
W X

ξ ω
ξ ω µ ξ ω ξ ω

ξ ξ
∂ 

= − + ∂ 
(4.60)

Transforming (3.90) into frequency domain and combining (4.54) and (4.55), we get 
a formula for the electric field E1(ξ, jω) acting on carriers in the channel:

1 1 1( , ) ( , ) ( , )ext iE j E j E jξ ω ξ ω ξ ω= + (4.61)

in which E1ext (ξ, jω) is an external field set up by υds,

1 ( , ) ds
extE j

L
υ

ξ ω = − (4.62)

and E1i (ξ, jω) is an inner field set up by the small-signal excess charges [p1(ξ, jω) = K · exp(γξ)], 

[ ]
1 2

0

exp ( ) exp ( ) 1
( , ) l

i
s

q d K L L
E j

L
γ γ ξ γ

ξ ω
ε ε γ

− +
= (4.63)
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754.4. DIBL-included model

Substituting (4.39) into (4.60) and taking account of (4.61)–(4.63), we obtain:

[ ]

1 0
0

2
0 0

( , ) ( ) exp ( )
( )

exp ( ) exp ( ) 1
( )

dso ds
q t

l dso

s

gJ j q K E V
W X
qK d g L L

W X

υξ ω µ γ γ ξ
ξ

γ γ ξ γ
ε ε γ ξ

= − + −

− +
+

(4.64)

Setting ξ = L in (4.64) and taking (4.1) into account, we obtain the small-signal conduc-
tion current density at the drain end of the channel:

[ ]

1 0

2
0

( , ) ( ) exp ( )

exp ( ) exp ( ) 1

dso ds
q t

S

l dso

s S

gJ L j q K E V L
W S X
qK d g L L L

W S X

υω µ γ γ

γ γ γ
ε ε γ

= − + −

− +
+

(4.65)

Similarly, setting ξ = 0 in (4.64) and taking (4.1) into account, we obtain the small-signal 
conduction current density at the source end of the channel:

[ ]
1 0 2

0

exp ( ) 1
(0, ) ( ) l dsodso ds

q t
S s S

qK d g L LgJ j q K E V
W X W X

γ γυ
ω µ γ

ε ε γ
− +

= − + − + (4.66)

Given (4.37) and (4.61), we have:

1 0 1 0 1( , ) ( , ) ( , )dis s ext s iJ j j E j j E jξ ω ω ε ε ξ ω ω ε ε ξ ω= + (4.67)

The first term on the right-hand side of (4.67), denoted by

0 1( , ) ( , )cap
dis s extJ j j E jξ ω ωε ε ξ ω= (4.68)

represents a capacitive displacement current density induced by the external field 
[E1ext (ξ, jω) = – υds /L]. It is simply a capacitive current density that is associated with the ca-
pacitance Cds; see Fig. 4.10 and Sec. 3.6. The current density ( , )cap

disJ jξ ω  produces a capacitive 
current flowing through the capacitance Cds. The capacitive current is separately taken into 
account in the model; see Fig. 4.10.

The second term on the right-hand side of (4.67), denoted by

0 1( , ) ( , )nc
dis s iJ j j E jξ ω ωε ε ξ ω= (4.69)

is a frequency-domain non-capacitive displacement current density in the channel.
Taking account of (4.63), one can rewrite (4.69) as follows:

[ ]2( , ) exp ( ) exp ( ) 1nc l
dis

j q d KJ j L L L
L

ω
ξ ω γ ξ γ

γ
= − + (4.70)
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4. Frequency-domain model76

Setting ξ = L in (4.70), we obtain the frequency-domain non-capacitive displacement 
current density at the drain end of the channel:

[ ]2( , ) exp ( ) exp ( ) 1nc l
dis

j q d KJ L j L L L
L

ω
ω γ γ γ

γ
= − + (4.71)

Similarly, setting ξ = 0 in (4.70), we obtain the frequency-domain non-capacitive dis-
placement current density at the source end of the channel:

[ ]
2

exp ( ) 1
(0, ) lnc

dis

j q d K L L
J j

L
ω γ γ

ω
γ
− +

= (4.72)

As in the case of the time-domain small-signal model presented in Sec. 3.6.2, we as-
sume that the longitudinal electric field E1i (ξ, jω), set up by the small-signal excess charges 
p1(ξ, jω), is associated with an equivalent parallel-plate capacitor whose capacitance equals 
Cds and the parallel plates are separated by a distance L (L is the channel length). Thus, 
denoted by Acds, an effective area of each of the two plates is:

0

ds
cds

s

LCA
ε ε

= (4.73)

Therefore, based on (4.71) and (4.73), the drain-terminal frequency-domain non-capa
citive displacement current nc

ddisi  is:

[ ]
2

0

exp ( ) exp ( ) 1l dsnc
ddis

s

j q d K C L L L
i

ω γ γ γ
ε ε γ

− +
= − (4.74)

Based on (4.72) and (4.73), the source-terminal frequency-domain non-capacitive dis-
placement current n

sdisi
c  is:

[ ]
2

0

exp ( ) 1l dsnc
sdis

s

j q d K C L L
i

ω γ γ
ε ε γ

− +
= (4.75)

Given (4.56), (4.58), (4.65) and (4.74), we have the following formula for the total 
drain-terminal frequency-domain non-capacitive current id

nc:

exp ( )nc
d S D dso dsi qK W S X F L gγ υ= − + (4.76)

in which

( ) ( )0 2
0

[exp ( ) 1]l
D q t dso ds

s S

d L LF E V g j C
W S X

γ γ
µ γ ω

ε ε γ
− + −

= − + + (4.77)
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774.4. DIBL-included model

Similarly, given (4.57), (4.59), (4.66) and (4.75), we have the following formula for the 
total source-terminal frequency-domain non-capacitive current is 

nc:

nc
s S S dso dsi qK W X F g υ= − (4.78)

where

( ) ( )0 2
0

[1 exp ( )]l
S q t dso ds

s S

d L LF E V g j C
W X

γ γ
µ γ ω

ε ε γ
+ −

= − + + (4.79)

υgs-configuration: υgs ≠ 0 and υds = υbs = 0
This way of controlling the transistor is illustrated in Fig. 4.3. Under these conditions, excess 
carriers are injected from the source into the channel, and their rate of injection depends on 
the voltage υgs, quasi-static gate transconductance gm, and angular frequency ω.

Let nc g
d QSi −
−  stand for the quasi-static drain-terminal frequency-domain non-capaci-

tive current of the transistor operating in the circumstances shown in Fig. 4.3, i.e., υgs ≠ 0, 
υds = υbs = 0, and ω → 0.

Based on the definition of the quasi-static gate transconductance gm, we obtain the fol-
lowing boundary condition, valid only for quasi-static operation of the transistor:

nc g
d QS m gsi g υ−
− = (4.80)

Fig. 4.3.	 An MOSFET excited only by the voltage υgs—the transistor works  
in the υgs-configuration.

Equation (4.80) allows us to determine the constant K of (4.39), which in this case is 
denoted by KgL. Therefore, setting ω = 0, υds = 0, and K ≡ KgL in (4.76) and (4.77), taking 
definition of γ into account (see Sec. 4.3.2), and finally solving (4.80) for KgL, we get (omitting 
a lengthy algebra):

0

0

exp ( )m gs
gL

S D

g L
K

qW S X F
υ γ− −

= (4.81)
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4. Frequency-domain model78

where

0
0

1
2 t

E a
V

γ
 

= − 
 

(4.82)

( ) [ ]0 0
0 0 0 2

0 0

exp ( ) 1l dso
D q t

s S

d g L L
F E V

W S X
γ γ

µ γ
ε ε γ

− + −
= − + (4.83)

Substituting K by KgL and setting υds = 0 in (4.76), we obtain a formula for the drain-
terminal frequency-domain non-capacitive small-signal current of the transistor operating 
in the υgs-configuration, denoted by id 

ncg:

0
0

exp [( ) ]nc g D
d m gs

D

Fi g L
F

υ γ γ− = − (4.84)

The source-terminal frequency-domain non-capacitive small-signal current of the tran-
sistor operating in the υgs-configuration, denoted by is 

ncg, is found in a similar way as the one 
presented above for id 

ncg.
Let nc g

s QSi −
−  denote the quasi-static source-terminal frequency-domain non-capaci-

tive current of the transistor operating in the circumstances shown in Fig. 4.3, i.e., υgs ≠ 0, 
υds = υbs = 0, and ω → 0.

