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SELECTED LIST OF SYMBOLS AND ACRONYMS

Symbols

Certain symbols which are used only locally within a section, or whose meaning is clear
from the context, are not included in this list.

C,, — body-drain capacitance

C,. — body-source capacitance

C, — quasi-static body-to-channel capacitance, Sec. 3.7.3

C, — drain-source capacitance

C, — gate-body capacitance

C,. — quasi-static gate-to-channel capacitance, Sec. 3.7.2

Cy — gate-drain capacitance

Cgs — gate-source capacitance

D, — dynamic coupling factor of the channel, Sec. 3.3.1

D, — diffusivity of holes

D, — dynamic channel-to-current coupling factor, Sec. 3.3.1

D, — dynamic channel deformation factor, Sec. 3.3.1

d, — longitudinal dynamic carrier-to-channel coupling factor

E — electric field vector

E — total longitudinal electric field in the channel

E, — steady-state longitudinal electric field in the channel

E, — small-signal longitudinal electric field component in the channel

E., — total transverse electric field on the bottom channel surface, see Fig. 3.3

E.,  — steady-state transverse electric field on the bottom channel surface, see Fig. 3.3

E, — small-signal transverse electric field component on the bottom channel surface,
see Fig. 3.3

E.. — total transverse electric field on the top channel surface, see Fig. 3.3

E.,  — steady-state transverse electric field on the top channel surface, see Fig. 3.3

E, — small-signal transverse electric field component on the top channel surface, see
Fig. 3.3

g, — quasi-static small-signal drain-source conductance

i — DIBL partof g,

o — ohmic part of g,

g, — quasi-static gate small-signal transconductance

. — quasi-static body small-signal transconductance
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— channel current

— small-signal body-terminal current

— small-signal drain-terminal current

— small-signal gate-terminal current

— small-signal source-terminal current

— current density vector field

— total conduction current density, see (3.60)

— steady-state conduction current density

— small-signal conduction current density

— total current density, see (3.59)

— total small-signal current density, see (3.67)

— displacement current density

— small-signal displacement current density = displacement current density J,
— channel length

— gate length

— dimensionless factor, k, =g, /g,

— concentration of ionized donors

— total concentration of holes at Q-point, see (3.4)
— steady-state concentration of holes at Q-point

— small-signal concentration of holes at Q-point

— total body charge per unit area at Q-point, see (3.13)
— steady-state body charge per unit area at Q-point
— small-signal body charge per unit area at Q-point
— total gate charge per unit area at Q-point, see (3.12)
— steady-state gate charge per unit area at Q-point
— small-signal gate charge per unit area at Q-point
— magnitude of the elementary charge

— overall excess depletion region charge, see (3.143)
— overall excess gate charge, see (3.142)

— dimensionless parameter, see (4.2)

— oxide thickness

— dc body-channel voltage, see Fig. 3.5

— dc body-source voltage

— dc voltage drop across the channel, see Fig. 3.5

— dc drain-source voltage

— dc gate-channel voltage, see Fig. 3.5

— dc gate-source voltage

— threshold voltage

— small-signal body-source voltage

— small-signal drain-source voltage

— small-signal gate-source voltage

— total thickness of the channel at Q-point, see (3.6)
— steady-state thickness of the channel at Q-point
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— small-signal thickness of the channel at Q-point

— average channel thickness, see (4.16)

X, — channel thickness at the drain

X, — total thickness of the depletion region at Q-point, see (3.11)
X — steady-state thickness of the depletion region at Q-point

X, — small-signal thickness of the depletion region at Q-point

X — channel thickness at the source

Vs — small-signal body-source admittance, see (4.107)

You — small-signal body-to-source transadmittance, determined by DIBL see (4.123)
Ve — small-signal gate-to-source transadmittance determined by DIBL, see (4.122)
Vi — small-signal drain-source admittance, see (4.121)

Ve — small-signal gate-source admittance, see (4.95)

V., — gate small-signal transadmittance, see (4.94)

Vo — body small-signal transadmittance, see (4.106)

w — width of transistor

€, — permittivity of free space

€, — relative permittivity of solicon

n — dimensionless factor,n =g /g

& — distance (from the source) along the channel

(& 1) — total bias-dependent mobility of holes at Q-point, see (3.5)
u(& ) — differential of w, at Q-point, see (3.70) and (4.8)

“, — differential mobility at Q-point, see (4.10)
My ,uq(é’)f mobility of holes at Q-point
T — relaxation time
" — transit time of carriers across the channel
0 — velocity of carriers
10} — angular frequency
Acronyms
2D — Two-Dimensional
AC, ac — Alternating Current
ACP — Air Coplanar Probe
BSIM — Berkeley Short-channel IGFET Model
CLE — Channel-Lengthening Effect
CSE — Channel-Shortening Effect
CTME — Channel Thickness Modulation Effect
DC, dc — Direct Current
DCTME — Dynamic Channel Thickness Modulation Effect
DIBL — Drain-Induced Barrier Lowering
GCA — Gradual Channel Approximation
GCDE — Gradual Channel Detachment Effect

HSDMAGFET - Horizontally-Split-Drain Magnetic Field-Effect Transistor
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8 Selected list of symbols and acronyms

MOS — Metal Oxide Semiconductor

MOSFET — Metal Oxide Semiconductor Field-Effect Transistor
NQS — Non-Quasi-Static

NQSCCPR — Non-Quasi-Static Channel Charge Partition Rule
Q-point — Quiescent Point

QS — Quasi-Static

QSCCPR — Quasi-Static Channel Charge Partition Rule

RF — Radio Frequency

VNA — Vector Network Analyzer
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Chapter 1
INTRODUCTION

Wiestaw Kordalski

This monagraph deals with modeling the small-signal operation of the MOS transistor,
and presents original, not yet fully published, results of our research on time- and frequen-
cy-domain physics-based small-signal MOSFET models.

To design reliably circuits for communications in the range of radio or microwave fre-
quencies, an adequate non-quasi-static (NQS) MOSFET model is indispensable. Quasi-static
(QS) approaches do not accurately describe the operation of the MOSFET at high frequencies
or under fast transients. This stems from the fact that the QS approximations assume the
movable carriers in the channel of the transistor to respond instantaneously to the perturba-
tions induced by a time-varying external bias, thereby neglecting the delay, dynamic prop-
erties of the channel and the coupling between the perturbed carrier beam and the transistor
structure (the gate and the body).

Passing over the narrow-channel effects, the MOS transistor is inherently a two-dimen-
sional (2D) device. Thus, to derive an NQS four-terminal small-signal MOSFET model valid
in time and frequency domains, one should solve a closed set of partial differential equations,
namely: continuity, transport and Poisson’s equations. The set of equations cannot be exactly
solved in the analytical form in 2D space, which implies the necessity for researchers to
decompose the 2D problem into simplified ones.

An adequate model of the channel, especially its shape, is one of the most important
issues in the derivation of a small-signal model of the transistor.

In models whose derivation is based, either explicitly or implicitly, on the gradual chan-
nel approximation (GCA), presented in e.g. [1-8], the shape of the channel is unrealistic,
because its thickness decreases as the distance from the source of the transistor increases,
see, e.g. [2—4]. The GCA is one of the assumptions which are most commonly put forward
in analytical and semi-analytical approaches to the calculation of the value of the charge
induced in the channel. The GCA amounts to the assumption that the surface density of the
total uncompensated semiconductor charge, and thus of the channel, is determined only by
the transversal electric field acting on the semiconductor surface. For this reason, apparent
physical contradictions can appear if the approximation is used, which was pointed out, for
instance, in [9—12]. It is the GCA that leads in consequence to such non-realistic phenomena
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as the channel pinch-off or the channel-shortening effect (CSE). Therefore, a more compre-
hensive analysis on the channel shape is an obvious need.

In so-called charge-based or surface-potential-based models, e.g. [13—16], the channel
is assumed to be a charge sheet of negligible thickness; however it is difficult to find physical
reasons justifying this shape of the channel.

Some attempts were undertaken in order to overcome limitations imposed by the GCA.
For example, the question of how changes of the longitudinal electric field component in
the drain-to-source region affect the channel charge were considered in several works, e.g.
[9-12], however, in each of them there were made some restrictive assumptions dealing
with the shape of the depletion region. Namely, in all the works the depletion region and the
channel were assumed to be rectangular, which is an unrealistic assumption.

In derivation of quasi-2D dc MOSFET models, which are briefly presented in [17-21],
the MOSFET is considered as a 2D object in which the channel has also a 2D nature. The
GCA is abandoned in this approach (non-GCA models). In description of these models, there
are no such unrealistic terms as pinch-off and channel-shortening effect. According to these
models, the channel has the shape of a curvilinear tetragon, and its thickness increases as
the distance from the source of the transistor increases. This shape of the channel results
from the qualitative and quantitative analysis carried out in detail in the next chapter. {It is
worth mentioning that the key features of these quasi-2D dc MOSFET models are the main
assumptions of the concept of a new horizontally-split-drain magnetic field-effect transistor
(HSDMAGFET) described in works [22-26]}

Other few problems emerge when the exact knowledge of the small-signal behavior of
the MOSFET and an adequate small-signal model of the device for radio and microwave
frequencies are needed [27]. In addition to an appropriate channel model of the transistor,
an adequate small-signal MOSFET model should take into account: the velocity saturation
effect of carriers in the channel of the transistor; the field-dependent mobility; the electri-
cal coupling between the perturbed charge in the channel and the gate and the body; local
variations in the channel thickness; and the drain-induced barrier lowering (DIBL) effect.

Known small-signal MOSFET models used in designing integrated circuits in the radio
frequency (RF) range can be split into two groups: quasi-static (QS) and non-quasi-static
(NQS) models. The QS approaches do not aptly describe operation of the MOSFET at high
frequencies or under fast transients. This stems from the fact that the QS approximations
assume the movable carriers in the channel of the transistor to respond instantaneously to
the perturbations induced by a time-varying external voltage, thereby neglecting the delay,
dynamic properties of the channel, and the coupling between the perturbed carrier beam and
the structure (the gate and the body). As a result, serious inconsistencies arise when the QS
approach is used to modeling an RF MOS transistor. For instance, according to the model
presented in [28], magnitudes of transadmittances of voltage-controlled current sources tend
to infinity as frequency increases, which is an apparent contradiction.

To overcome the limitations, various models have been proposed in [29-36]. Howe-
ver, there are also weak points in those models. For instance, one can infer from the results
presented in [32-35] that the magnitude of the gate transadmittance (y,) does not decrease
as the angular frequency w tends to infinity. The widely used NQS BSIM3 model [36] is
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a charge-based model developed on the channel charge relaxation time approach. Moreover,
the channel of the MOSFET is modeled in work [36] as an RC distributed transmission line,
which is not an adequate model of the transistor because any line of this type is not unilateral
(i.e., the two-port admittance parameter y,, # 0). The intrinsic MOSFET (without parasitic
elements) has to be unilateral (y , = 0) for the reason that the charge carriers (electrons or
holes) are injected only through the source-channel potential barrier. Besides, the transport
equation for current carriers injected into the channel differs substantially from that for the
current in the resistive layer of an RCline (ohmic transport mechanism). This is the funda-
mental reason for which any RC-line-based small-signal model of the intrinsic MOSFET is
not adequate.

A phenomenon that is not included in known small-signal models is the dynamic chan-
nel thickness modulation effect (DCTME), see, e.g. [29-31].

The DIBL effect is also not included in the vast majority of known small-signal mo-
dels, see, e.g. [28-36], and if it is considered, the applicability of these models is limited to
a low-frequency range. For example, this phenomenon is included in the model presented
in [37], but the model is quasi-static and its validity is restricted to a quasi-static frequency
range.

To surmount the above-mentioned weak points of existing models, an attempt has been
made to derive from first principles a new DIBL-included physics-based quasi-2D NQS fre-
quency-domain small-signal model of the four-terminal MOSFET operating at an arbitrarily
located quiescent point (Q-point). The model is briefly reported in [27, 38—42]. The new
model is valid from zero Hz to well above the cut-off frequency £, and takes into account:
the velocity saturation effect of carriers in the channel; the dependence of the mobility on
electric field; the electrical coupling between the perturbed charge in the channel and the
gate and the body; local variations in the channel thickness; and the DIBL effect. According
to the author’s knowledge, there is no small-signal model in the literature that takes into
account all these effects together. Moreover, there are no non-reciprocal capacitances in the
new model, and the GCA is abandoned.

The purpose of this monograph is to present a detailed derivation and results of exper-
imental verification of the new time- and frequency-domain quasi-2D NQS four-terminal
small-signal MOSFET models which take into account the DIBL effect.

The monograph is arranged as follows.

The purpose of Chapter 2 is to give a physical background to the new time- and frequen-
cy-domain small-signal models. Theoretical discussion and results of numerical analysis in
2D space are given in order to introduce the following three phenomena: gradual channel de-
tachment effect (GCDE), channel thickness modulation effect (CTME), and channel-length-
ening effect (CLE). Based on these phenomena, a quasi-2D dc channel representation and
a quasi-2D dc representation of the MOSFET are defined.