Based on the definition of the quasi-static gate transconductance gm, we get the follow-
ing boundary condition:

nc g
s QS m gsi g υ−
− = − (4.85)

Equation (4.85) allows us to determine the constant K of (4.39), which in this case is 
denoted by Kg0. Namely, setting ω = 0, υds = 0, and K ≡ Kg0 in (4.78) and (4.79), taking defi-
nition of γ into account (see Sec. 4.3.2), and finally solving (4.85) for Kg0, we get (omitting 
a lengthy algebra):

0
0

m gs
g

S S

g
K

qW X F
υ−

= (4.86)

where

( ) [ ]0 0
0 0 0 2

0 0

1 exp ( )l dso
S q t

s S

d g L L
F E V

W X
γ γ

µ γ
ε ε γ
+ −

= − + (4.87)

and γ 0 is defined by (4.82).
Substituting K by Kg0 and setting υds = 0 in (4.78), we obtain a formula for the source-

terminal frequency-domain non-capacitive small-signal current of the transistor operating 
in the υgs-configuration:
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794.4. DIBL-included model

0

nc g S
s m gs

S

Fi g
F

υ− = − (4.88)

Coupling currents induced on the gate and in the body—denoted for the υgs-config-
uration, respectively, by ig

ind-g and ib
ind-g—are calculated from Kirchhoff’s current law for 

non-capacitive currents [see (3.85)]:

0ind g nc g ind g nc g
g d b si i i i− − − −+ + + = (4.89)

and from the non-quasi-static channel charge partition rule (NQSCCPR) established in Sec. 
3.8, whose mathematical form [see (3.146)] is:

ind g
b
ind g

g

i
i

η
−

− = (4.90)

where η is defined as follows: 

mb

m

g
g

η = (4.91)

Taking (4.84) and (4.88) into account and solving (4.89) and (4.90) with respect to ig
ind-g 

and ib
ind-g, we have:

0
0 0

exp [( ) ]
1
m gsind g S D

g
S D

g F Fi L
F F

υ
γ γ

η
−  

= − − +  
(4.92)

0
0 0

exp [( ) ]
1

m gsind g S D
b

S D

g F Fi L
F F

η υ
γ γ

η
−  

= − − +  
(4.93)

A four-terminal equivalent circuit for the non-capacitive currents of the transistor work-
ing in the υgs-configuration (υgs ≠ 0 and υds = υbs = 0) is given in Fig. 4.4.

Fig. 4.4.	 A four-terminal equivalent circuit for the transistor working in the υgs-configuration 
(υgs ≠ 0 and υds = υbs = 0).
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4. Frequency-domain model80

We can infer from (4.84) that the transadmittance ym of Fig. 4.4 is defined by

0
0

exp [( ) ]D
m m

D

Fy g L
F

γ γ= − (4.94)

Taking account of (4.92), we can define the admittance ygs connected between the gate 
and source in Fig. 4.4, viz.:

0
0 0

exp [( ) ]
1

m S D
gs

S D

g F Fy L
F F

γ γ
η
 

= − − +  
(4.95)

A voltage-controlled current source connected between the body and the source in Fig. 4.4 
represents the coupling current ib

ind-g determined by (4.93). The value of the source current 
(η⋅ygs⋅υgs) results from taking account of (4.95) in (4.93).

υbs-configuration: υbs ≠ 0 and υds = υgs = 0
In this configuration, the transistor is excited only by the small voltage υbs; see Fig. 4.5.

We find non-capacitive currents of the transistor in a similar way as the one presented 
above for the υgs-configuration.

In this configuration, excess carriers are injected from the source into the channel, and 
their rate of injection depends on the voltage υbs, quasi-static body transconductance gmb, and 
angular frequency ω.

Let bn
Qdi
−

−
c
S stand for the quasi-static drain-terminal frequency-domain non-capacitive 

current of the transistor operating in the circumstances shown in Fig. 4.5, i.e., υbs ≠ 0, 
υds = υgs = 0, and ω → 0.

Based on the definition of the quasi-static body transconductance gmb, we get the follow-
ing boundary condition valid only at quasi-static operation of the transistor:

nc b
d QS m bsi g υ−
− = (4.96)

Fig. 4.5.	 An MOSFET excited only by the voltage υbs—the transistor works  
in the υbs-configuration.
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814.4. DIBL-included model

Equation (4.96) allows us to determine the constant K of (4.39), which in this case is 
denoted by KbL. Accordingly, setting ω = 0, υds = 0, and K ≡ KbL in (4.76) and (4.77), taking 
definition of γ into account (see Sec. 4.3.2), and finally solving (4.96) for KbL, we get (omitting 
a lengthy algebra):

0

0

exp ( )mb bs
bL

S D

g LK
qW S X F
υ γ− −

= (4.97)

where γ0 is defined by (4.82), and FD0 by (4.83).
Substituting K by KbL and setting υds = 0 in (4.76), we obtain a formula for the drain-

terminal frequency-domain non-capacitive small-signal current of the transistor operating 
in the υbs-configuration, denoted by id 

ncb,

0
0

exp [( ) ]nc b D
d mb bs

D

Fi g L
F

υ γ γ− = − (4.98)

The source-terminal frequency-domain non-capacitive small-signal current of the tran-
sistor operating in the υbs-configuration, denoted by is 

ncb, is found in a similar way as the one 
presented above for id 

ncb.
Let nc b

s QSi −
−  denote the quasi-static source-terminal frequency-domain non-capacitive 

current of the transistor operating in the circumstances shown in Fig. 4.5, i.e., υbs ≠ 0, 
υds = υgs = 0, and ω → 0.

Based on the definition of the quasi-static body transconductance gmb, we get the fol-
lowing boundary condition:

nc b
s QS mb bsi g υ−
− = − (4.99)

Equation (4.99) enables us to determine a constant K of (4.39), which in this case is 
denoted by Kb0. Consequently, setting ω = 0, υds = 0, and K ≡ Kb0 in (4.78) and (4.79), taking 
the definition of γ into account (see Sec. 4.3.2), and finally solving (4.99) for Kb0, we get 
(omitting a lengthy algebra):

0
0

mb bs
b

S S

gK
qW X F

υ−
= (4.100)

where FS0 is defined by (4.87).
Substituting Kb0 for K and setting υds = 0 in (4.78), we obtain a formula for the source-

terminal frequency-domain non-capacitive small-signal current of the transistor operating 
in the υbs-configuration:

0

nc b S
s mb bs

S

Fi g
F

υ− = − (4.101)

Coupling currents induced on the gate and in the body—denoted for the υbs-config-
uration, respectively, by ig

ind-b and ib
ind-b—are calculated from Kirchhoff’s current law for 

non-capacitive currents [see (3.85)],
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4. Frequency-domain model82

0ind b nc b ind b nc b
g d b si i i i− − − −+ + + = (4.102)

and from the non-quasi-static channel charge partition rule (NQSCCPR) established in 
Sec. 3.8, whose mathematical form [see (3.146)] is:

ind b
b
ind b

g

i
i

η
−

− = (4.103)

where η is defined by (4.91).
Taking (4.98) and (4.101) into account and solving (4.102) and (4.103) with respect to 

ig
ind-b and ib

ind-b, we have:

0
0 0

exp [( ) ]
1

ind b mb bs S D
g

S D

g F Fi L
F F

υ
γ γ

η
−  
= − − +  

(4.104)

0
0 0

exp [( ) ]
1

ind b mb bs S D
b

S D

g F Fi L
F F

η υ γ γ
η

−  
= − − +  

(4.105)

A four-terminal equivalent circuit for the non-capacitive currents of the transistor work-
ing in the υbs-configuration (υbs ≠ 0 and υds = υgs = 0) is given in Fig. 4.6.

Fig. 4.6.	 A four-terminal equivalent circuit for the transistor working in the υbs-configuration 
(υbs ≠ 0 and υds = υgs = 0).

Setting gmb = η⋅gm in (4.98) and taking (4.94) into account, one can obtain the following 
formula for the body transadmittance ymb of Fig. 4.6:

mb my yη= (4.106)

A voltage-controlled current source connected between the gate and the source in 
Fig. 4.6 represents the coupling current ig

ind-b determined by (4.104). The value of the source 
current (η⋅ygs⋅υbs) results from noting that gmb = η⋅gm and taking account of (4.95) in (4.104).
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834.4. DIBL-included model

Denoted by ybs, the admittance connected between the body and the source in Fig. 4.6 
results from the coupling current ib

ind-b determined by (4.105). Its value (η 2⋅ygs) is obtained 
by setting gmb = η⋅gm in (4.105) and taking (4.95) into account. Hence,

2
bs gsy yη= (4.107)

υds-configuration: υds ≠ 0 and υgs = υbs = 0
In this configuration, the transistor is excited only by the small voltage υds; see Fig. 4.7.

Fig. 4.7.	 An MOSFET excited only by the voltage υds—the transistor works  
in the υds-configuration.

Due to the DIBL effect, excess carriers are injected from the source into the channel, 
and their rate of injection depends on the voltage υds, quasi-static drain-to-source conduc-
tance gds, and angular frequency ω.

As shown in Appendix C, the quasi-static conductance gds splits into two parts  
[see (A.42)]:

ds dso dsDg g g= + (4.108)

where gdso and gdsD are, respectively, an ohmic part and DIBL part of gds.
Equation (4.108) can be written in a more convenient form, i.e.:

ds dso D dsg g k g= + (4.109)

where kD is a dimensionless factor defined as follows:

, (0 1)dsD
D D

ds

gk k
g

= ≤ < (4.110)

Let nc d
d QSi −
−  stand for the quasi-static drain-terminal frequency-domain non-capaci-

tive current of the transistor operating in the circumstances shown in Fig. 4.7, i.e., υds ≠ 0, 
υgs = υbs = 0, and ω → 0.
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4. Frequency-domain model84

Based on the definition of the quasi-static conductance gds and taking account of (4.109), 
we get the following boundary condition, valid only at quasi-static operation of the transistor:

nc d
d QS dso ds D ds dsi g k gυ υ−
− = + (4.111)

Equation (4.111) allows us to determine the constant K of (4.39), which in this case is 
denoted by KdL. Thus, setting ω = 0 and K ≡ KdL in (4.76) and (4.77), taking definition of γ into 
account (see Sec. 4.3.2), and finally solving (4.111) for KdL, we get (omitting a lengthy algebra):

0

0

exp ( )D ds ds
dL

S D

k g LK
qW S X F

υ γ− −
= (4.112)

where γ 0 is defined by (4.82), and FD0 by (4.83).
Substituting K by KdL in (4.76) and taking account of (4.109), we obtain a formula for 

the drain-terminal frequency-domain non-capacitive small-signal current of the transistor 
operating in the υds-configuration, denoted by id 

ncd,

0
0

exp [( ) ] 1nc d D
d ds ds D ds ds

D

Fi g k g L
F

υ υ γ γ−  
= + − − 

 
(4.113)

The source-terminal frequency-domain non-capacitive small-signal current of the tran-
sistor operating in the υds-configuration, denoted by is 

ncd, is found in a similar way as the one 
presented above for id 

ncd:
Let nc d

s QSi −
−  denote the quasi-static source-terminal frequency-domain non-capaci-

tive current of the transistor operating in the circumstances shown in Fig. 4.7, i.e., υds ≠ 0, 
υgs = υbs = 0, and ω → 0.

Based on the definition of the quasi-static conductance gds, we get the following bound-
ary condition:

nc d
s QS dso ds D ds dsi g k gυ υ−
− = − − (4.114)

Equation (4.114) allows us to determine the constant K of (4.39), which in this case is 
denoted by Kd0. Consequently, setting ω = 0 and K ≡ Kd0 in (4.78) and (4.79), taking defini-
tion of γ into account (see Sec. 4.3.2), and finally solving (4.114) for Kd0, we get (omitting 
a lengthy algebra):

0
0

SS

ddD
d FXWq

gkK υ−
= s s (4.115)

where FS0 is defined by (3.87).
Substituting K by Kd0 in (4.78) and taking account of (4.109), we obtain a formula for 

the source-terminal frequency-domain non-capacitive small-signal current of the transistor 
operating in the υds-configuration:
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854.4. DIBL-included model

0

1nc d S
s ds ds D ds ds

S

Fi g k g
F

υ υ−  
= − − − 

 
(4.116)

Coupling currents induced on the gate and in the body—denoted for the υds-config-
uration, respectively, by ig

ind-d and ib
ind-d—are calculated from Kirchhoff’s current law for 

non-capacitive currents [see (3.85)],

0ind d nc d ind d nc d
g d b si i i i− − − −+ + + = (4.117)

and from the non-quasi-static channel charge partition rule (NQSCCPR) established in 
Sec. 3.8, whose mathematical form [see (3.143)] is:

ind d
b
ind d

g

i
i

η
−

− = (4.118)

where η is defined by (4.91).
Taking (4.113) and (4.116) into account and solving (4.117) and (4.118) with respect to 

ig
ind-d and ib

ind-d, we have:

0
0 0

exp [( ) ]
1

ind d D ds ds S D
g

S D

k g F Fi L
F F

υ
γ γ

η
−  

= − − +  
(4.119)

0
0 0

exp [( ) ]
1

ind d D ds ds S D
b

S D

k g F Fi L
F F

η υ γ γ
η

−  
= − − +  

(4.120)

A four-terminal equivalent circuit for the non-capacitive currents of the transistor work-
ing in the υds-configuration (υds ≠ 0 and υgs = υbs = 0) is given in Fig. 4.8.

Fig. 4.8.	 A four-terminal equivalent circuit for the transistor working in the υds-configuration 
(υds ≠ 0 and υbs = υgs = 0).

Based on (4.113), we define the admittance yds connected between the drain and the 
source in Fig. 4.8 as follows:
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4. Frequency-domain model86

0
0

exp [( ) ] 1D
ds ds D ds

D

Fy g k g L
F

γ γ
 

= + − − 
 

(4.121)

A voltage-controlled current source (yDg⋅υds) connected between the gate and the source 
in Fig. 4.8 represents the coupling current ig

ind-d determined by (4.119). As seen from (4.119), 
the transadmittance yDg of the source current is:

0
0 0

exp [( ) ]
1
D ds S D

Dg
S D

k g F Fy L
F F

γ γ
η

 
= − − +  

(4.122)

A voltage-controlled current source (yDb⋅υds) connected between the body and source in 
Fig. 4.8 represents the coupling current ib

ind-d determined by (4.120). As seen from (4.120), 
the transadmittance yDb of the source current is:

0
0 0

exp [( ) ]
1

D ds S D
Db

S D

k g F Fy L
F F

η
γ γ

η
 

= − − +  
(4.123)

Comparing (4.122) and (4.123), we have:

Db
Dg

yy
η

= (4.124)

Equivalent circuit for non-capacitive terminal currents
By virtue of the principle of superposition, we add the results obtained for each of the three 
configurations—see Figs. 4.4, 4.6, 4.8—and obtain a small-signal equivalent circuit for the 
non-capacitive terminal currents, which is shown in Fig. 4.9.

Fig. 4.9.	 A DIBL-included four-terminal equivalent circuit for the non-capacitive small-signal 
currents in the MOSFET.
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874.4. DIBL-included model

The transadmittances ym, ymb, yDg, yDb and the admittance ygs are determined by (4.94), 
(4.106), (4.122), (4.123) and (4.95), respectively.

We wish to emphasize that ym, ymb, yDg, yDb, ygs, and the voltage-controlled current sourc-
es connected between the gate and the source as well as the body and the source in Fig. 4.9 
define the electrical coupling between the channel and the transistor structure.

4.4.2. Four-terminal equivalent circuit for an idealized MOSFET

If we assume that the regions of the gate, source, drain, and body, as well as connection paths 
are perfect conductors, then an equivalent circuit for the quasi-2D four-terminal small-signal 
MOSFET model is as shown in Fig. 4.10.

By virtue of the principle of superposition, the equivalent circuit is composed of the 
circuit of Fig. 4.9 and reciprocal capacitances of Fig. 3.4.