In Chapter 3, a novel quasi-2D NQS four-terminal time-domain small-signal MOS-
FET model is presented. A set of partial differential equations for the new physics-based
small-signal model is derived. The set consists of a quasi-2D small-signal continuity equa-
tion, a quasi-2D small-signal Poisson’s equation, and a quasi-2D small-signal transport
equation. All the equations give a mathematical description of the behavior of the carriers
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in the channel and charges in the gate and the body. A set of supplementary equations for
coupling and non-capacitive displacement currents in the MOSFET under dynamic operation
is also derived. Based on the quasi-2D dc MOSFET representation, a useful formula for the
gate-to-body capacitance C, is derived, and some rules dealing with channel-to-gate and
channel-to-body coupling currents are established. Reciprocal capacitances occurring in this
model are defined. The model we propose in this chapter provides the background to a novel
frequency-domain small-signal MOSFET model.

In Chapter 4, a novel DIBL-included quasi-2D NQS four-terminal frequency-domain
small-signal MOSFET model is proposed. The model takes into account: the velocity satu-
ration effect of carriers in the channel; the dependence of the mobility on electric field; the
electrical coupling between the perturbed charge in the channel and the gate and the body;
local variations in the channel thickness; and the DIBL effect. Unlike other models, this one
is composed only of reciprocal capacitances. A closed set of partial differential equations
defining the model in the time domain is formulated and solved in the frequency domain.
The solution indicates that two types of waves can propagate from the source to the drain,
viz., a longitudinal wave of a disturbance in the carrier density and a transverse wave of
a disturbance in the channel thickness. A closed set of equations for frequency-domain
non-capacitive terminal currents in the MOSFET under dynamic operation is also derived.

In Chapter 5, the results of experimental verification of the new DIBL-included qua-
si-2D NQS four-terminal frequency-domain small-signal MOSFET model are presented.
For the purpose of the verification, test transistors and dummy structures were designed
and fabricated in 0.35-um technology. The de-embedding procedure is based on the open-
short method, optimized for RF measurement up to 30 GHz of scattering parameters of the
transistors in the common source configuration with the use of air coplanar probes (ACPs).

The last part includes a summary.
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Chapter2
QUASI-2D REPRESENTATION OF THE MOSFET

Wiestaw Kordalski

2.1. Introduction

In this chapter, theoretical considerations and the results of a numerical analysis in 2D space
are given in order to introduce the following three phenomena: gradual channel detachment
effect (GCDE), channel thickness modulation effect (CTME), and channel-lengthening effect
(CLE). These phenomena are physical foundations for defining a quasi-2D dc representation
of the channel and subsequently for transforming a 2D dc representation of the MOSFET
into a quasi-2D dc representation of the device.

We assume in our analysis that no generation-recombination processes occur, and the
tunneling and leakage currents are negligibly small.

2.2. 2D-into—quasi-2D transformation of the MOSFET

In this section, we define a quasi-2D representation of the channel, then a modified 2D dc
MOSFET representation, and in the end a quasi-2D dc MOSFET representation.

2.2.1. Quasi-2D representation of the channel

In the MOSFET modeling, concepts such as the actual channel length (also referred to as the
effective or electrical channel length), the magnitude and distribution of movable charges
carrying the current in the channel, or velocity of carriers are of key importance. In this
section, we define these and other concepts referring to a quasi-2D representation of the
MOSFET channel, basing on the results of two-dimensional numerical analyses.

Two-dimensional phenomena

Let us consider a four-terminal p-type channel MOSFET carrying the source-to-drain cur-
rent in a stationary electric field, which is depicted in Fig. 2.1, where the shaded p*-type re-
gions are electrically neutral parts of the source-body and drain-body junctions. The picture
corresponds to the transistor that operates in the saturation regime.

Holes are injected into the channel through the source-channel potential barrier, and the
current is controlled by the gate-source voltage V., the body-source voltage V', or by both
of them. Note that the drain is a collecting electrode, which stems from the bias conditions.
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Fig. 2.1. Layers of current in a p-channel MOSFET under consideration. O(0, 0) is the origin
of both Cartesian coordinates and curvilinear ones. The metallurgical junctions are
not shown.
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Fig. 2.2. Simulated electron concentration profiles for various cross-sections of the transistor
channel of an n-MOSFET with the channel length L = 1 pm, unpublished [4];
effective gate-source voltage V,_,— V,= 0.5V, V=5V, and y is the distance
from the transistor source.

The two-dimensional nature of kinetic processes in the transistor manifests itself par-
ticularly when the magnitude of drain-source voltage |V, | is greater than [V |. Under this
condition, the direction of the transverse component of the electric field acting on the semi-
conductor surface in the vicinity of the drain is opposite to that in the vicinity of the source.
This leads to repelling the positively charged holes from the semiconductor surface. As
a result, trajectories of movable channel carriers are deflected downwards. Therefore, this


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

AN\ MOST

18 2. Quasi-2D representation of the MOSFET

phenomenon can be called the gradual channel detachment effect (GCDE). The concept of
the GCDE was originally introduced in [1].

In turn, due to the GCDE and diffusion of the non-uniformly distributed carriers, the
channel of the transistor spreads out, leading to the channel thickness modulation effect
(CTME). Numerical simulations confirm the two phenomena illustrated in Figs. 2.1 and 2.2;
see also, e.g., Fig. 7 in [2] and Fig. 1 in [3].

Including these two effects into consideration enables us to gain a deeper insight into
the principle of operation of the MOS transistor.

Layers of current and their description

An orthogonal curvilinear system of coordinates ¢’ and é"H can be introduced if we note
that a vector field, denoted by J(P), is constituted by the current density vector J at each
point P in the channel. Due to stationary conditions, the vector field is solenoidal if genera-
tion-recombination processes are neglected at all points of the channel [5]. It means that the
divergence of the vector J(P) is equal to zero, i.e.:

V-J(P)=0 2.1)

where V is the nabla operator. Since all vector lines of a given solenoidal field J(P) do not
intersect, one can associate with them a set of longitudinal é'H-coordinateS; see Fig. 2.1.
Moreover, if we assume that the vector field is irrotational, i.e.:

VxJ(P)=0 2.2)

then there exists a function u(P) whose gradient equals J(P),
J(P)=Vu(P) (2.3)

The function u(P) is called the potential or the potential function of a vector field J(P).
Equating the function u(P) with a constant, u(P) = const, we obtain an equipotential line
(a surface in 3Dspace) that is perpendicular to all the vector lines of agiven field J(P). Its
shape depends on the distance from the source and biasing voltages. It is the equipotential
line that is a ¢’ -coordinate. The other ¢’ -coordinate lines can be constructed by equating
u(P) with various constants. Thus, one can obtain an orthogonal curvilinear system of coor-
dinates ¢’ and f’H in this way, a so-called system of natural coordinates; see Fig. 2.1.

Taking into account the properties of the vector field J(P), the total current of the hole
beam injected into the channel can be divided into infinitesimally thin layers of the current
(i.e., infinitesimally thin channels or elementary channels); see Fig. 2.1. The width of the
layers, W, is equal to the width of the transistor. Obviously, the g“’H-coordinate lines of the or-
thogonal curvilinear system coincide with the trajectories of carriers moving from the source
to the drain. The origin O(0, 0) of both the curvilinear and Cartesian coordinate systems is
placed on the semiconductor surface at the point where the transition between the source
and the space charge region of the body-source pn junction occurs; see Fig. 2.1. For clarity,
the source and the drain are the regions of the transistor in which the condition of electrical
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neutrality is fulfilled; they are reservoirs of carriers. No electric field is assumed to be in the
source and the drain.

For a point located on an arbitrarily chosen layer, let say, on the kth layer denoted by
(SN f'H ), we can exactly specify the distance of the point from the source, g“’H, and the
velocity of carriers at the point, v'H. It is worth emphasizing that the velocity of carriers at
the point is a tangent vector to the vector line. In this way, a field of carrier velocities in the
channel is introduced.

The following boundary condition is satisfied for each of the layers:

drain
- .[.vource E"l (gik ? 6"‘ ) d§|,\ = VDS (24)

where £ ’H (SIS g“’H) is the longitudinal component of the electric field in a given (kth) layer
of current.
The current continuity equation and Gauss’s law are fulfilled within each layer of cur-

rent (see Figs. 2.3 and 2.4), i.e.:
P&, 5\,\1) U\Iu(éﬂla 65|'|1) d4, = p'(&, §|'\2) U\’|2(§i1a ‘f{\z) d4, 2.5)
& &, §AE'dA=qLQ[Nd+p’(§i,§(|)]d9 (2.6)
where AQ is an element of volume bounded by surfaces f’H = f’H » f’H = f’H »¢ =¢" and
¢' =& AL ; A is the closed surface bounding the volume AQ; p'(-) and N, are, respectively,
spatial charge density distributions of holes and ionized donors; ¢, and ¢_ are, respectively,

the permittivity of free space and the relative permittivity of semiconductor substrate, E is
the electric field vector, and ¢ is the magnitude of the elementary charge.

dd, PELE PELLE])
STISTRIN

/

Sz

Fig. 2.3. A scheme illustrating the current continuity equation for a separated p-type layer of
current.

Looking at the p-type layers of current shown in Figs. 2.4 and 2.5, an essential differ-
ence between the one- and two-dimensional approaches to determining the distribution of
carriers along the channel can be noticed. First, let us consider the 2D case.

In Fig. 2.5, directions of transverse components of the electric field £ (-) acting on the
surfaces enclosing the parts of space marked as AQ and A Q, are opposite but it does not
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mean that the resultant fluxes of these transverse components through the upper and lower
surfaces of AQ and AQ, are also opposite. On the contrary, the resultant fluxes of these
transverse components of the electric field can have the same algebraic signs. What is more,
we are sure that the signs of both these fluxes are the same, because the current continui-
ty equation must be satisfied in an arbitrarily chosen cross-section of the layer of current.
Thus, applying Gauss’s theorem to AQ and AQ,, and taking into account the results of
two-dimensional numerical 2D simulations of the MOSFET, we can write the following
inequalities:

g6, §, E-dA=q [ [N, +p(&.0dQ >0 @.7)
g6 §, E-dA=q [ [N, +p'(E.§)1dQ >0 (2.8)

where 4, and 4, are the surfaces enclosing AQ and A Q_, respectively. Depending on the
bias conditions and concentration of dopants in the substrate, the integral (2.7) can be greater,
lesser, or equal to the integral (2.8), but there still exist conditions for the current flowing
through the channel. However, the problem is formulated in a totally different way when the
GCA is applied to calculate the distribution of carriers along the channel.

Ej EV(EL.8))

N+ PELED),
¢ l l &l
’ ’ ! ! 1R
E (€1 +AS,E) liﬁz
Fig. 2.4. A scheme illustrating of Gauss’s law for a separated p-type layer of current;

only transverse components of the electric field are shown.
The transistor operates in the saturation regime.

Ei E\(E118)

a) T v @ET ()
/ :
renagnep! [ | ®

Fig. 2.5. A layer of current with two distinguished volume elements A Q
and AQ; only transverse components of the electric field are shown.
The transistor operates in the saturation regime.
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According to the GCA (the one-dimensional case), total charges which are inside the
given volumes A Q and AQ, (see Fig. 2.5) should have different signs because transverse
electric fields acting on the surfaces enclosing AQ, and A Q, are oppositely directed. Con-
sequently, it implies that only the positively charged holes can appear in the volume AQ,
because the GCA imposes only a negative charge in the volume A Q. Therefore, we can
say that the GCA “makes it impossible” for the MOSFET to operate when the magnitude
of the drain-source voltage V', . is greater than the gate-source voltage V (it corresponds
to the saturation range of the output voltage—current characteristics), which is an obvious
contradiction.

The channel, channel line, channel length, arc-thickness of channel,
channel charge and channel-lengthening effect

In general, the channel is the region of the transistor where a non-zero current flows between
the source and the drain. Neglecting the narrow-channel effects, it can be considered as
a two-dimensional object that is bounded by four surfaces displayed in Fig. 2.6: an inject-
ing wall, a collecting wall, a top channel surface (. ch. s.), and a bottom channel surface
(b. ch. s.). The injecting wall, through which carriers are injected into the channel, separates
the space charge region lying under the semiconductor surface from the electrically neutral
source region. The collecting wall separates the space charge region lying under the semi-
conductor surface from the electrically neutral drain region that collects carriers. The top and
bottom channel surfaces are the outer surfaces bounding, respectively, the top and bottom
layers of current. Positions and shapes of the four surfaces depend on voltages biasing the
transistor. If the drain-source voltage is small, V', . ~ 0, the top and bottom channel surfaces
as well as the current lines run almost parallel to the semiconductor surface and the system
of natural coordinates ¢’ and ;“’H tends to the Cartesian one. However, if V,_ is increasing,
the GCDE and CTME are intensified and subsequently the shape of the channel is becoming
more irregular, as seen in Fig. 2.6.

collecting wall

top channel surface
bottom channel surface

S injecting wall D

 —r \,

Si—n

Fig. 2.6. The MOSFET channel and its characteristic bounding surfaces.