The capacitance Cgb is given by [see (3.133)]:

1
m tr

gb
gC η τ

η
=

+
(4.125)

where τtr is the transit time of carriers across the channel; see (3.99). 
Alternatively, noting that τtr = L / (μq⋅E0) for the model presented here, we obtain:

0(1 )
m

gb
q

g LC
E

η
η µ

=
+ (4.126)

Fig. 4.10.	A DIBL-included four-terminal equivalent circuit for an idealized MOS transistor.
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4. Frequency-domain model88

4.4.3. Four-terminal equivalent circuit for the real MOSFET

An equivalent circuit of the quasi-2D four-terminal small-signal model for the real MOSFET 
without connecting paths which takes into account a finite conductivity of the gate, source, 
drain, and body is presented in Fig. 4.11.

The body-source and body-drain p-n junctions are modeled here in a very simple way, 
viz., by the series connections of the junction capacitances and respective parasitic resist-
ances: see combinations CbsRbs and CdsRds in the figure. We are aware that a more adequate 
model of the p-n junctions is needed for very high frequencies, however, it is beyond the 
scope of this work.

Fig. 4.11.	A DIBL-included four-terminal small-signal equivalent circuit for the real MOSFET 
without connecting paths.

Modeling a three-dimensional nature of the current flow in the gate region is a difficult 
issue and can lead to a very complex circuit representation. To model this phenomenon 
in a simple way, we introduce a concept of an internal gate. The concept is illustrated in 
Fig. 4.12, where a sector of multi-finger structure of the transistor is shown. The internal gate 
(point g in Fig. 4.12) is connected with a so-called front wall (face) of the gate by a resistor 
representing a spreading resistance (Rgg in Fig. 4.11). In Fig. 4.12, the symbols g f , s, and d 
refer to the front walls (faces) of the gate, source, and drain, respectively.

It is important to realize that although we have developed the four-terminal small-signal 
model based on the source-referenced analysis, the model can be used in an analysis based 
on any reference node via a straightforward transformation of the voltage phasors.
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894.6. Conclusion

 

Fig. 4.12.	A scheme illustrating  the concept of an internal gate represented by point g.

4.5. Long-channel MOSFET model

The model presented in the previous section can be simplified if the MOSFET channel is 
long enough to have the DIBL effect ignored. In this case, setting kD = 0 in (4.121)–(4.123), 
the model of Fig. 4.11 reduces to the one shown in Fig. 4.13.

Fig. 4.13.	A four-terminal small-signal equivalent circuit for the real long-channel MOSFET 
without connecting paths.

4.6. Conclusion

A novel DIBL-included quasi-2D NQS four-terminal frequency-domain small-signal MOS-
FET model is proposed in this chapter. The model takes into account: the velocity saturation 
effect of carriers in the channel, the dependence of the mobility on the electric field, the elec-
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4. Frequency-domain model90

trical coupling between the perturbed charge in the channel and the gate and the body, local 
variations in the channel thickness, and the drain-induced barrier lowering (DIBL) effect. 
Unlike other models, this one is composed only of reciprocal capacitances.

A closed set of partial differential equations defining the model in the frequency domain 
is formulated and solved. The solution indicates that two types of waves can propagate from 
the source to the drain, viz., a longitudinal wave of a disturbance in the carrier density and 
a transverse wave of a disturbance in the channel thickness.

A closed set of equations for frequency-domain non-capacitive terminal currents in the 
MOSFET under dynamic operation is derived.

The four-terminal model can be used in analyzing any circuit topology, and can be im-
plemented in commercially available circuit simulators. The model we propose is believed 
to enable us to gain a deeper insight into the principle of operation of the MOS transistor.

The results of experimental verification of the model derived in this chapter and discus-
sion are presented in the next chapter.
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Chapter 5

VALIDATION OF THE FREQUENCY-DOMAIN MODEL
Wiesław Kordalski, Tomasz Stefański, Damian Trofimowicz

5.1. Introduction

In this chapter, the results of an experimental verification of the new, physically consist-
ent, DIBL-included quasi-2D four-terminal non-quasi-static frequency-domain small-signal 
MOSFET model, derived from the first principles in Chapter 4, are presented.

In Section 5.2, the layout of pads and interconnects in the measured transistors are 
shown. A small-signal model of the measured MOSFETs is presented in Section 5.3. The 
de-embedding procedure is briefly described in Section 5.4. In Section 5.5, the results of our 
experimental verification of the model in the range of up to the characteristic frequency fT 
are reported. In Section 5.6, the new small-signal model for long-channel MOSFET (without 
DIBL effect) is experimentally verified up to 30 GHz. Section 5.7 contains a summary.

A general note: the symbols for physical quantities occurring in this chapter are con-
sistent with those applied in Chapter 4.

5.2. Layout of the measured MOSFETs

5-finger enhancement-mode NMOS transistors with the channel length of 0.35 μm, and 
1.4 μm and the width of 50 μm were used to validate the NQS small-signal model up to 
30 GHz. The test structures were optimized for measurements of scattering parameters of the 
transistor in the common-source configuration with the use of air coplanar probes (ACPs).

The layout of pads and interconnects in the measured transistors is shown in Fig. 5.1. 
The bulk and source of the transistor were shorted by grounding the probes during RF 
measurements.

For the purpose of our verification of the NQS model, dummy structures (OPEN, 
SHORT, THRU) of the measured transistors were designed; see Fig. 5.2.
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5. Validation of the frequency-domain model92

Body Drain Source

Gate

Fig. 5.1.	 The layout of pads and interconnects in the device under test (DUT).

DUT THRU SHORT OPEN

Fig. 5.2.	 The layouts of the devices under test (DUT) and dummy structures (OPEN, SHORT, 
THRU) for the de-embedding of RF characteristics.

5.3. Small-signal model of the measured MOSFETs

A new DIBL-included quasi-2D NQS four-terminal frequency-domain small-signal model 
of the real MOSFET (without connecting paths and pads) is developed in Sec. 4.4.3 and 
depicted in Fig. 4.11.
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935.4. De-embedding procedure

To simulate the theoretical frequency characteristics of the device under test (DUT), the 
model of Fig. 4.11 is adapted. This model is supplemented by some resistive and inductive 
elements corresponding to the transistor structure as measured by the ACPs.

In Fig. 5.3, we present a complete small-signal model of the DUT. Resistors Rb, Rd, Rg, 
and Rs as well as inductances Lb, Ld, Lg, and Ls represent, respectively, the resistances and 
inductances of the connection paths connecting the gate, source, drain and substrate of the 
transistor; see [1–3].

Admittances ygs and yds, and transadmittances ym, ymb, yDb, and yDg, and a parameter η are 
defined in Sec. 4.4. The gate-to-body capacitance Cgb is calculated from (4.126).

Fig. 5.3.	 A DIBL-included quasi-2D NQS four-terminal small-signal model for the DUT of 
Fig. 5.1.

5.4. De-embedding procedure

To obtain reliable and repeatable measurement results, four transistor structures were meas-
ured based on two different calibration techniques of a vector network analyzer (VNA). Two 
structures were measured with the use of the SOLT calibration method [4] in the 65MHz-
to-25GHz frequency range, whereas the other structures were measured with the use of 
the LRM method [5] in the 65MHz-to-30GHz frequency range. The impedance substrate 
standard (ISS) was used to calibrate the VNA. Transmission lines on ISS were used to verify 
the quality of the VNA calibration. The procedure of de-embedding was based on the widely 
used open-short method [4]. The S-parameters were measured for the DUT, OPEN, SHORT, 
and THRU structures. Then, parallel parasitic elements were removed from DUT, SHORT 
and THRU by subtracting the Y-parameters of OPEN. Next, series parasitic elements were 
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5. Validation of the frequency-domain model94

removed from DUT and THRU by subtracting the Z-parameters of SHORT. Finally, the 
quality of the de-embedding procedure was positively verified with the use of the THRU 
structure. Almost the same results were obtained for the other tested transistors, thus the risk 
of a one-time wrong measurement was eliminated.

5.5. Results of the verification up to fT

Some representative results of experimental verification of the new small-signal MOSFET 
model for transistors (denoted by DEVICE-1 and DEVICE-2) of two different channel 
lengths are shown in Figs. 5.4–5.7 and Table 5.1.

Biasing voltages, widths and lengths of channels of the tested transistors are presented 
in Table 5.1. There are also presented the values of quasi-static small-signal gate transcon-
ductance gm, quasi-static small-signal body transconductance gmb, and quasi-static small-sig-
nal drain-source conductance gds at the Q-point. The values of the other model parameters 
obtained by curve-fitting of the theoretical admittance frequency characteristics to the ex-
perimental ones are also given in Table 5.1; the capacitance Cgb is calculated from (4.126).

Table 5.1

Model parameter values for the devices under test.

Model parameter DEVICE-1 DEVICE-2

VDS [V] 2.1 3.3

VGS [V] 1.0 0.9

L [μm] 1.42 0.37

W [μm] 50 50

µ q [cm 2/ V s] 360 220

gm [mS] 2.3 8.3

gmb [mS] 1 2

gds [μS] 30 350

kD [-] 0.1 0.4

DC [-] 0.8 2

dl [-] 0.08 0.29

S [-] 1.25 2.2

X S [nm] 105 125

Cbd [fF] 35 20

Cbs [fF] 50 50

Cds [fF] 8 18
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955.5. Results of the verification up to fT

Cgb [fF], calculated 41 5

Cgd [fF] 8.3 9.8

Cgs [fF] 170 40

Rb [Ω] 1.4 1.4

Rd [Ω] 1 1

Rg [Ω] 1 1

Rs [Ω] 1.4 1.4

Lb [pH] 29 29

Ld [pH] 1.5 1.5

Lg [pH] 1.5 1.5

Ls [pH] 29 29

Rbd [Ω] 400 400

Rbs [Ω] 350 350

Rds [Ω 20 20

Rgb [Ω 2 2

Rgd [Ω] 2 2.3

Rgg [Ω 1.9 2.2

Rgs [Ω] 58 63

fT [GHz], measured 1.55 21.5

fT [GHz], calculated 1.6 21.4

In Figs. 5.6 and 5.7, two different representations of the measured and theoretical cha-
racteristics of H21–parameters vs. frequency are displayed for DEVICE-1 and DEVICE-2, 
respectively.

One can see in the above-mentioned figures that close accuracy is attained in theoretical 
description of the measured data in the frequency range of up to the characteristic frequency 
fT . It is worth noticing that the model parameters have realistic values.

Magnitude, real and imaginary parts of the calculated transadmittances ym, yds, ygs vs. 
frequency for DEVICE-1 are shown in Figs. 5.8, 5.10, and 5.12, whereas analogous frequency 
characteristics for DEVICE-2 are presented in Figs. 5.9, 5.11, and 5.13. One can observe in 
these figures that magnitude, real and imaginary parts of the calculated transadmittances ym, 
yds, ygs are monotonic functions of frequency from zero Hz to fT .

continued tab. 5.1

5.5. Results of the verification up to fT

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5. Validation of the frequency-domain model96

Fig. 5.4.	 Real and imaginary parts of the Ykl–parameters vs. frequency: comparison between 
the measured (exp.) and theoretical (theory) data for DEVICE-1; fT = 1.55 GHz.
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975.5. Results of the verification up to fT

Fig. 5.4.	 (continued).

5.5. Results of the verification up to fT
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5. Validation of the frequency-domain model98

Fig. 5.5.	 Real and imaginary parts of the Ykl–parameters vs. frequency: comparison between 
the measured (exp.) and theoretical (theory) data for DEVICE-2; fT = 21.5 GHz.
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995.5. Results of the verification up to fT

Fig. 5.5.	 (continued).

5.5. Results of the verification up to fT
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5. Validation of the frequency-domain model100

Fig. 5.6.	 Magnitude, argument, real and imaginary parts of the H21–parameters vs.  
frequency: comparison between the measured (exp.) and theoretical (theory)  
data for DEVICE-1; fT = 1.55 GHz.

Fig. 5.7.	 Magnitude, argument, real and imaginary parts of the H21–parameters vs.  
frequency: comparison between the measured (exp.) and theoretical (theory)  
data for DEVICE-2; fT = 21.5 GHz.
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1015.5. Results of the verification up to fT

Fig. 5.8.	 Magnitude, real and imaginary parts of the transadmittance ym vs. frequency  
for DEVICE-1; fT = 1.55 GHz.

Fig. 5.9.	 Magnitude, real and imaginary parts of the transadmittance ym vs. frequency  
for DEVICE-2; fT = 21.5 GHz.

Fig. 5.10.	Magnitude, real and imaginary parts of the transadmittance yds vs. frequency  
for DEVICE-1; fT = 1.55 GHz.

5.5. Results of the verification up to fT
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5. Validation of the frequency-domain model102

Fig. 5.11.	Magnitude, real and imaginary parts of the transadmittance yds vs. frequency  
for DEVICE-2; fT = 21.5 GHz.

Fig. 5.12.	Magnitude, real and imaginary parts of the transadmittance ygs vs. frequency  
for DEVICE-1; fT = 1.55 GHz.

Fig. 5.13.	Magnitude, real and imaginary parts of the transadmittance ygs vs. frequency  
for DEVICE-2; fT = 21.5 GHz.

5.6. Results of the verification in the range of up to thirteen times fT

Some final results dealing with a simplified version (without the DIBL effect) of the new 
model of long-channel transistors are presnted in this section. The results refer to DEVICE-1 
(L = 1.4 μm) biased with the dc drain-to-source voltage VDS = 2.1 V and the gate-to-source 
voltage VGS = 1.2 V (the measured fT = 2.21 GHz at the Q-point). The results are obtained 
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1035.6. Results of the verification in the range of up to thirteen times fT

under assumption kD = 0, and—as in the previous section—the capacitance Cgb is calculated 
from (4.126).

Real and imaginary parts of the measured (exp. in figures) and theoretical (theory in 
figures) Ykl–parameters for the transistor under test vs. frequency are shown in Fig. 5.14. 
In Fig. 5.15, two different representations of the measured and theoretical H21–parameters 
vs. frequency are displayed. One can see from Figs. 5.14 and 5.15 that the theoretical and 
empirical characteristics are in good agreement even in the frequency range well above the 
characteristic frequency fT (about 2.2 GHz).

Fig. 5.14.	Real and imaginary parts of the Ykl–parameters vs. frequency: comparison  
between the measured (exp.) and theoretical (theory) data for DEVICE-1  
(VDS = 2.1 V, VGS = 1.2 V, fT = 2.21 GHz).

5.6. Results of the verification in the range of up to thirteen times fT
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5. Validation of the frequency-domain model104

Fig. 5.14.	(continued).

An interesting issue is to estimate the frequency fT for an idealized MOS transistor in 
the common-source configuration ( fT,ideal); such a transistor has no capacitances, resistances, 
and inductances, as shown in Fig. 4.9. It is intuitively obvious that the idealized transistor 
should have a finite value of fT,ideal if we take into account the fact that the velocity of prop-
agation of the charge carriers in the channel of the transistor is finite. Using the new model, 
one can calculate fT,ideal. Calculations give fT,ideal = 10 GHz, so the value is over four times 
greater than that of the real device.
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1055.5. Results of the verification up to fT

Fig. 5.15.	Magnitude, argument, real and imaginary parts of the H21–parameters vs.  
frequency: comparison of the measured (exp.) and theoretical (theory) data  
for DEVICE-1 (VDS = 2.1 V, VGS = 1.2 V,  fT = 2.21 GHz).

5.6. Results of the verification in the range of up to thirteen times fT
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5. Validation of the frequency-domain model106

5.7 Conclusion

A new DIBL-included physics-based quasi-2D non-quasi-static four-terminal small-signal 
model of the MOSFET has been successfully verified experimentally up to 30 GHz. The 
model parameters have realistic values. The model can be implemented in commercially 
available circuit simulators.
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TIME- AND FREQUENCY-DOMAIN QUASI-2D  
SMALL-SIGNAL MOSFET MODELS

A novel approach to small-signal MOSFET modeling is presented in this monograph. As 
a result, time- and frequency-domain physics-based quasi-2D NQS four-terminal small-sig-
nal MOSFET models are proposed. The time-domain model provides the background to 
a novel DIBL-included quasi-2D NQS four-terminal frequency-domain small-signal MOS-
FET model. Parameters and electrical quantities of the frequency-domain model are de-
scribed by explicit functions.

The models take into account: the velocity saturation effect of carriers in the channel, 
the dependence of the mobility on the electric field, the electrical coupling between the 
perturbed charge in the channel and the gate and the body, local variations in the channel 
thickness, and the DIBL effect.

Derivation of the models is based on an analysis of a current density vector field and the 
following newly introduced phenomena: gradual channel detachment effect (GCDE), channel 
thickness modulation effect CTME), and channel-lengthening effect (CLE). 