Referring to Fig. 2.1, one can see that the length of, let say, the kth layer L,, being the
length of the kth subchannel, is different from the length of the other layers. The length of
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the shortest subchannel, L, is the smallest distance between the electrically neutral regions
of the source and the drain or, in other words, between reservoirs of carriers in the source
and the drain. Obviously, any average length of the channel, L , is greater than L . . Simi-
larly, any effective channel length, L, is expected to be greater than L . Thus, after [6-7],
the metallurgical channel length, L, can be defined as the distance between the points at
which the metallurgical junctions of the source and drain intersect the silicon surface. We
can state that L, L ,and L, . should be greater than L . This statement is confirmed by
the results presented in Fig. 11 in [6] and in Fig. 3 in [7]. What is more, the considerations
and results of two-dimensional numerical computations show that the GCDE intensifies
as the drain-source voltage V¢ is increasing [2—4], which means that elementary channels
are getting longer and subsequently L, L ,and L, become greater. We can thus say that
a channel-lengthening effect (CLE) occurs, which is the opposite to the channel-shortening
effect. The CLE is produced by the GCDE and CTME.

A measure of the length of the channel in the quasi-2D approach to the MOSFET ope-
rating under dc conditions is closely related to an average trajectory of movable channel car-
riers, in other words, to an average channel current line, or simply to a channel line. Strictly
speaking, the channel line is a line in the cross-sectional view of the transistor, but in reality
it represents a cylindrical surface in a three-dimensional space. The channel line, denoted
by /,, is illustrated by a dashed curve in Fig. 2.1, and its length is equal to the channel length
L of the MOS transistor in the quasi-2D representation.

The channel line /, can be obtained as follows. First, we divide equally the channel
current, / , into k layers of current so that each layer, /, is carrying the current equal to 7 , /k.
Then, we choose a point M (&' f'H ,,) belonging to the first current layer /, and equidistant

11°
from the injecting and collecting walls; see Figs. 2.6 and 2.7.

L, drain

[
g,

Fig. 2.7. A fragment of the channel; the highlighted elements are necessary to determine
the channel line / ,. The transistor operates in the saturation regime.
The shaded p*-region is an electrically neutral part of the drain-body junction;
the metallurgical p-n junction is not depicted.

Then, we choose a surface S, that perpendicularly intersects all the channel current
lines and passes through the point M; the surface S, is represented by a line p,, in Fig. 2.7.
The behavior of the longitudinal component of current density as a function of a point over
the surface S, when ¢’ is varied and £’ = ¢ | is described by J' LELE ) The distribution

[ M
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of the current density J' f ¢, f’” ,,) versus ¢’ (along the line p, ) is just employed to determine
the point C (£’ ., HC) through which the channel line /, is passing; see Fig. 2.7.

Namely, the numerical value of the {’ -coordinate of the point C, ¢’ , is determined by
the £’ -coordinate of the centroid of the current density distribution .J ’H (S g“’H .+)» which can
be written as follows:

[ e g g, ag

t.ch.s)

) e gy g 2.9)
J.(t,ch.s) JH (gJ_a Cfu M) dé_

§LC

where the integration is made along the line p,, from the top channel surface (z. c. s.) to the
bottom channel surface (b. ch. s.). In other words, the coordinates (¢’ ., f’H o) are a “center of
gravity” of the current density distribution along the line p,,. The point C (¢’ ., f’H o) belongs
to a current line. It is the current line that is the channel line /,, of the MOSFET.

The channel line  , is very useful and suitable for a mathematical description of various
2D effects and it is the essence of the quasi-2D modeling of the MOS transistor. Therefore,
it can be considered as a reference line & or, simply, as a coordinate &

As previously stated, the channel length L of the MOS transistor in the quasi-2D dc
representation is equal to the length of the channel line / ,, which can be expressed in the
natural coordinates as

L= E d¢ (2.10)

where ¢ and ¢ are end points of the channel line; see Fig. 2.8.

Si —

Fig. 2.8. The MOSFET channel line ¢ with its end points. The transistor operates
in the saturation regime.

Another parameter characterizing geometrically the flow of carriers between the drain
and the source is the arc-thickness of the channel, 7 (£), understood as the arc-length of the
front line of the movable channel charges. In this case, each equipotential line of the vector
field J(P) is the front line. Thus, the arc-thickness T ({) is a function of the independent
variable & and is defined in the natural coordinates as follows:

T,.(&)=]

(t.ch.s)

(b.ch. .s)
@.11)
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where the integration is made along the ¢’ -coordinate that intersects the channel line /,
at ¢ and the limits of the integral are the points of intersection of the path of integration
with the top channel surface (¢. ch. s.) and with the bottom channel surface (b. ch. s.); see
Figs. 2.1, 2.6, and 2.7.

Of high importance for modeling electrical MOSFET characteristics is an integral
measure of the movable-charge density, measured in C/m?, in the channel. It is defined in a
similar way as in [8]:

(b.chs

0.(&)=q[ " pe,eyde, 2.12)

(t.ch.s)

where the integration is made in the same way as described in the comment on (2.11) and
p' (&'}, &) is the hole density distribution over the path (contour) of integration.

Integral form of the dc continuity equation

Assuming that the MOSFET operates under dc condition and neglecting the generation-re-
combination phenomena, the channel current /, must satisfy the continuity equation in the
integral form that can be written in the Cartesian coordinates as

I, =] 3(x.y)-dA (2.13)

where the surface integral is taken over an arbitrary surface 4 intersecting the channel, and
J(x, y) is the current density vector in the channel. The magnitude of the integral is indepen-
dent of the choice of the integration surface A. In particular, we can write a simpler equiva-
lent formula for the channel current in the natural coordinates ('}, ¢), viz.:

(t.ch.s) ' oer ,
Ly=W{["""J(&, &) e (2.14)

(b.ch.s)
where the integration is made in the same way as described in the comment on (2.11).

Other quantities of the quasi-2D dc representation of the channel

As already stated, it is impossible to mathematically describe in an analytical form with abso-
lute precision in 2D-space the kinetic phenomena occurring in the MOS transistor. Therefore,
we need to simplify the problem, while accounting for the essential aspects of the two-di-
mensional nature of the transistor.

For the purposes of the quasi-2D analysis, we introduce a rectilinear system of coordi-
nates ¢ | and ¢ in which ¢-coordinate coincides with the channel line / ,, and { -coordinate is
an auxiliary axis that is used for describing quantities and phenomena versus the coordinate
perpendicular to the channel line.

A quasi-2D dc representation of the channel presented here is defined by the channel
length L, carrier concentration (holes in this case) p (¢), longitudinal electric field £ (¢), ve-
locity of carriers v (¢), current density J (¢), and effective channel thickness X (&).
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Since the channel line / , is the reference line in our considerations, it is reasonable
to assume that functional dependences on é-coordinate of p(¢), E(E), and v(¢) are the same
as those of, respectively, the carrier concentration, longitudinal electric field, and carrier
velocity over the channel line ¢ in 2D-space; see Fig. 2.8 and also Figs. 2.1, 2.6, 2.7. This
assumption enables us to preserve the well-known form of the current density equation:

J(&)=qp(&)v(S) (2.15)

If we assume further that the channel current 7, is known, an effective channel thick-
ness X(&) is defined as follows:

Il
X — ch
= @ v (210

Denoted by 0 .(¢), the channel charge per unit area in the quasi-2D representation,
cf. (2.12), is given by

Oc(8)=qp(S)X(S) 2.17)
The continuity equation for the quasi-2D representation of the channel has the form:
1,=J() X)W (2.18)

where the channel current /, is independent of ¢.
The longitudinal electric field E(¢) in the channel is related to the distribution of poten-
tial along the channel, V(¢), through the following formula:

dav(s)
E()=—"2=
(&) dc (2.19)
and satisfies the boundary condition, cf. (2.4),
drain
- E(§)dS =V (2.20)

Source

Obviously, parameter values of the quasi-2D dc channel representation can also be
determined by best fitting the experimental characteristics with the theoretical ones.

Finally, based on the results of two-dimensional numerical dc MOSFET analyses and
the discussion carried out in this section, we can derive the quasi-2D dc MOSFET channel
representation which is illustrated in Fig. 2.9.

The quasi-2D dc channel representation is characterized by the channel line &, channel
length L, channel width I, effective channel thickness X(¢), hole concentration p(¢), carrier
velocity v(¢), longitudinal electric field £(¢), and current density J(E).
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P(&),0(§),E(§) 1) |

L
<, g
Fig. 2.9. The quasi-2D representation of a p-type channel of the MOSFET.

2.2.2. Modified 2D dc MOSFET representation

Basing on the quasi-2D representation of the channel and using some rules, a modified 2D dc
representation of the MOSFET is defined in this section.

“Domain” and “image” of a 2D—into—quasi-2D transformation

As stated in Sec. 2.2.1, with increasing |V, |, the transistor channel extends. To take into
account the CLE, we must transform a part of the 2D transistor representation into an ap-
propriate part of a modified 2D transistor representation. The general concept of the trans-
formation is shown in Fig. 2.10.
The following symbols of Fig. 2.10a: N,'(x, y), N,'(x, ), p'(x, ), and n"(x, y) represent the
density of, respectively, positively ionized donors, negatively ionized acceptors, electrons,
and holes, whereas their counterparts of Fig. 2.10b are denoted by N, (£ , &), N (£, &),
p (& ,,¢)andn (E, <), respectively; L is the smallest distance between the electrically neu-
tral regions of the source and the drain. The electrically neutral part of the n-type substrate
is separated from the depletion region of the transistor by a surface represented by X () in
Fig. 2.10a, and by X, (¢) in Fig. 2.10b.

The “domain” of the transformation, denoted by R
(see Fig. 2.10a):

,p» 18 the region defined as follows

R,, ={(x,y): —t; Sx<t,0<y < Ly} (2.21)

and the “image” of the transformation is the region denoted by R, and defined as (see
Fig. 2.10b):

R, ={(,8): -1, <& <1, 0< 8 <L} (2.22)
The transformation is defined as follows:

E=x, E=Ay, A=L/Ly>1 (2.23)
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Relationships (2.21)—(2.23) enable us to determine quantities of the modified 2D representa-
tion of the transistor.

%
) b L, >
QG*(Y) Q VGS
[ [ P
t,* X*W) p*(x,y)

the channel line

E_*(0,y,
TEX*(o,yo <O )l

. ] -D
"ol P
RN R
t,* ®
v i Si-n
| O Vg
14 Los S »
b) < L, .
QG(E_,) QVGS
[ [ — +++++++
| Xd® P(E,E)

ET(07E_;2) l the channel line

.||||—Q A TET(Oaél)
1 . e D

; ® ® o
g N8~ 2
- @ Na(épé) -

n(&,,€) ®

\ OVBS ! é

Fig. 2.10. Transformation of the 2D MOSFET representation into a modified 2D MOSFET
representation. (a) Two-dimensional picture of a real p-channel MOSFET.
(b) Modified 2D representation of the p-channel MOSFET.


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

AN\ MOST

28 2. Quasi-2D representation of the MOSFET

Obvious transformation of some quantities
According to (2.23), we have the following relationships:

L=AL,, 121 (2.24)
Lo=4Lg (2.25)

X (&)=X,(E/ ) (2.26)

v, (0,5)=y; (O,i) (2.27)
ly=1lo, t,=1t, t,=1 (2.28)

Transformation of the other quantities

In the modified 2D MOSFET representation presented here, the transformation of N"(x, y),
N, (x,») N (x, »), N,/ (x, y), n"(x, ), and p*(x, y), determined in the region

S,p={(x):0<x<t,0<y< Lo} (2.29)

into their equivalents N, (£ , &), N (€, &), N, (€, &), N, (&, ¢),n (&, &), andp (€, <),
determined in the region

SqZD ={(£,6):0<¢ <1,0<8<L} (2.30)

is governed by a principle that the numbers of dopants, ionized dopants, and carriers in their
respective regions (§,, and quo) are equal; N '(x, y) and N, (¢ |, &) as well as N, (x, y) and
N, (&, ¢) stand for density of acceptors and donors, respectively.

Applying this principle, for instance, to donors, we have:

i, NoGeyydxdy=|  Ny&.£)dsds @31)
Reducing double integrals in (2.31) to iterated ones, we get:
[ ay [ Ny dx=["de [N, ) de 2.32)
0 y 0 D ’y 0 0 D\>1»> € .