A set of partial differential equations for the new physics-based small-signal MOSFET 
models is derived. The set consists of a quasi-2D small-signal continuity equation, a quasi-2D 
small-signal Poisson’s equation, and a quasi-2D small-signal transport equation. All the 
equations give a mathematical description of the behavior of the carriers in the channel and 
charges in the gate and the body. A set of supplementary equations for coupling and non-ca-
pacitive displacement currents in the MOSFET under dynamic operation is also derived. 

Based on the quasi-2D dc MOSFET representation, a useful formula for the gate-to-
body capacitance Cgb is derived, and some rules dealing with channel-to-gate and channel-
to-body coupling currents are established. Only reciprocal capacitances are present in these 
models.

The quasi-2D approach to the MOSFET modeling shows that two types of waves can 
propagate from the source to the drain, i.e., a longitudinal wave of disturbance in the carrier 
density and a transverse wave of disturbance in the channel thickness.

It is shown that the magnitudes of both gate and body transadmittances are decreasing 
functions of frequency.

The new frequency-domain small-signal MOSFET model has been successfully verified 
experimentally up to 30 GHz. The model parameters have realistic values.
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Summary108

The new model is valid from zero Hz to well above the cut-off frequency fT.
Each model parameter describes some physical phenomenon.
The time- and frequency-domain four-terminal small-signal models can be used in an 

analysis of any circuit topology, and can be implemented in commercially available circuit 
simulators. The models are believed to enable us to gain a deeper insight into the principle 
of operation of the MOS transistor.
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QUASI-DWUWYMIAROWE MODELE  
MAŁOSYGNAŁOWE TRANZYSTORA MOS  

W DZIEDZINIE CZASU I CZĘSTOTLIWOŚCI

W książce przedstawiono nowe podejście do modelowania małosygnałowej pracy tranzysto-
ra MOS. Jego rezultatem są opracowania dwóch quasi-dwuwymiarowych, nie-quasi-statycz-
nych, czterokońcówkowych modeli małosygnałowych MOSFET-a w dziedzinie czasu i czę-
stotliwości. Opracowany quasi-dwuwymiarowy model w dziedzinie czasu stanowi podstawę 
matematyczno-fizyczną do wyprowadzenia quasi-dwuwymiarowego, nie-quasi-statycznego, 
czterokońcówkowego modelu małosygnałowego MOSFET-a w dziedzinie częstotliwości, 
uwzględniającego efekt DIBL (ang. Drain-Induced Barrier Lowering). Parametry charakte-
ryzujące model częstotliwościowy opisane są funkcjami jawnymi częstotliwości i wielkości 
elektro-fizycznych tranzystora.

W odróżnieniu od znanych modeli, w modelach nowoopracowanych uwzględniono na-
stępujące zjawiska: efekt nasycenia prędkości nośników w kanale tranzystora, zależność 
ruchliwości nośników od natężenia pola elektrycznego, zjawisko sprzężenia elektrycznego 
pomiędzy zaburzoną koncentracją nośników w kanale a bramką i podłożem, lokalną zmianę 
grubości kanału oraz efekt DIBL.

Wyprowadzenie tych modeli małosygnałowych oparte jest na analizie pola wektorowe-
go gęstości prądu i nieuwzględnianych dotychczas takich zjawisk jak: zjawisko łagodnego 
(stopniowego) odrywania się kanału, zjawisko modulacji grubości kanału (statyczne i dyna-
miczne) oraz zjawisko wydłużania kanału.

Biorąc pod uwagę najbardziej podstawowe (rudymentarne) prawa fizyki, wyprowadzo-
no układ równań różniczkowych cząstkowych opisujących model małosygnałowy tranzy-
stora MOS w dziedzinie czasu. Układ ten składa się z quasi-dwuwymiarowego równania 
ciągłości, quasi-dwuwymiarowego równania Poisson’a i quasi-dwuwymiarowego równania 
transportu. Równania te stanowią matematyczną podstawę kinetyki nośników w kanale 
i pozwalają obliczyć ładunki indukowane w bramce i podłożu. Wyprowadzono również 
równania opisujące prądy sprzężenia kanał-bramka i kanał-podłoże oraz zdefiniowano nie-
pojemnościowe prądy przesunięcia.

Opierając się na opracowanej quasi-dwuwymiarowej reprezentacji stałoprądowej tran-
zystora MOS wyprowadzono wzór na pojemność bramka-podłoże Cgb oraz sformułowano 
reguły ustalające relację pomiędzy prądami sprzężenia kanał-bramka i kanał-podłoże. No-
woopracowane modele zawierają tylko pojemności wzajemne. 
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Summary110

Z przeprowadzonej analizy wynika, że dwa typy fal mogą propagować się w kanale 
tranzystora MOS: podłużna fala zaburzeń koncentracji nośników i poprzeczna fala zaburzeń 
grubości kanału.

Wykazano, że moduły zespolonych transadmitancji bramki i podłoża są malejącymi 
funkcjami częstotliwości.

Nowy małosygnałowy model MOSFET-a w dziedzinie częstotliwości został pozytyw-
nie zweryfikowany eksperymentalnie aż do częstotliwości 30 GHz. Parametry modelu przyj-
mują realistyczne wartości.

Małosygnałowy model częstotliwościowy może być stosowany od zera Hz do często-
tliwości kilkakrotnie większej od fT.

Każdy parametr modelu opisuje jakieś zjawisko fizyczne.
Obydwa nowe modele małosygnałowe mogą być użyte do analizy scalonych układów 

mikroelektronicznych o dowolnej topologii, a także mogą być zaimplementowane w komer-
cyjnych symulatorach układów elektronicznych.

Jesteśmy przekonani, że zaproponowane nowe modele pozwalają głębiej wniknąć w za-
sadę działania tranzystora MOS.
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Appendix A

DERIVATION OF QUASI-2D CONTINUITY EQUATION 
Wiesław Kordalski

Let L*(ξ, t) be the limit of the left-hand side of (3.25) as Δξ → 0, i.e.:

[ ]
0

1( , ) lim ( , ) ( , )L t q p t X t d
t

ξ ξ

ξξ
ξ ξ ξ ξ

ξ
+∆∗

∆ →

∂
=

∆ ∂∫ (A1)

The quotient of the integral of the right-hand side of (A1) by Δξ has the limit:

[ ] [ ]
0

1lim ( , ) ( , ) ( , ) ( , )p t X t d p t X t
t t

ξ ξ

ξξ
ξ ξ ξ ξ ξ

ξ
+∆

∆ →

∂ ∂
=

∆ ∂ ∂∫ (A2)

Indeed, noting that p(ξ, t) and X (ξ, t) are nonnegative functions and applying the mean value 
theorem to the integral, we can write:

[ ] [

] [ ]0

1 ( , ) ( , ) ( , )

( , ) ( , ) ( , )

p t X t d p t
t t

X t p t X t
t

ξ ξ

ξ

ξ

ξ ξ ξ ξ α ξ
ξ

ξ α ξ ξ ξ

+∆

∆ →

∂ ∂
= + ⋅∆

∆ ∂ ∂
∂

× + ⋅∆ →
∂

∫
(A3)

since α = α (ξ, Δξ ) ∈ (0, 1).
Thus, combining (A1) with (A2), we obtain:

[ ]( , ) ( , ) ( , )L t q X t p t
t

ξ ξ ξ∗ ∂
=

∂ (A4)

Differentiating (A4) with respect to t and employing (3.14) and (3.15) leads to:

1 11 1
0 0 1 1

( , ) ( , )( , ) ( , )( , ) ( ) ( ) ( , ) ( , )
p t p tX t X tL t q p X p t X t

t t t t
ξ ξξ ξ

ξ ξ ξ ξ ξ∗ ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂ 

(A5)
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Appendix A. Derivation of quasi-2D continuity equation112

Confining considerations to linear analysis (ignoring the two mixed terms in the preced-
ing equation) and using (3.21) yields:

[ ]
t
tp

tDXqtL C ∂

∂
+=∗ ),(

),(1)(),( 1
0

ξ
ξξξ (A6)

Denoting the right-hand side of (3.25) by R(ξ, t) and inserting the following formulas:

1
( , )( , ) ( , ) ( )J tJ t J t oξξ ξ ξ ξ ξ
ξ

∂
+ ∆ = + ∆ + ∆

∂ (A7)

2
( , )( , ) ( , ) ( )X tX t X t oξξ ξ ξ ξ ξ
ξ

∂
+ ∆ = + ∆ + ∆

∂ (A8)

into (3.25), we obtain:
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J t X tR t X t J t X t o J t o

J t X t J t X to o o o

ξ ξξ ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ

ξ ξ ξ ξξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ

− ∂ ∂
= ∆ + ∆ + ⋅ ∆ + ⋅ ∆∆ ∂ ∂

∂ ∂ ∂ ∂
+ ∆ ⋅ ∆ + ∆ + ∆ ⋅ ∆ + ∆ ⋅ ∆ ∂ ∂ ∂ ∂ 

(A9)
where o1(Δξ ) and o2(Δξ ) are some infinitesimals of higher order than Δξ as Δξ → 0.