Changing variables in the integral of the left-hand side of (2.32) according to the transfor-
mation (2.23), we can write:

Lpg 7. L b, 3 ,
(ot nfs )6

dé, (2.33)
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where
Ox  Ox
oy |_log, o) oGy |1
= ) == 2.34
06| |y o 0.0 7 @39
dg, 0
is the Jacobian of (2.23).
If we replace the Jacobian in (2.33) by its value, 1/4, then:
Los 0o, L nl o, &
.[0 dy.[o ND(x’y)dx_.[o dé:jo AND(gi’A)dgi (2.35)

When comparing (2.32) with (2.35), we obtain the following formula for the transformation
Of N,'(x, ) to N, &, £ )

ND(fL,é):iN;(él,jj 236)
Then, it can be shown by an argument analogous to the one that leads to (2.36) that
NA(éL,§)=/11N,I(§l,i) 237
N 6)= iN:(si, jj (238)
N,(E.6)= iN;(a, jj (239)
n(é,é)=/l1n*[§pj) (2.40)
p(§u§)=/11p*(ei,i) (2.41)

Transformation of x-component of the electric field vector on the semiconductor surface,
E (0, y), into its analog, E (0, &), is depicted in Fig. 2.11.

It is worth noticing that if L, is many times greater than thickness of the gate oxide
¢ . then a good approximation for Ex*(O, y) is as follows, see, e.g., [8, p. 302], [9], [10, p. 133],

: V. -y (0,
EX(0,)= w (2.42)

ox

where ¥ denotes the electrostatic potential at the gate, and y (0, y) is the electrostatic po-
tential at the semiconductor-oxide interface.

The transformation £ *(0, y) — E,(0, &) is based on the assumption that total amounts
of charges in the region D, (see the curvilinear trapezoid in Fig. 2.11a),

D,,={(x,y): 0 < x < X;(Y)a 0<y<Ly} (2.43)
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and in the region D,, (see the curvilinear trapezoid in Fig. 2.11b),

Dpp=151,6): 06, < Xy(6), 05 <L} (2.44)

are equal.
Thus, making use of the assumption, referring to Fig. 2.11, and applying Gauss’s law to
the transistor of a unit width, we can write:

X (Lpg)

—ee, ], EO.p)dy+a, |

L X,(L) X4(0)
= —508,, ] E;(0.9)dé+es [ E (&L DdE ~es, [ EL(E,0)dE,

* X;(O) *
E;(x,Lys)dx =gz, [ E)(x,0)dx
(2.45)

If we assume that fluxes of the electric displacement through the corresponding surfaces
(see Fig. 2.11) are equal, i.c.:

Xq(L)

X7 (Lpg) "
[ e By Lpg)dx = [ age, By (G, L) dé, (2.46)

0

Xg(0) . X4(0)
— [ e Bl 0ydx = — [ a8 B (£0,00dE, 2.47)

then (2.45) can be reduced to:
Lps L
[ El0.p)dy = [E0,)dé (2.48)

Changing the variable in the integral of the left-hand side of (2.48) according to (2.23), we get:

rl ., § L
7B (O,Jdé = [ E(0,£)d¢ (2.49)
and hence
E.(0,6) = lE,: [O,‘f) (2.50)
A A

Transformation of the charge per unit area on the inner gate surface, 0 '(y), into its
counterpart, Q. (<), is based on the assumption that the charge induced on the gate surface
by E (0, y) is equal to that which is induced by E (0, ¢); see Fig. 2.11. Relying on this as-
sumption, we can write:

[ 0cmdy = [, 0. de (2.51)

Changing the variable in the integral of the left-hand side of (2.51) according to (2,23), we
have:

Ll . é ot
|: EQG[ 1]‘”5 = [ 0s(&)de (2.52)

and this in turn results in:
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0;($) =%Q§(§] (2.53)
a) O6*(y)
——————— ++4+4+4+ 4+
T : E*(0.y) i
4 v L . Lps g’

: p*(x,y) 5
EEE P e
- 2D Ng*(x,y) N

A e )
X
s > b
X *
VX d (Y) Ey*(X’LDS)
X=¢,
y=§/k K:L/LDSZI
b)
0s(8)

——————— +++++++

E(0,8)
T T A v i vL

P(E.E) ’ g

57 n(e &) P
A D NEE T
E,(£..0) 7 N,(&.-9) ’)
e E(E.L)

Fig. 2.11. Transformation of {E (0, ), O,"(»)} into {£,(0, &), O (&)}; only transverse
components of the electric field are shown.
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2.2.3. Quasi-2D dc MOSFET representation

Under dc conditions, almost all quantities of the quasi-2D MOSFET representation depend
on bias voltages, and are functions of the spatial variable £.

Geometrical parameters as well as physical quantities characterizing the quasi-2D dc
representation of the channel are defined and comprehensively discussed in Sec. 2.2.1.

Based on the modified 2D representation of the device, some useful quantities of the
quasi-2D MOSFET representation, such as X, (), v, (0,¢), £,(0, £), and Q.. ($), have already
been defined in Sec. 2.2.2.

Now, we proceed to define the other quantities of the quasi-2D representation of the
transistor.

Effective spatial densities of donors, acceptors, ionized donors, and ionized acceptors in
the depletion region (region D, , in Fig. 2.11b), denoted, respectively, by N, (&) , N, (), N, (S),
and N (¢), are determined as follows:

[N, orde,

Ny (&)== 0 (2.54)
N (€)= L ]Z;:f;)dé (2.55)
N, (&)= / °Xd(§)N;§2’)§)d§l (2.56)
Na(f;)zfo’“@figfgf>dé 27

Denoted by N(¢), the net effective spatial density of positively ionized donors and neg-
atively ionized acceptors in the region D,, (see Fig. 2.11b) are given by

N()=N,(5)=N, (&) (2.58)

As in [2, 7], the surface charge densities (C/cm?) of uncompensated ionized dopants,
0,(£), holes, O (¢), and electrons, O (<), in the depletion region D, are defined as follows:

03(8)=qN(5)X,(S) (2.59)
0, =qf " p&. £)dz, (2.60)
0,&)=—q[ " n. . &)as, 2.61)
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The charges denoted by Q(¢) with proper subscripts are interpreted as charges per unit
area that are seen in ¢ | direction across an infinitesimal element of area of the plane £ = 0.
They are commonly found in theory of the MOSFET.

It is worth emphasizing that functions 0,©) and Q.(¢) are slightly different from each
other, but the following formula holds:

[fo,@de=] 0c(&)ds 2.62)

For the purposes of further quasi-2D analysis, we propose a quasi-2D representation of
the device, which is shown in Fig. 2.12.

The symbols E (<) and E(¢) denote, respectively, the vertical electric field on the
bottom channel surface and the vertical electric field on the top channel surface. We present
the vector £_,() as an arrow “attached” to a point belonging to the bottom channel surface,
and the vector £ () as an arrow “attached” to a point belonging to the top channel surface.

04(%) O Ves
——————— ++++++4

0c(©)

the channel line

N L8
® ©) ® ©
| Si-n
oV
BS é
L

Fig. 2.12. The quasi-2D dc MOSFET representation.

2.3. Conclusion

A quasi-2D dec MOSFET representation has been proposed in this chapter. The representa-
tion is a result of a 2D—into—quasi-2D transformation that is governed by some principles
we have established, and takes into account three newly introduced phenomena: the gradual
channel detachment effect (GCDE), the channel thickness modulation effect (CTME), a and
the channel-lengthening effect (CLE).

The quasi-2D representation of the MOS transistor lays the foundations for new qua-
si-2D non-quasi-static four-terminal small-signal MOSFET models that are developed in
Chapters 3 and 4.
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Chapter 3
TIME-DOMAIN MODEL

Wiestaw Kordalski

3.1. Introduction

Basing on the quasi-2D MOSFET representation proposed in Chapter 2, derivation of a novel
quasi-2D NQS four-terminal time-domain small-signal MOSFET model is presented in this
chapter.

In Section 3.2, physics of the transistor under small signal excitation is described. In
Sections 3.3, 3.4, and 3.5, respectively, a quasi-2D continuity equation, a quasi-2D Poisson’s
equation, and a transport equation are derived from first principles. Capacitive and non-ca-
pacitive terminal currents are analyzed in Section 3.6. A formula for the gate-to-body capac-
itance Cgb is derived in Section 3.7. Supplementary equations and useful rules are established
in Section 3.8. Section 3.9 provides main conclusions.

In this chapter, we assume that the gate, drain, source, and electrically neutral part of
the substrate are perfect conductors, no generation-recombination processes occur, and the
tunneling and leakage currents are negligibly small.

3.2. MOSFET under small excitation

In the dc state, neither the channel-gate nor the channel-body displacement current occurs—
no dynamic electrical coupling exists. However, if terminal voltages change with time, then
perturbations in carrier distribution, velocity of carriers, electric field, and channel thickness
occur. A transverse coupling appears between the channel and the structure. The coupling is
produced by the transverse electric field, and hence displacement currents flow between the
channel, the gate and the body. Furthermore, a regrouping of carriers in the channel in the
perpendicular direction occurs, which causes the current lines to deflect in the transistor. As
a result, the channel thickness X(¢), conduction current density J(¢), electric field, and the
other parameters that uniquely determine the quasi-2D dc representation of the MOSFET
change.

Let us consider a p-channel MOSFET operating in the saturation region of its output
characteristics under the dc and small-signal conditions, which is shown in Fig. 3.1.
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When the MOS transistor is biased with constant terminal voltages, all quantities of the
quasi-2D model of the transistor related to the channel, gate, and body depend only on the
spatial variable £, as shown in Fig. 3.1a. Under the steady-state conditions, the displacement
current occurs neither at the gate nor in the body, because electric charges on the gate and
in the body do not vary.

If we add in series small time-varying voltage sources vgs(t), v, (0), and v, (?) to their
respective biasing voltages V., V., and V, (see Fig. 3.1b) then the total magnitudes of; re-
spectively, the gate-source voltage v ,(¢), drain-source voltage v, (¢), and body-source voltage
v,(f) can be written as follows:

Ugs (1) = Vs + 0, (1) 3.1
Ups (1) =Vps + 0, (1) (3.2)
U (1) = Vigs + 0, (1) (3.3)

The time-varying terminal voltages cause perturbations in: concentration and velocity
of holes in the channel, electric field distribution in the transistor structure, thickness of the
channel, as well as in the gate and body charges. A transverse electrical coupling appears
between the channel and the transistor structure, which produces coupling currents in the
gate and the body.

For the purposes of further analysis, we introduce the following symbols: p(&, £), u(E, 1),
XG0, EC D, E G D, E (0, JE D, X, D), O, 0, and O, (S, ©), for denoting the to-
tal quantities of, respectively, the hole density, effective bias-dependent mobility of holes,
thickness of the channel (see Fig. 3.2), longitudinal electric field in the channel (see Fig. 3.3),
transverse electric field on the bottom channel surface (see Fig. 3.3), transverse electric field
on the top channel surface (see Fig. 3.3), conduction current density of holes, thickness of the
depletion region, gate charge per unit area, and body charge per unit area. Small departures
PG D1 D, XE D EE 10, E,, G 0, E, (& DTG 1), X, & 1), 0, (& 1), and 0, & 1) of the
total quantities from their dc values at the Q-point (quiescent point) , respectively, p (<),
1,0, X0, EfO). E @), E ). 0. X,y ©). Oy ©). and 0, (&) can be written as follows:

(&) =p(5,0)— py(S) (3.4)
1,(8,0) = p(8,1)— 1, ($) (3.5)
X6, =X (5,0 - X,(S) (3.6)
E\(&,0)=E(,D-E(S) (3.7)
E, (§,0)=E5(8,1) = E 5 () (3.8)
E (8,0 = Ec6(,0) = E (&) (3.9)
Ji(&,0)=J(5,0) = (&) (3.10)
Xpn(6,0) =X, (8,0)— X ;4(S) (3.11)
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0,(8,0)=0;(5,1)—0y(S) (3.12)
0,(&,1)=05(&,0) = 0y (&) (3.13)
D p®) Qo(8) Q Vs
E©)\ leo===== ++4+++++

b)
Go(S)TU(St AV R
b Epp ] LD O Vertos®
EG(E)+E (E,1)]\| o ++ 4+ ++ ++ + +
E 1 Ecg 1
X)X (E,0) cao(EDTE(E50) N
I“II-(P Eco(E)TE(E,1)
: = D
p ® ® p
©) i@ ®QBO(§)<® ® l ® W
| @ }
i ® @% ®
! (Gt
Si—n | O, (&N
| o) }
0 i Vistu,(t) i »};
Ey 3

Fig. 3.1. The quasi-2D representation of a p-channel MOSFET operating in saturation region
of its output characteristics (|V,;| > [V(]). (@) dc conditions. (b) dc and small-signal
conditions.
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To give a mathematical description of the dynamic behavior of carriers in the channel
as well as to calculate terminal and coupling currents, we need to use a quasi-2D continuity
equation for carriers in the channel, Poisson’s equation for the quasi-2D representation of
the transistor, and current transport equation. These equations are derived in Secs. 3.3-3.5.

3.3. Quasi-2D continuity equation

In this section, we derive quasi-2D continuity equations for current carriers in the channel
under dc and small-signal conditions, and propose some simplifications of the continuity
equation for small-signal conditions. The derivation is based on the quasi-2D representation
of the MOSFET channel, which is presented in Sec. 2.2.

3.3.1. Basic equations

Let us consider a sector of the quasi-2D representation of a p-type channel that is cut out by
planes perpendicular to the channel line &, with A¢ being the length of the sector; see Fig. 3.2.
The equations describe the flow of carriers in the channel in terms of two independent vari-
ables: &-coordinate and time denoted by #. As stated, generation-recombination processes in
the transistor are neglected in this work.

Let the steady-state concentration of carriers (holes) p () be lightly disturbed in a
macroscopic volume AQ (¢, AC) shown in Fig. 3.2. A small perturbation (departure) in the
carrier concentration causes small variations in the channel thickness and conduction current
density in the channel. Using (3.4), (3.6), and (3.10), the total quantities p(¢, 1), X(¢, f), and
J(&, f) can be written as follows:

p(&,0) = py (&) + p,(S.0) (3.14)
X(&,0)=X,(5)+ X,(5.0) (3.15)
J(&,0)=J,(8)+J,(S.0) (3.16)

According to (3.15), the macroscopic volume element AQ (¢, AC) highlighted in Fig. 3.2 also
changes its volume with time because the top and bottom channel surfaces change their
positions. Therefore, by analogy with (3.14)—(3.16), we can write:

AQ(S,A8,0) = AQ(5,A8) +AQ,(8,A¢,1) (3.17)

where AQ (&, A, 1) is the time-dependent departure of the total macroscopic volume
AQ (&, AS, 1) from its dc value.
Since the perturbations are assumed to be small, the following inequalities are true:

Po(&) >> p(&.1) (3.18)

X, (&) > X\(&,0) (3.19)
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Jo (&) >> J(E.0) (3.20)

For small perturbations, we can assume that relative time-dependent changes of the car-
rier concentration in the channel are directly proportional to relative time-dependent changes
of the channel thickness. Thus, we may introduce a dimensionless ratio of the proportionality
D_.(&, ?), which can be called a dynamic coupling factor of the channel,

10X,

X, (&) ot
1 dp(&.0)

po(&) Ot

D.(8,0) = (3.21)

We proceed to the mathematical formulation of the law of conservation of carriers in
the volume AQ(E, AS, #) highlighted in Fig. 3.2. The law states that the number of holes in the
volume may increase because of the net flow into the volume.

G
XX (&) AQ(E, A, D)
s 1egy
//_b__;_ ﬂ‘AQo(i’Aé)
R CHE '
B

Fig. 3.2. The channel with a time-dependent macroscopic volume element that is subjected
to a small perturbation, where J(&, 7) is the conduction current density.

Denoted by P, (f), the number of holes contained in the volume AQ(¢, AS, 1) at a time ¢
is as follows:

Rw=["WpEnxEnde 62)

An infinitesimal increase of P, (¢), denoted by dP (¢), corresponding to an infinitesimal
time interval, denoted by df, can be written as

dP, (1) = dt | :”5 W%[ PENX(E,D]dE (3.23)

with W being the channel width.
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On the other hand, d P, (?) is equal to the flux of the holes through the surface bounding
the volume AQ (&, A¢, 1) multiplied by dt. Hence, we have:

dP,(t)=dt { X(&DJI(E) ——X(.f +AEDJ(E+AE, t)} (3.24)
Equating the two expressions for d P, (f), canceling out dt, and then dividing the result

by A W/gq, we obtain:

E+8¢ O
qA—g —[p(§ N X(E,n]dE

= A—g[X(fS,t) J(ED) = X(E+AE,D) J(E+AE,1)]

(3.25)

Assuming that all the functions appearing in (3.25) are differentiable, passing to the
limit with A — 0, performing the necessary calculations (details are given in Appendix A),
referring to (A12) and (A13), and omitting the mixed terms X (&, 9)-[0/J,(S, )/ 0¢] and J|(E, ©)
[0X (&, #)/0¢] in (A13), we may write the quasi-2D continuity equation for a small departure
of hole concentration:

op\(&:0) _ 0A(E0) Ji(E0) dXy (&)

a1+ D0l =, o8 X, dé

(3.26)
X80 dJ, (&) Jy(S) 9X,(S,0)
Xo(§) d& X&) 0
and for dc conditions
dJ,(S) . Jo(&) dX,(0) _ (327)

g X,(&) d¢

Similarly, it can be shown that for the n-channel MOSFET of which the source, drain,
and &-coordinate have the same orientation as in Fig. 3.2, the quasi-2D continuity equation
for a small departure of electron concentration (S, £) is as follows:

on (C) _ SAED  HED 2K
05 X9 dg

. Xl (E0 dy(&) , Ju(©) X, (E:0)
X&) di X© o

q[1+D.(&.0)]
(3.28)

and (3.27) is still held for dc conditions.
Based on (3.26) and (3.28), one can see that the rate of changes in the excess carrier
concentration depends on: the dc channel thickness, as well as its gradients of the dc and
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small-signal values. Moreover, it depends on the dc conduction current density, as well as its

gradients of the dc and small-signal values, and the dynamic coupling factor of the channel.
The right-hand sides of (3.26) and (3.28) can be written in terms of J|(¢, 1), X (£), and

d X (&)/d¢ if we introduce two factors D, (¢, #) and D (¢, ) which interrelate variations in the

shape and thickness of the channel with the perturbations in the conduction current density.
Let the dynamic channel-to-current coupling factor D, (¢, 7) be defined by

X80 /(S0

D,(&,t)=— .
SR Y AE (429
and the dynamic channel deformation factor D (¢, #) by
1 a Xl (55 t)
_ X&) o
Dy(S.0)=— 0J,(&,1) (3.30)
Jy(&) o0&

Then, using (3.27) and inserting (3.29) and (3.30) into (3.26) and (3.28), the quasi-2D
continuity equations for the small excess carrier concentrations may be rewritten in the form:

pl((f 2 0J, (5 n 1+Dy (S0 dX,(&)

X, (&) dg

q[1+ Do (E,0)]———— = —[1+ Ds(&,0)] J(&,1) (3.31)

for the p-channel transistor, and

1(5 2 0, («f ), 1HDy(6.0 dX,(S)

+ D
= [+ Dsen] X,@)  dé

q[1+D.(&,0)] ——— Ji(&,8) (3.32)

for the n-channel transistor.

As in the case of D _.(¢, ), the coupling factors D, (¢, £) and D (¢, ¢) are functions of ¢
and ¢, however, the behavior of D (¢, #) and D(¢, £) versus ¢ and 7 is an open question and the
definitive answer to the problem requires an additional (numerical) analysis.

3.3.2. Some simplifications

Under some assumptions, simplifications of (3.26) and (3.28) are possible.
Channel-shape-conserved approximation
Differentiating (3.15) with respect to ¢ yields:

aX(f,I)deo(§)+5X1(§,l)
o0& dé o0&

(3.33)
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If we assume that the shape of the channel is conserved during perturbations, as shown
in Fig. 3.2, i.e.:

0X(&1) _dX,(&)
0¢ g
then taking account of (3.33) leads to 0X (¢, £)/0¢ = 0. As a result, (3.26) and (3.28) take their
respective forms:

(3.34)

l(fft) A& J(EndX, X, (&,0)dJ,
q[1+D.(£,0)] or a(g 0 X(igt)) df)— X(é;) d;:) (3.35)

and
on (‘f 2 _ 040 S0 dX,(S)  X(S0)dJy(S)
a1+ Lo or Tx@ df | x@ az O
Gradually-thickened-channel approximation
Equation (3.27) can be rewritten as
dJy (&) __Jo(8) dX,(S) (3.37)

dé X, (&) dé

If we assume in (3.37) that the CTME can be neglected, d X (<) / d¢ = 0, the channel is
thick enough, and the conduction current density J (¢) is small, then the term d.J(£)/ d< can
be ignored. Therefore, the second and third term in (3.26) and (3.28) can be ignored, and as
a consequence the equations take their respective forms:

5131(5 D __0J(&0) _Jy(&) 9X (1)

q[ 1+ Do (&,0)] TR G 85’ (3.38)
and
J[14 D] on (5 1) 6.]1;?0 N }J(O(é)) 8Xé(§§,t) 539

Gradually-thickened-and-slightly-deformed-channel approximation

We can considerably simplify (3.26) and (3.28) if we simultaneously apply both of the
above-introduced approximations, i.e., if we assume that the channel is thick enough,
0X(&, 8)/0¢=0,and dX () / d& = 0. Then, (3.26) and (3.28) become, respectively,

Op(ED) s

q[1+D.(.1)] o o

(3.40)
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and

d
q[1+D.(&.1)] na(f ") aJa(§ 1) (3.41)

It is worth noticing that (3.31) and (3.32) are becoming identical to (3.40) and (3.41),
respectively, if the factors D, (¢, ) and D (¢, #) tend to zero and d X ($) / d< = 0.

Gradually-thickened-and-strongly-deformed-channel approximation

If the channel thickness changes gradually, dX ({) / d¢ = 0, the dynamic channel-to-current
coupling factor D, (&, #) is sufficiently small, and the dynamic channel deformation factor
D, (¢, ) cannot be neglected, then (3.31) and (3.32) are as follows:

p1(§ 1) aJ, (5 )

q[1+ D (&,0)]| ———=—[1+Ds(&,0)] —2—= (3.42)

and

1(5 1) oJ. (5 1)

q[1+ D (&.0]———=[ 1+ Dy(&.0]—L== (343)
Slightly-deformed-channel approximation

If the dynamic channel-to-current coupling factor D, (¢, ?) is large enough and the dynamic

channel deformation factor D(¢, #) can be neglected, then (3.31) and (3.32) can be reduced

to, respectively,

pl(f H_ o5& 1+D(EN dX, (&)
o5 Xy (S) dg

q[1+ D.(&,0)] JI(ED  (3.44)

and
on (5 1) _0J,(&0) N 1+ D, (&,1) d X, (&)
o0& X, (&) ds

q[1+ D.(&,1)] Ji(6.1)  (3.45)

Slightly-deformed-channel-and-weakly-coupled-channel-to-current approximation

If both the dynamic channel-to-current coupling factor D (£, ) and the dynamic channel

deformation factor D (¢, ?) are sufficiently small, then (3.31) and (3.32) simplify to:

op(&) a4 1 dX($)
ot o5 X&) d¢

q[1+ D (&,1)] J,(&,0) (3.46)

and
on (g 0 _0J,(&, .1 dX ()
o0& Xo(é) dé

q[1+ Do (&,0)] J(E,0) (3.47)
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3.4. Quasi-2D Poisson’s equations

In this section, we derive quasi-2D Poisson’s equations for dc and small-signal conditions,

and propose some simplified versions of these equations.

3.4.1. Equations for steady-state (dc) and small-signal conditions

If voltages at the transistor terminals change with time, one can observe perturbations in
carrier concentration, channel thickness, longitudinal and transverse electric field, and the

other quantities shown in Fig. 3.1b.

Let us consider a volume AQ (&, AZ, ) depicted in Fig. 3.3.

G

ECGO(§)+Ecg(§3t)
AQ(S,AS)

X(OHX (&)

¢ECBO<<%)+ECb<é,t>

AQ (G, AS)

B

»
>»

Ey g E+A

Fig. 3.3. A time-dependent macroscopic volume element of the channel

under a small perturbation.

Applying Gauss’s theorem to the volume, we can write:

Rp-da = ¢ [ NE+pEnIan

AQ (&, A8, 1)

L

(3.48)

where 4 is the closed surface bounding the volume AQ (&, AL, 1), N(S) is the effective concen-
tration of ionized impurities in the substrate [see (2.58)], D is the displacement vector, and ¢

is the magnitude of the electronic charge.

Due to regularity of the domain AQ (¢, AS, £), (3.48) can be transformed into:

af TXEDINGpENdE= e[ EqEndérae | EgEnds
+&,&, [X(E+ASNE(E+AS )~ X(5,0) E(S,1)]

(3.49)
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with ¢, and ¢_being, respectively, the permittivity of free space and the relative permittivity
of the semiconductor substrate.
Dividing (3.49) by A&, we have:

q [ éras
agle XEOWNE+pEnds= Aéj

+ X+ AED BE+AED =X (E0) BE ]

Eqy (&) dE+ 06;1 Ec(&,0)d¢

(3.50)

Assuming that all the functions appearing in (3.50) are continuously differentiable,
passing to the limit with A — 0, performing the necessary calculations (details are given
in Appendix B), and omitting the mixed terms—p (S, )X (S, 0, X|(&, O)'[OF (&, 1)/ 0<], and
E (& 0[0X (S, 1)/ 0¢]—in the analysis, we obtain a quasi-2D Poisson’s equation for dc con-
ditions [refer to (A29)]:

dEy(S)
gL X (SN + X, (S) po(8)] = &6, Xo(&) e
ix, (3.51)
EL() ;5)+ECGO(§>+E@0(§>}
and a quasi-2D Poisson’s equation for small-signal time-varying conditions [see (A30)]:
0E (¢&,1)
q[ X, (&) pi(E,0)+ N(&) X,(S,0)+ po(§) X((E,0] = &, {X ) —F— oe
0 1 > d
X, En” f)w (E0+ EyEn+EO T 204 E () Xf’}

(3.52)

The quasi-2D dc Poisson’s equation (3.51) can be written in a more convenient form:

qpo@)X(é){ N((?J 608.[ Econ@)+ Ecn(@)]
Po " p (3.53)
+8085X0(§){ €, o(f)dXO(f)l
¢ X, (§) d&

Likewise, the quasi-2D small-signal Poisson’s equation (3.52) can be rearranged as fol-
lows:
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N()
Py($)
E,(&) 0X,(&,0) . E\(&.1)dX, (&) L XD dE, (&) N OE,(&,1)
X&) o X, (&) d& X (&) dS o¢

q (&0 X (S) [HP (& I)[H ]]— £08,[E, (S, +E,(S.0)]

+ 0 3X0(§)|:

(3.54)

where P (¢, £) is a dynamic carrier-to-channel coupling factor, defined by

X(&0 /P&
B.(&t)= .
&= &/ me© (3.5)

3.4.2. Simplified equations

Useful simplifications of (3.54) are presented in this section.