Denoting the limit of (A9) as Δξ → 0 by R*(ξ, t), i.e.:

0
( , ) lim ( , )R t R t

ξ
ξ ξ∗

∆ →
= (A10)

and taking account of (3.15) and (3.16), we obtain:

0 0 01
0 0 0 1

0 1 1 1
1 0 1 1

( ) ( ) ( )( , )( , ) ( ) ( ) ( ) ( , )

( ) ( , ) ( , ) ( , )( , ) ( ) ( , ) ( , )

d J d X d XJ tR t X J X J t
d d d

d J X t X t J tX t J J t X t
d

ξ ξ ξξ
ξ ξ ξ ξ ξ

ξ ξ ξ ξ
ξ ξ ξ ξ

ξ ξ ξ ξ
ξ ξ ξ ξ

∗ ∂
= − − − −

∂
∂ ∂ ∂

− − − −
∂ ∂ ∂

(A11)

The first two terms in (A11) represent the continuity equation in differential form for 
dc conditions, and their sum is equal to zero. Indeed, differentiation of (2.18) with respect 
to ξ leads to:

0 0
0 0

( ) ( )( ) ( ) 0d J d XX J
d d
ξ ξ

ξ ξ
ξ ξ

+ = (A12)

which is what we wanted to prove.
Thus, taking (A12) into consideration and combining (A6) with (A11), we have:
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113Appendix A. Derivation of quasi-2D continuity equation

[ ] 01 1
0 0 1

0 1 1 1
1 0 1 1

( )( , ) ( , )( ) 1 ( , ) ( ) ( , )

( ) ( , ) ( , ) ( , )( , ) ( ) ( , ) ( , )

C
d Xp t J tq X D t X J t

t d
d J X t X t J tX t J J t X t

d

ξξ ξ
ξ ξ ξ ξ

ξ ξ
ξ ξ ξ ξ

ξ ξ ξ ξ
ξ ξ ξ ξ

∂ ∂
+ = − −

∂ ∂
∂ ∂ ∂

− − − −
∂ ∂ ∂

(A13)
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Appendix B

DERIVATION OF QUASI-2D POISSON’S EQUATION
Wiesław Kordalski

Let L*(ξ, t) be the limit of the left-hand side of (3.50) as Δξ → 0, i.e.: 

[ ]
0

( , ) lim ( , ) ( ) ( , )qL t X t N p t d
ξ ξ

ξξ
ξ ξ ξ ξ ξ

ξ
+∆∗

∆ →
= +

∆ ∫ (A14)

By analogy with (A2), the quotient of the integral of the right-hand side of (A14) by Δξ 
has the limit:

[ ] [ ]
0

1lim ( , ) ( ) ( , ) ( , ) ( ) ( , )X t N p t d X t N p t
ξ ξ

ξξ
ξ ξ ξ ξ ξ ξ ξ

ξ
+∆

∆ →
+ = +

∆ ∫ (A15)

Thus, inserting (A15) into (A14) and taking account of (3.14) and (3.15), we obtain:

[
]

0 0 0 0 1

1 0 1 1 1

( , ) ( ) ( ) ( ) ( ) ( ) ( , )

( ) ( , ) ( ) ( , ) ( ) ( , )

L t q X N X p X p t

N X t p X t p X t

ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

∗ = + +

+ + +
(A16)

Now, we proceed to calculate the limit of the right-hand side of (3.50) as Δξ → 0. We 
denote the limit by R*(ξ, t).

By analogy with (A15), we note:

0

1lim ( , ) ( , )CB CBE t d E t
ξ ξ

ξξ
ξ ξ ξ

ξ
+∆

∆ →
=

∆ ∫ (A17)

0

1lim ( , ) ( , )CG CGE t d E t
ξ ξ

ξξ
ξ ξ ξ

ξ
+∆

∆ →
=

∆ ∫ (A18)

To compute R*(ξ, t), we need to know the limit of B(ξ, t) as Δξ → 0, where

[ ]1( , ) ( , ) ( , ) ( , ) ( , )B t X t E t X t E tξ ξ ξ ξ ξ ξ ξ
ξ

= + ∆ + ∆ −
∆

(A19)
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115Appendix B. Derivation of quasi-2D Poisson’s equation

Inserting the following formulas:

1
( , )( , ) ( , ) ( )E tE t E t oξξ ξ ξ ξ ξ
ξ

∂
+ ∆ = + ∆ + ∆

∂ (A20)

2
( , )( , ) ( , ) ( )X tX t X t oξξ ξ ξ ξ ξ
ξ

∂
+ ∆ = + ∆ + ∆

∂ (A21)

into (A19), we obtain:

( )

1

2 2 1

2
1 2

1 ( , ) ( , )( , ) ( , ) ( , ) ( ) ( , )

( , ) ( , )( , ) ( ) ( ) ( )

( , ) ( , ) ( ) ( )

E t X tB t X t X t o E t

E t X tE t o o o

X t E t o o

ξ ξξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ

ξ ξξ ξ ξ ξ ξ ξ
ξ ξ

ξ ξ ξ ξ ξ
ξ ξ

 ∂ ∂
= ∆ + ⋅ ∆ + ∆∆ ∂ ∂

∂ ∂
+ ⋅ ∆ + ∆ ⋅ ∆ + ∆ ⋅ ∆

∂ ∂

∂ ∂
+ ∆ + ∆ ⋅ ∆ ∂ ∂ 

(A22)

where o1(Δξ) and o2(Δξ) are some infinitesimals of higher order than Δξ as Δξ → 0.
The limit of (A22) as Δ ξ → 0 is:

0

( , ) ( , )lim ( , ) ( , ) ( , )E t X tB t X t E t
ξ

ξ ξξ ξ ξ
ξ ξ∆ →

∂ ∂
= +

∂ ∂
(A23)

Taking account of (3.6), (3.7), (A23), and noting that

0 1( ) ( , )( , ) d X X tX t
d

ξ ξξ
ξ ξ ξ

∂∂
= +

∂ ∂
(A24)

0 1( ) ( , )( , ) d E E tE t
d

ξ ξξ
ξ ξ ξ

∂∂
= +

∂ ∂
(A25)

we can write:

0 10 0
0 0 0 10

0 11 1
1 0 1 1

( ) ( , )( ) ( )
lim ( , ) ( ) ( ) ( ) ( , )

( ) ( , )( , ) ( , )( , ) ( ) ( , ) ( , )

d E E td X d X
B t X E X E t

d d d
d E E tX t X tX t E E t X t

d

ξ

ξ ξξ ξ
ξ ξ ξ ξ ξ

ξ ξ ξ ξ
ξ ξξ ξ

ξ ξ ξ ξ
ξ ξ ξ ξ

∆ →

∂
= + + +

∂
∂∂ ∂

+ + + +
∂ ∂ ∂

(A26)

Utilizing (A17), (A18), (A26) and taking account of (3.8) and (3.9), we can write the 
limit R*(ξ, t) of the right-hand side of (3.50) as Δξ → 0 as follows:
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Appendix B. Derivation of quasi-2D Poisson’s equation116

0 0
0 0 0 0

001 1
0 1 0 1

11
0 1 1

( ) ( )( , ) ( ) ( , ) ( ) ( )

( )( )( , ) ( , )( ) ( , ) ( ) ( , )

( , )( , )( ) ( , ) ( , ) ( , )

s CG cg

CB cb

dE d XR t E E t X E
d d

dEdXE t X tX E t E X t
d d

E tX tE E t E t X t

ξ ξ
ξ ε ε ξ ξ ξ ξ

ξ ξ
ξξξ ξ

ξ ξ ξ ξ
ξ ξ ξ ξ

ξξ
ξ ξ ξ ξ

ξ ξ

∗ 
= + + +


∂ ∂

+ + + +
∂ ∂

∂ ∂
+ + + + ∂ ∂ 

(A27)