Thick-channel approximation

If we assume that the transistor channel is thick enough to neglect the last three terms in the
square brackets of the right-hand side of (3.54), we have:

qpi(s.0) X, (5){1+P (&,1) (1+ N((é;))j:l

_ { mm}
- 80 gs ¢ ’ ch\9» 0
g ag

Weakly-coupled-carrier-to-channel approximation

(3.56)

If the dynamic carrier-to-channel coupling factor P_.(, 7) is negligibly small, we may reduce
(3.54) to:

E\(S.0)

qp,(&,1) Xo(&) = &6, [E (S0 +E, (5, D]+¢&6, X (5){
(3.57)

JEEDaX©) | XEnAEQ) | EyE) aXl(é,r)}
X&) di X @) dE X&) o

Thick-channel-and-weakly-coupled-carrier-to-channel approximation

If the dynamic carrier-to-channel coupling factor P (¢, ?) is negligibly small and the thick-
ness of the channel sufficiently large, then (3.54) may be reduced to:
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IPEDXN(E) = £ e.[E, (E)+ E, (E0]+ 66, X, (&) EED f) (3.5

Other simplifications of (3.54) are also possible.

3.5. Transport equation

We assume that electromagnetic radiation effects can be ignored in our analysis because the
dimensions of a typical transistor are much smaller than the wavelength corresponding to
1-THz frequency.

In the time domain, the total current density in the transistor channel J, (¢, 7) consists of
two components, namely, the total conduction current density J (&, £) and the displacement
current density J, (¢, #), see, e.g., [1, Ch. 10], [2, Ch. 3]; drift and diffusion are the basic car-
rier transport mechanisms of the conduction current [1-10]. Thus, we can write:

J (&) =J(E )+, (D) (3.59)
(&) =qu&t) pE.NEE.)-qD,&0) ap(z: 1) (3.60)
S (6,0) = aEéf’t) (3.61)
where D (& 1) is the diffusivity of holes,
Combining (3.59)—(3.61), we may write:
0PED) o g EGD (3.62)

J(6:0) = qu(s.t) p(5,0) E(S,)—q D,(5,0) ——— 2 T T

At a Q-point, we may split the total current density J (¢, #) between the dc conduction
current density J (¢) and the total small-signal current density J, (S, ?):

J (S0 =Jy(S)+J, (5,0 (3.63)

For small perturbations, we can neglect time-varying changes in the diffusivity of holes
and subsequently assume that the diffusivity is determined by values of respective quantities
referring to the dc operating point:

D,(&.t)=D,,(&) (3.64)

in which Dpo(é) is the diffusivity of holes at the Q-point.
Using (3.4), (3.5), (3.7), (3.63), and (3.64), we can rewrite (3.62) as follows:
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Jo()+ (60 = q [, (E)+ (5D Py (E)+ P (SDILE (&) + E (S,0)]

a[po(§)+l)1(§,t)]+ O[E(S)+E\(50]  (3.65)

_quO(g) ag 8085 af

Making some calculations in (3.65), then neglecting higher-order mixed terms, and
finally separately grouping the zero-order and first-order terms, we have:

op,
Jo(§)=qu,(S)py(§) Ey(S) =g D, (S) paf) (3.66)
for dc conditions at the Q-point, and
J(S,1) = J (1) + J 4, (E,0) (3.67)

for small-signal conditions, where J|(¢, ?) is the small-signal conduction current density of
holes,

JI(&0 = q 1,(8) Ey(S) pi(S:D)+q 1,(5) py(S) E(S,0)

ap, (&, 3.68

OE,(5.1)
t

J i (E:0) = &y ¢, (3.69)

Obviously, J, (&, ?) in (3.69) equals J,, (S, ?) in (3.61).

We can see from (3.67) to (3.69) that the total small-signal current density consists of
five terms: the first one represents the drift of the excess holes p (¢, ?) in the stationary field
E (&), the second is the drift of the holes of the stationary distribution p ({) in the small-sig-
nal field £,(, 1), the third is the drift of the holes of the stationary distribution p () moving
in the stationary field £ (<) with the mobility x,(C, 7), the fourth is the diffusion component
of the excess holes p (¢, #), and the fifth is the displacement current.

Referring to (3.5) and assuming isothermal conditions, one can see that, for sufficiently
small perturbations around the Q-point, 4 (¢, #) is simply the differential of the mobility ,uq(@
with respect to the following electric fields: £,(), £.,($), and £, (£); see [1-6]. However,
the impact of £_, () on the mobility can be ignored, because the effect of the body-source
voltage ¥, on the mobility is negligibly small; refer to, e.g., [3, Sec. 4.10]. Hence, we can
write:

ou, (&)

B ou, (&)
H(&,1) _MEl(g’t)_l—mEcg(g!t) (3.70)

Thus, (3.67)—(3.70) constitute a set of non-quasi-static time-domain small-signal equations
describing propagation of excess carriers in the channel.
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3.6. Terminal currents

Small-signal currents in the MOSFET can be split into capacitive and non-capacitive ones,
ignoring generation-recombination processes and the leakage and tunneling, currents.

The capacitive currents charge capacitances of the transistor.

We can distinguish three types of the non-capacitive currents: the conduction current
described in the previous section, coupling currents induced on the gate and in the body by
perturbation in the channel charge (they are analyzed in Sec. 3.8), and the non-capacitive
displacement current described in Sec. 3.6.2.

By virtue of the principle of superposition, we separately analyze terminal capacitive
currents and terminal non-capacitive ones.

3.6.1. Capacitive currents

To determine the terminal capacitive currents, we suppose that the relaxation time 7 [3, 11],
r=¢g¢, /0, (3.71)

of conducting regions of the gate, body, drain, and source is exceedingly small. Conse-
quently, we may assume that these regions are perfect conductors; with ¢ and ¢ being,
respectively, the relative permittivity and conductivity of the conducting regions. We can
thus regard the gate, body, drain, and source, as a system of four conductors capacitively
coupled with each other by six differential (small-signal) reciprocal capacitances Cg_s_, Cg -
Cgb, C,.,C,,and C,, as shown in Fig. 3.4; see also [12].

It should be emphasized that each of these capacitances does not consist of so-called
intrinsic, extrinsic, fringing or overlap capacitances. Each of these is simply a reciprocal ca-
pacitance. Obviously, small-signal currents charging the capacitances ng, Cg » Cgb, C,..C
and C, appear if small-signal voltages 0,0, v, (0, and v, (¢) are non-zero ones.

Denoting the small-signal charging currents by ig“‘P(t), i, "), 1,°%(t), and i “*(f), and
applying Kirchhoff”’s current law to each electrode, we have:

L (0)=C, %+ cgb%+ ’ d;;“ 3.72)
L () =C, d;f +C,, d:;’g c, d;;b G.73)
i,“’(t)=C, d;’” +C,, d::g . d;:d (3.74)
i) =- Cg‘v%—Cﬁ%— Cb‘g% (3.75)
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If we transform all the voltages in (3.72)—(3.74) into voltages referenced to the source,
as shown in Fig. 3.4, then (3.72)—(3.74) can be rewritten as follows:

Cw dv,, dv, dv,,
i,7(t)=(C,+C,+Cy) dzg ~Cy d: -C, dzb (3.76)
. cq dU S dUS dU s

i, (1) =-C, 7;+(cgd +C, +cbd)d—;— C, sz (3.77)
- dv, dv,, dv,,

() = - Cngtg_ded_:-l-(Cbs +C,+Cyy) dtb (3.78)

ig& Q Ugs(t)

Si—n

V(1) O€— (1)

0 L

Fig. 3.4. The time-domain small-signal representation of the MOSFET with terminal voltages
referenced to the source.

\ .

It is important to note that the algebraic sum of the terminal charging currents entering
the transistor as a whole is zero [see (3.75)—(3.78)]:

O+, "0+, O+, (0)=0 (3.79)
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The result is not surprising, because each of the six reciprocal capacitances stores no net
charge. This means that the charging currents satisfy Kirchhoff’s current law expressed by
(3.79).

3.6.2. Drain- and source-terminal non-capacitive currents

By virtue of the principle of superposition, the small-signal terminal currents i (¢), i, (1), i,(2),
and i (1)—see Fig. 3.4—are given by

i ()=, (0)+i," (1) (3.80)
()=, () +1, (1) (3.81)
i, ()=, (t)+i," (¢) (3.82)
()= “"(0)+i"(t) (3.83)

where ig"’“’(t) and i,"(?) are the coupling currents induced on the gate and in the body, respec-
tively, and i "(#) and i,"(¢) are, accordingly, the source- and drain-terminal non-capacitive
currents.
According to Kirchhoff’s current law, the algebraic sum of the currents i (¢), i,(?), i,(),
g
and i (#) should be zero,

() +i,(0) +i, () +i,(1)=0 (3.84)

If we add the equations from (3.80) to (3.83) and take account of (3.79) and (3.84), we
obtain:

i O+ O+, O+ () =0 (3.85)

Equation (3.85) is Kirchhoff’s current law for non-capacitive currents in the MOSFET
under dynamic operation conditions.

Based on (3.67), the total drain-terminal non-capacitive time-domain small-signal cur-
rent i, "“(t) and the total source-terminal non-capacitive time-domain small-signal current
i "“(¢) are defined by

1 () = 17" (0) + i 1, (2) (3.86)
i"(6) = i () +i".(1) (3.87)

. con

where i;”"(¢) and i (¢) are, respectively,the drain- and source-terminal time-domain
small-signal conduction currents, described by the two equations:

i) == W X(Lt) J,(L1) (3.88)

i) =W X(0,1) J,(0,0) (3.89)
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ne

whereas i, (f) and i, (¢) represent, respectively, the drain- and source-terminal time-do-
main small-signal non-capacitive displacement currents.

The current i, () is not equal to —i“"(¢) in general, because moveable charges can
be accumulated in or extracted from the channel.

Displacement currents depend on the electric field in the channel including its ends. In
general, when carriers are injected into the channel and v, (¢) is not equal to zero, the electric

field £,(C, #) acting on carriers in the channel can be written as follows:
E](gat):Elex;(é:,t)'i_Eli(é:at) (3.90)
where E,,_ (¢, 1) is an external field set up by v, (),

AU

391
I (3.91)

Elext (f’t) ==

and £, (¢, ©) is an inner field set up by the small-signal excess charges p (¢, ?); see Sec. 4.4.1.
Given (3.69) and (3.90), we have:

6E'lext (év t) aEli(gat)

J 1 (E,1) = g, €, +&,¢, 3.92
dlsl(§ ) 0 a[ 0 a[ ( )
Denoted by J .7 (&,t), the first term on the right-hand side of (3.92),
0E,, (&,1)
Tl (1) = 6,6, — = (3.93)

ot

represents a displacement current density induced by the external field £, (S, ) [see (3.91)],
and therefore it is simply a capacitive current density that is associated with the capacitance
C,; see Fig. 3.4. Based on (3.91) and (3.93), one can see that J ;" (&,?) is independent of &,
which confirms the capacitive character of the current. The displacement current density
J " (&,t) produces a capacitive current flowing through the capacitance C, . The capacitive
current is separately taken into account in the model (see Fig. 3.4) as well as currents i, “?(?)
and i “7(?) in (3.79)—(3.83).
The second term on the right-hand side of (3.92), denoted by

0E, (&,1)

JrE(E ) =¢,¢
dm(g ) 0%s 81‘

(3.94)

is a non-capacitive displacement current density in the channel, which is determined by the
inner field £, (¢, 7); see Sec. 4.4.1.