Equating (A16) with (A27), L*(ξ, t) = R*(ξ, t) and confining considerations to linear 
analysis, i.e., ignoring mixed terms in (A16) and (A27), we obtain:

0 0 0 0 1 1 0 1

0 0
0 0 0 0 0 0

001 1
0 1 1 0

[ ( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( , )]

( ) ( )
[ ( ) ( , )] ( ) ( ) ( ) ( , )

( )( )( , ) ( , )( ) ( , ) ( , ) ( )

s CG cg s CB cb

q X N X p X p t N X t p X t

d E d X
E E t X E E E t

d d
d Ed XE t X tX E t X t E

d d

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ
ε ε ξ ξ ε ε ξ ξ ξ ξ

ξ ξ

ξξξ ξ
ξ ξ ξ ξ

ξ ξ ξ ξ

+ + + +


= + + + + +



∂ ∂
+ + + +

∂ ∂




(A28)

One can see that (A28) contains terms corresponding to both dc conditions and 
small-signal time-varying conditions. We can thus split (A28) into two equations: a quasi-2D 
Poisson’s equation for dc conditions,

0 0 0 0 0 0

0 0
0 0 0

[ ( ) ( ) ( ) ( )] [ ( ) ( )]

( ) ( )( ) ( )

s CG CB

s

q X N X p E E

d E d XX E
d d

ξ ξ ξ ξ ε ε ξ ξ

ξ ξ
ε ε ξ ξ

ξ ξ

+ = +

 
+ + 

 

(A29)

and a quasi-2D Poisson’s equation for small-signal time-varying conditions,

0 1 1 0 1 0

1 00 1
0 0 1 1 0

[ ( ) ( , ) ( ) ( , ) ( ) ( , )] [ ( , ) ( , )]

( , ) ( )( ) ( , )( ) ( , ) ( , ) ( )

s cg cb

s

q X p t N X t p X t E t E t

E t d Ed X X tX E t X t E
d d

ξ ξ ξ ξ ξ ξ ε ε ξ ξ

ξ ξξ ξ
ε ε ξ ξ ξ ξ

ξ ξ ξ ξ

+ + = +

∂ ∂
+ + + + ∂ ∂ 

(A30)
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Appendix C

QUASI-STATIC SMALL-SIGNAL CONDUCTANCE gds
Wiesław Kordalski

Combining (2.16) and (2.17), an equation for the dc drain current ID of a p-channel MOSFET  
(see Fig. A.1) at a given Q-point can be written as follows:

0 0( ) ( )D CI W Q ξ υ ξ= − (A.31)

where QC0(ξ) is the channel charge per unit area [see (2.17)] and υ0(ξ) is the velocity of car-
riers.

Fig. A.1.	 An MOSFET under a quasi-static small perturbation dVDS.

In the circuit shown in Fig. A.1, the voltages VGS and VBS do not vary. Considering that, 
we may state that an infinitesimally small quasi-static increase in the drain-source voltage 
dVDS causes an infinitesimally small quasi-static variations in the velocity υ0 of carriers 
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Appendix C. Quasi-static small-signal conductance gds118

[through an increase in longitudinal electric field E0(ξ)] and in the charge QC0 (through an 
injection of carriers into the channel due to the DIBL effect). Therefore, we may rewrite 
(A.31) in the form:

( )0 0 0( , ) ( )D C DSI W Q V Eξ υ ξ= − (A.32)

An infinitesimally small quasi-static increase in the drain current dID can be calculated 
by differentiation of (A.32) with respect to VDS and E0(ξ), yielding:

( ) ( )0 0 0
0 0 0 0

0

( ) ( , )( , ) ( ) ( )
( )

C DS
D C DS DS

DS

d E Q VdI W Q V dE W E dV
dE V

υ ξ ξ
ξ ξ υ ξ

ξ
∂

= − −
∂

(A.33)

If we assume that, for small perturbation in the drain-source voltage dVDS, the differ-
ential of the longitudinal electric field dE0(ξ) is independent of ξ, then, differentiating (4.7), 
we obtain:

0 ( ) /DSdE dV Lξ = − (A.34)

Taking account of (A.34) and noting that the derivative dυ0(E0(ξ)) /dE0(ξ) is equal to the 
differential mobility μd at the Q-point, see (4.10), we can rewrite (A.33) as follows:

0 0
0 0

( , ) ( , )( , )d C DS C DS
D DS DS

DS

Q V Q VdI W dV W E dV
L V

µ ξ ξ
υ ξ

∂
= −

∂
(A.35)

One can see that the first term of the right-hand side of (A.35) represents an ohmic 
current, whereas the second one is a current determined by DIBL effect. Therefore, we can 
introduce the following two notions: a quasi-static small-signal (differential) ohmic con-
ductance, denoted by gdso, and a quasi-static small-signal (differential) DIBL conductance, 
denoted by gdsD and determined by DIBL effect. Hence, (A.35) can be written as

( )D dso dsD DSdI g g dV= + (A.36)

where

0 ( , )d C DS
dso

Q V
g W

L
µ ξ

= (A.37)

and

0
0 0

( , )
( , ) C DS

dsD
DS

Q V
g W E

V
ξ

υ ξ
∂

= −
∂

(A.38)

Using (2.17), we have an alternative form of (A.37): 

0 0( ) ( )dso d
Wg q p X
L

µ ξ ξ= (A.39)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


119Appendix C. Quasi-static small-signal conductance gds

On the other hand, taking into account the definition of the quasi-static small-signal (differ-
ential) drain-source conductance gds,

( , , )D DS GS BS
ds

DS

I V V Vg
V

∂
=

∂
(A.40)

we can write the following:

D ds DSdI g dV= (A.41)

Comparing (A.36) and (A.41), we obtain:

ds dso dsDg g g= + (A.42)

One can see from (A.42) that gds consists of two components, viz., gdso and gdsD. For 
simplicity, they can be called, respectively, an ohmic part of gds and a DIBL part of gds.
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Appendix D

FINDING THE HOLE CONCENTRATION p1(ξ, jω)
Wiesław Kordalski

A solution to (4.38) is sought in the following form:

1( , ) exp( )p j Kξ ω γ ξ= (A.43)

Putting it into (4.38), we get a characteristic equation for γ:

02

0

(1 )0 l dso C

t s q t ch q t

E d g L j D
V V W X V

ω
γ γ

ε ε µ µ

 +
= − − + 

  
(A.44)

Using standard procedure, we obtain two solutions for γ:

0 2 2 2 22 2
2 4 4t

E
a a b j a a b

V
γ = − + + − − + + (A.45)

0 2 2 2 22 2
2 4 4t

E
a a b j a a b

V
γ ∗ = + + + + − + + (A.46)

in which
2
0
2

0

4 4 (1 ),l dso C

t s q t ch q t

E d g L Da b
V V W X V

ω
ε ε µ µ

+
= + = (A.47)
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Appendix E

FINDING THE ELECTRIC FIELD E1(ξ, jω)
Wiesław Kordalski

Substituting (4.39) into (4.35), one can obtain the following differential equation with sepa-
rable variables:

1
0

exp( )l

s

q d KdE dγ ξ ξ
ε ε

= (A.48)

Integrating (A.48) yields

1

1

( , )

1(0, ) 0
0

exp( )
E j l
E j

s

q d KdE d
ξ ω ξ

ω
γ ξ ξ

ε ε
=∫ ∫ (A.49)

Solution to (A.49) is:

[ ]
1 1

0

exp ( ) 1
( , ) (0, ) l

s

q d K
E j E j

γ ξ
ξ ω ω

ε ε γ
−

= + (A.50)

Electric field E1(ξ, jω) must satisfy the following boundary condition:

10
( , )

L

ds E j dυ ξ ω ξ= − ∫ (A.51)

where υds is the drain-source voltage phasor.
Inserting (A.50) in (A.51) and integrating the resultant equation, one can obtain a for-

mula for E1(0, jω) as follows:

[ ]
1 2

0

exp ( ) 1
(0, ) ds l

s

q d K L
E j

L L
υ γ ξ λ

ω
ε ε γ

− −
= − − (A.52)
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