We know from physics of the transistor that the small-signal excess charges p (¢, ©)
induce surface charges on the gate, body, drain and source; see Secs. 3.2 and 3.4. In a real
MOSFET, the distributions of surface charges are nonuniform and the regions of the drain
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and the source are bounded by cylindrical surfaces in a three-dimensional space. It means
that the distribution of the longitudinal electric field is not confined only to the channel.
Therefore, in our quasi-2D approach, we assume that the longitudinal electric field £, (S, ),
set up by the small-signal excess charges p (¢, ), is associated with an equivalent paral-
lel-plate capacitor whose capacitance equals C, and its plates are separated by a distance L
(L being the channel length). Thus, denoted by 4_,, an effective area of each of the two
plates is:

_LC,

cds 3.95
= g (3.95)

A

Therefore, based on (3.94), (3.95), and Fig. 3.4, the drain-terminal time-domain

nc

small-signal non-capacitive displacement current i, (¢) is:

i’ (t)=-LC, ———
ddis d ey,
Similarly, the source-terminal time-domain small-signal non-capacitive displacement
current i, (f) is:
0E,(0,1)

l.sr;s (t) =L Cds a ¢

(3.97)

The coupling currents ig""”’(t) and i,"() are analyzed in Sec. 3.8.

3.7. Gate-to-body capacitance Cs

The quasi-2D dc MOSFET representation enables us to calculate the capacitance Cgh. First,
we evaluate two circuit elements: a differential (quasi-static) gate-to-channel capacitance Cgc
and differential (quasi-static) body-to-channel capacitance C, , which are subsequently used
to estimate the differential gate-to-body capacitance Cgb.

3.7.1. Preliminary remarks

In the quasi-static small-signal analysis performed in this section, we assume that variations
in the terminal voltages V  and V', are sufficiently slow, which—after [3]—means that
charges per unit area at any time on the gate, in the body, and in the channel are identical to
those that would be found if dc voltages were used instead.

In the case of small harmonic signals exciting the transistor, we may say that the as-
sumption of quasi-static operation is justified if the period T of the signals is over one hun-
dred times greater than the transit time 7 of carriers across the channel:

T>1007, (3.98)

where 7,_is given by
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L d§
7, =] ) (3.99)

where v({) is the velocity of carriers traveling along the channel line; see Figs. 2.8, 2.12, and
3.5. It is worth pointing out that v(¢) is determined by biasing voltages at the Q-point.

Let us consider a quasi-2D picture of a p-channel MOSFET that operates under dc
conditions, which is shown in Fig. 3.5.

If V_ is large enough, a dc drain current /,, flows in the drain-source circuit, which is
a function of three biasing voltages, i.e., [, = I, (V ., V., V)

For any point ¢ € [0, L] on the channel line, we can define three voltages: V. (£), V,,.(©),
and V(<) between the point and, respectively, the source, the gate, and the body, as shown
in Fig. 3.5. Due to potentiality of the electric field in the device, the voltages must satisfy

Kirchhoff’s voltage law, i.e.:

Vs = Ves (§)+ Ve () (3.100)

Vas = Ves (§)+ ¥V (S) (3.101)

ik 56

N

V(&)

the channel line | p

S

[ l------:‘---{-------:---l ]
J |p+ Ves(€) L, Pl
Vic(©) ’

) ID(VDS’VGsv VBS) —

.

0 L

Fig. 3.5. A quasi-2D picture of a p-channel MOSFET under dc conditions with terminal
voltages referenced to the source.
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A system consisting of the gate, depletion region, and the channel should be electrically
neutral as a whole. Hence, the overall charge neutrality equation for the quasi-2D MOSFET
model can be written as follows:

46 +qc+4q5 =0 (3.102)

where ¢, g, and ¢, are, respectively, the charge on the gate, the moveable charge in the
channel, and the charge being the sum of the uncompensated charge of ionized impurities in
the body and the effective charge of the (Si-SiO,)-interface.

The charges occurring in (3.102) are defined by

4o =W [ 0,(£)ds (3.103)
ge=W[ 0.(&)ds (3.104)
g, =W [ 0,(&)dE+WLQ, (3.105)

with W, Q. (), 0.($), Q,($), and O being, respectively, the width of the transistor, the
surface charge density on the gate, the channel charge per unit area [defined by (2.17)], the
surface charge density of ionized impurities in the depletion layer [defined by (2.59)], and
the effective (Si—SiO,)-interface charge per unit area [3].

It is worth emphasizing that charges of the six capacitors of Fig. 3.4 do not bring any-
thing to (3.102) because each of these capacitors is electrically neutral as a whole.

3.7.2. Quasi-static gate-to-channel capacitance Cg(

If V,, is quasi-statically changed by an infinitesimally small voltage dV, as illustrated in
Fig. 3.6, then the charges O .({) and O (¢) as well as the drain current /,, and the charges on
the capacitances Co and C, (see Fig. 3.4) also change. Since dV, is infinitesimally small
and the voltages V, and V,, are fixed, we can take an assumption that distributions of the
voltage V. (¢) and the longitudinal electric field over the channel line (see Fig. 3.5) do not
change. Taking this into account and differentiating (3.100), we obtain:

dVye (&) = dV (3.106)

As the gate is equipotential, (3.106) implies that the channel line is also an equipoten-
tial line for small variations in V.. Consequently, the system consisting of the gate and the
channel may be regarded as a quasi-static capacitance Cp

Letl), g0 Degy Dpo and 0., © denote, respectively, 7, q., q., q,, and Q_.(<) re-
ferred to the circumstances shown in Fig. 3.6.

The body charge ¢, does not vary in the circumstances shown in Fig. 3.6. Taking this
into account and differentiating (3.102), we obtain:

dq, . =—dqc, (3.107)
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The quasi-static capacitance Ce. is defined as follows:

Cgc = Cilq;_gs
“ (3.108)
— _dqcfgs
dV

Before proceeding further, we state that all the terminal currents in this work are de-
fined as entering the device, as shown in Figs. 3.4-3.8. Therefore, for quasi-static condition,
we can write:

I,=-1, (3.109)
and combining (2.16), (2.17), and (3.109), we have:
Iy ==Wuv(5)Q0(S) (3.110)

Fﬂ Sles 36 Qu®

—————— ctt++++t+

+ + + + + + + + + +
I

\
o dBec@Ny L d06.(8)
R A

I
I
L

J e ]|
P Oco(©)+d0c o (O) Lyl P’

the channel line

|—> ( ID+ gdeGs) —
=
Fig. 3.6. An MOSFET under a small quasi-static excitation dV/..

As stated previously, the distributions of the voltage V(<) and longitudinal electric
field over the channel line do not change in the situation depicted in Fig. 3.6. Thus, we may
assume the distribution of the carrier velocity v(¢) in the channel also not to change, which
means that the differential do(&) = 0. Taking this into account and differentiating (3.110),
we can write the following formula for the differential d/ es in the circumstances shown in
Fig. 3.6:
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dl, ,=-Wv(§)d0 . (&) (3.111)

Equation (3.111) is true for every ¢ € [0, L], because the continuity equation should be ful-
filled also for infinitesimals under quasi-static conditions.
On the other hand, based on the definition of the gate transconductance g, , one can
write:
dly =g, dVs (3.112)
Comparing (3.111) and (3.112), we obtain:

AV,
dQ . (&) =- ‘;,”’U—(g) (3.113)

Integrating (3.113) and taking account of (3.99), we get the following formula for the
differential dg Coas of the channel charge:

dgc =W [ dO. (&) dé

—_ g av, :ﬁ (3.114)
v (&)
= - gm Ttr dVGS

Combining (3.108) with (3.114), we get:
C.=8,7, (3.115)

The capacitance Cgc is nonuniform, because dQC_gS (&) determined by (3.113) is not a con-
stant function of ¢ in general.

3.7.3. Quasi-static body-to-channel capacitance (,

The method used to derive the formula for Cgc can be directly applied to finding a formula
for the quasi-static capacitance C, .

Let us consider a quasi-2D picture of a p-channel MOSFET that operates under an
infinitesimally small quasi-static excitation dV,, as shown in Fig. 3.7.

The small voltage dV causes small variations in Q..(¢), Q,($), /,,, and also in the
charges on the capacitances C, and C, , (see Fig. 3.4). Since dV, is infinitesimally small and
the voltages V', and V are fixed, we can take an assumption that the voltage V. () and
longitudinal electric field over the channel line (see Fig. 3.5) do not change. Taking account
of the assumption and differentiating (3.101), we obtain:

AV (&) = AV, (3.116)
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As the gate is equipotential, (3.116) implies that the channel line is also an equipoten-
tial line for small variations in V.. Consequently, the system consisting of the gate and the
channel may be regarded as a quasi-static capacitance C, .

Letl, . q 09,0 9500 and 0.,,© denote, respectively, 7 Gor 9o Do and 0. ($) re-
ferred to the circumstances shown in Fig. 3.7.

In the circuit shown in Fig. 3.7, the gate charge ¢ . does not vary. Taking this into ac-
count and differentiating (3.102), we get:

dqy p =—dqcy, (3.117)
The quasi-static capacitance C,  is defined as follows:

dqy
¢ dV s
__ dqc_,
d Vi

G,

(3.118)

As stated previously, the distributions of the voltage V. (¢) and longitudinal electric
field over the channel line do not change in the situation depicted in Fig. 3.7. We may thus
assume the distribution of the carrier velocity v(¢) in the channel also not to change, which
means the differential dv(¢) = 0. Taking this into account and differentiating (3.110), we can

write the following formula for the differential d/,, in the circumstances shown in Fig. 3.7:

VGS
_+|=_ ?G Oaol©)
——————— e e s s s e
d
S Qor(Ertden(S) the channel line| p
N p— |.<,
N he I, +dI, V4
4 1\ 1\ _!_Cbc't\\ h Glen 1\
) i dEgc(§)
sicn  9s®
Ves  dVy T B
—i——k
&' ( ID+ gmdeBS) —
Tk

Fig. 3.7.  An MOSFET under a small quasi-static excitation dV .
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dl, ,,=-Wuv (&) do. (%) (3.119)

Equation (3.119) is true for every ¢ € [0, L], because the continuity equation should be ful-
filled also for infinitesimals under quasi-static conditions.

On the other hand, basing on the definition of the body transconductance g ,, one can
write

dlp =&, dVis (3.120)
Comparing (3.119) and (3.120), we obtain:

o AV

dQC—bs(g) == W

(3.121)

Integrating (3.121) and taking account of (3.99), we get the following formula for the
differential dg ., of the channel charge:

dge =W [ dQ ., (&)dE

L_dg (3.122)
PlouE)
= gmb Ttr dVBS

== &mw B

Combining (3.118) with (3.122), we get:

Coo = &m Tn (3.123)

The capacitance C,  is nonuniform, because the differential dQ ., (¢) determined by
(3.121) is not a constant function of ¢ in general.

3.7.4. Gate-to-body capacitance €
gb
The capacitance C, is defined by

Cgb = 445
dV,
_dg, (3.124)
T av,
provided that
dq; =—dg, (3.125)

To derive a formula for the capacitance C, let us consider the circuit shown in Fig. 3.8.
The infinitesimally small voltages dV ., and dV ¢ produce infinitesimally small changes
ingq., q., q, and I, whose differentials are dq , dq.., dq,, and di  , respectively.
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For the same reasons as in the case of the capacitance C.orC,, the channel line in
Fig. 3.8 is also an equipotential line for small signals.

The differentials dg., dq ., and dg, have to satisfy the following equation obtained by
differentiating (3.102):

dqg+dq.+dgy,=0 (3.126)

If V= constant (see Fig. 3.8), the differential d/ , is:
dl, =g, dVes+g,, AV (3.127)

From Fig. 3.5 and Kirchhoff”s voltage law, we have:
Vo =Vas =Vis (3.128)

Differentiating (3.128), we get:
AV, =dVy, —dVy, (3.129)

To use (3.124) to calculate the capacitance Cgb, we must prove that the condition (3.125)
can be satisfied in the circumstances shown in Fig. 3.8.

VGS dVGS
L 1 I
’_+{'- -+ ?G qotdqg
—————— Ft+t+++++
== Cye
qctdqe | .
S ! the channel line| p

p+ qB #Cbc I(:h+dIch P

VBS dVBS T B

—_ (Iprg,dV s, dVis) —

Fig. 3.8. An MOSFET excited by small quasi-static voltages dV,, and dV .

Indeed, we infer from (3.125) and (3.126) that dg,. should be zero; this implies that d/ |
should also be zero, and—Dby virtue of (3.127)—we get the following condition:
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G Vs == G AVs (3.130)

Thus, if (3.130) is satisfied, the condition (3.125) is fulfilled. Hence, we may use (3.124)
to calculate Cgb.
Taking I/Cgb from (3.124) and using (3.129) and (3.125), we obtain:

1 _dVGS dVys

Cgb - dg; dqg

av.. v, (3.131)
“dg,  da,
Using (3.108) and (3.118), the previous equation takes the form:
Lt _r,r
c, C. C. (3.132)

We see that Cgb is the equivalent capacitance of two capacitors Cgc and C, connected in
series, which is illustrated in Fig. 3.8.
Combining (3.115) and (3.123) with (3.132), we get:

gm 77 Ttr
=20 3.133
gb 1+77 ( )
where
=288, (3.134)

Although derivation of the formula for the differential capacitance C, is based on the
differential (quasi-static) capacitances Cgc and C, , the applicability of this formula is not
limited only to the quasi-static conditions, since the gate and body regions are assumed to
be good conductors.

3.8. Supplementary equations and rules

Based on the results of Secs. 3.4-3.7, additional equations and rules are formulated in this
section.

The terminal coupling currents ig””“’(t) and i,"“(¢) are produced by perturbations in carrier
concentration in the channel or, equivalently, by time-changing in the transverse electric
fields Ecg(rf, ) and E (S, 9); see Fig. 3.3 They are induced between the channel and the gate,
and between the channel and the body. The densities of these currents are, respectively,
J, _g(f, f)and J (&, ), as illustrated in Fig. 3.4. However, in our approach, we derive a rule that
establishes a relationship between the coupling currents ig“’”’(t) and i,™(¢). This approach
guarantees that Kirchhoff’s current law for the terminal non-capacitive displacement cur-
rents is satisfied.


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

AN\ MOST

62 3. Time-domain model

Analyzing the situation shown in Fig. 3.8 and applying the superposition principle, we
can write the following equation for the surface charge density dQ .() induced by the volt-
ages dV_ and dV  that are changed quasi-statically:

d0 (&) =dQ (&) +dQ ., (S) (3.135)

To find a relationship between dQC—gs () and dQ ., (&), we divide (3.113) by (3.121),
which leads to the following:

dQ C—gs (5) _ gm dVGS

dQ ., (&) g, AV

(3.136)

Taking assumption that dV_ = dV,, in (3.136), we can formulate a quasi-static channel
charge partition rule (QSCCPR) as follows: the surface density dQ,.(¢) of the infinitesimal chan-
nel charge induced by the voltages dV/, and dV is divided between dQC_gX (§)anddQ ., (§) in
direct proportion to respective transconductances g, / g .. The reverse is also true; that is,
if' a quasi-static increase in the surface density dQ.(¢) of the infinitesimal channel charge
produces surface charge densities dchgS (§) and dQ,., (£), respectively, on the gate and in the
body, then the proportion of dQC_gS @) todQ,., (&)isg, tog ., provided that the infinitesimal
increases of ¥, and V, are equal to each other, i.e., dV = dV .

Hence, if dV_ = dV, then:

BS?

dO ., (&)= E1do . (&) (3.137)

m

Now, we proceed to analyze the dynamic non-quasi-static coupling between the excess
channel charge and the transistor structure.
By analogy with (3.12) and (3.13), we can write:

0.(6:0) = 0c(8:0)-0.(5) (3.138)

where Q (S, 9 is the small excess channel charge (linear approximation) per unit area,
0. (&, 1) is the total channel charge per unit area, and Q.(¢) is the channel charge per unit
area at dc condition (at the Q-point).

Based on Gauss’s law, we may divide the excess channel charge per unit area, Q. (¢, 1),
into two parts:

0.Gn=0,06n0+0, 1) (3.139)

where O (&, ©) and O (¢, ?) are excess channel charges per unit area associated with, respec-
tively, the perpendicular and longitudinal component of electric field in the channel.
Then, we divide the charge O, (£, ) into two parts as follows:

0.,60=0,E0+0,(6.0) (3.140)
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where 0, (¢, ©) and 0., (&, 1) are excess channel charges per unit area associated with the
channel-to-body and channel-to-gate coupling, respectively.

Finally, having regard to the results of the quasi-static analysis, we assume that the
non-quasi-static partitioning of the charge O, (¢, ) is also governed by the QSCCPR, which
is expressed by (3.137), i.e.:

0.,(E1) = Z 0., (&) (3.141)

m

[Obviously, the charges O, (&, 1) and ch (&, £) have the same algebraic sign.]

Thus, (3.141) reflects the mathematical meaning of the non-quasi-static channel charge
partition rule (NQSCCPR).

Denoted by ¢,(¢) and g,(?), overall excess charges induced, respectively, on the gate and
in the body by the excess channel charge can be expressed as

L

g, () == [0, (&0dé (3.142)
L

q,(?) =—WI0 0,(&,0dé (3.143)

By definition, the terminal coupling currents, ig"”d(t) and #,(t), are:

. ind d

0= [4.0] (3.144)
. in d

i, (1) = Z [ qb(t)] (3.145)

Dividing (3.145) by (3.144) and subsequently taking account of (3.142), (3.143), and
(3.141) in the resultant equation, we get a useful rule for the coupling currents:
. ind
i, (1) _ 8w
" g,

(3.146)

To sum up, in order to fulfill Kirchhoft’s current law, we need to calculate values of the
coupling and non-capacitive displacement currents [ig’”d(t), i,"(0), i,"(t), and i "(t)] from
(3.85)—(3.87) and (3.146).

3.9. Conclusion

A novel quasi-2D non-quasi-static four-terminal time-domain small-signal MOSFET model
has been established in this chapter.

A set of partial differential equations for the new physics-based quasi-2D time-domain
small-signal MOSFET model is derived. The set consists of a quasi-2D small-signal continu-
ity equation, a quasi-2D small-signal Poisson’s equation, and a quasi-2D small-signal trans-
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port equation. All the equations give—in the time domain—a mathematical description of
the behavior of the carrier concentration in the channel, charges in the gate and body, carrier
transport in the channel, as well as terminal and coupling currents. A set of supplementary
equations for coupling and non-capacitive displacement currents in the MOSFET under
dynamic operation is also derived.

Based on the quasi-2D dc MOSFET representation, a useful formula for the gate-to-
body capacitance C, is derived, and some rules dealing with channel-to-gate and channel-
to-body coupling currents are established.

The model presented in this chapter lays the foundations for a novel quasi-2D frequen-
cy-domain small-signal MOSFET model that is developed in Chapter 4.
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Chapter 4
FREQUENCY-DOMAIN MODEL

Wiestaw Kordalski

4.1. Introduction

The purpose of this chapter is to present derivation of a novel DIBL-included quasi-2D NQS
four-terminal frequency-domain small-signal model for the MOSFET with a linearly thick-
ened channel. The GCA is abandoned in this derivation.

Some final results of a simplified version (without the DIBL effect) of the new model
are briefly reported in [1, 2].

This chapter is organized as follows. In Section 4.2, a set of equations defining the
model in the time-domain is formulated. A frequency-domain analysis is performed in Sec-
tion 4.3. A DIBL-included model and a four-terminal small-signal equivalent circuit for the
MOSFET are derived in Section 4.4. A four-terminal small-signal equivalent circuit for the
long-channel MOSFET is presented in Section 4.5. Section 4.6 contains the main conclu-
sions.

In this chapter, we assume that no generation-recombination processes occur, and the
tunneling and leakage currents are negligibly small.

A general note: the analysis presented here is carried out for a p-channel MOS transis-
tor, and the symbols for small-signal voltages (vgs, v,,v,)and currents (i, i, i, i, ig, i,
igi”" ,1,",1 ") occurring in this chapter are consistent with those used in Chapter 3 and have
the meaning of phasors.

4.2, Formulation of time-domain equations

In this model, the thickness of the channel at the Qpoint, denoted by X, ($), is assumed to be
a linear function of ¢ described by

Xy () =X [1+(S-D &/L] @.1)

S=X,/X;, S=21 “4.2)
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66 4. Frequency-domain model

where X and X are thicknesses of the channel at the source and the drain, respectively, and
L denotes the channel length of the quasi-2D dc representation of the channel; see Fig. 4.1
and Sec. 2.2.

x| X,

1 5
>
0 LS
Fig. 4.1. A linearly thickened channel of the PMOSFET under consideration.

Basic equations and their simplifications that govern kinetics of carriers in the channel
under small-signal perturbation for the quasi-2D NQS time-domain model of the MOSFET
are derived in Chap. 3.

The symbols occurring in this section are exactly the same as those in Secs. 3.2-3.5
unless otherwise stated.

4.2.1. Continuity equation

We use the gradually-thickened-and-slightly-deformed-channel approximation of the conti-
nuity equation [see (3.40)], in which the dynamic coupling factor of the channel D, defined
by (3.21), is assumed to be a constant at the Q-point, i.e.:

PN aUED)

q(+De)— o¢

4.3)

where J (¢, #) is the small-signal conduction current density of holes; cf. for instance [3],
[4, p- 503], [5, eq. (1)], [6, eq. (6)].

4.2.2. Transport equation

We make assumptions that the effective bias-dependent mobility at the Q-point, ,uq(é‘), and
the dc component of the longitudinal electric field along the channel line, £(), are constant
functions of &, and are equal to 1, and £, respectively. Relying on these assumptions and
taking (3.67)—(3.69) into account, the total small-signal current density J, (¢, ?) is:

Ju(6,0) = Ji(&,0) +J 451 (S,0) (4.4)
where the small-signal conduction current density of holes can be written as follows:
J, =qu,E E E _,p oD
(& =qu, E,p(&,0)+qu, p(8)E (E,0)+qu(5.1) E; p(§)—q D, o
4.5)
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and

aEl(‘JE’t)

J. 1) = &,&,
dls](g) 0 at

(4.6)

is the small-signal displacement current density. The dc longitudinal electric field £ along
the channel is assumed to be:

E,=—V,/L 4.7

where V¢ is the dc drain-to-source voltage.

The mobility x (S, £) in (4.5) is defined by (3.70). However, we assume that y (&, 7) is
determined by only the first component of (3.70), whereas the mobility K, is only a function
of £, ie., M=, (E,). Taking these assumptions into account, we can write:

du,
dE

0

uy(&.t)=——+E (S,1) (4.8)

Employing (4.8), we can rewrite (4.5) as follows:

ap,(5,0)
¢

du,
dE,

S =qu Eypi(S:)=q D, +qpo(§)(ﬂq+ onEl(fJ) 4.9)

Equation (4.9) can be written in a simpler form if, after [3, p. 514], the definition of
differential mobility u, at the Q-point is introduced, i.e.:

dv
Hy = JE, (4.10)

where v is the velocity of carriers in the channel,
v=p,Ey (4.11)

Differentiating (4.11) with respect to £, we have:
,ud:,uq+j—gZE0 (4.12)

Given (4.12), we can rewrite (4.9) in the following simpler form:

opi(5,0)

o +q g po(S) ENSD)  (4.13)

Ji(G:t) =qu, By p(6.0) — gD,
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The last component of the right-hand side of (4.13) can be expressed through a so-called
ohmic part of the quasi-static small-signal drain-source conductance, denoted by g, : see
(A.39). (Formulas for g, , and the quasi-static small-signal drain-source conductance g, are
derived in Appendix C.)

Using (A.39) and assuming that Einstein’s relationship exists between the mobility 1,
and diffusivity D  [3, 4],

D,, =V, u, (4.14)
where V= kT/q is thermal voltage (25.9 mV at 300°K) , we can rewrite (4.13) in the form:

P& | 8wl

Ji(S,0) = Eo ACE _Vr
(&.0) =qu, | Eyp,(&0) o WX(g)

E (S, (4.15)

We can obtain a useful simplification of (4.15) if we replace X () with an average
channel thickness, denoted by X,

X, = (X,+X,)/2 (4.16)
X,=8X,, S>1 (4.17)

see Fig. 4.1. As a consequence, we get the following simplified formula for the small-signal
conduction current density:

apl (65 z) gdso

o WX E,(&,1) 4.18)

Ji(&.0) = qu, |:E0 IAERY
4.2.3. Poisson’s equation

In the model, we choose a simpler version of the quasi-2D small-signal Poisson’s equation
[see (3.54)]:

aEl(ést) — qb (gst) _ Ecg(é’t) _ Ecb(g’t)
o5 &6, X, (&) X (S)

(4.19)

which is a transformed version of the thick-channel-and-weakly-coupled-carrier-to-channel
approximation defined by (3.58).
We may rewrite (4.19) in a more convenient form for physical interpretation, i.e.:

B S T L MU B AL N GO
0% ap(ED X (&) qp (&0 X,(©)

A dimensionless quantity inside the square brackets on the right-hand side of (4.20),
denoted here by d, (£, 1),
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08 EL(SD) g8 E, (D

d,(&D=1-
4P EDX(E) qpENX,(E)

@21

is a function of ¢ and ¢, and can be termed a longitudinal dynamic carrier-to-channel cou-
pling factor. The quantity d,(, ) shows us what a fraction of the spatial excess charge density
q * p,(& 1) is associated with the longitudinal electric field component £ (¢, ©).

Furthermore, we introduce two other dimensionless factors, dcg (& Handd, (¢ o).

‘90 gs Ecg (5, t)

d )= .
= EN K@) @22
db ,t — €0€SEch(§,t) .
o ED XD @29

which can be termed, respectively, a dynamic channel-to-gate coupling factor and a dynamic
channel-to-body coupling factor. These factors tell us what fractions of the surface excess
charge density, gp (&, ) X,(¢), produce, respectively, the channel-to-gate and channel-to-
body electric field components.

In this approximation of Poisson’s equation, the following inequalities hold:

0<d,(&,n<1 (4.24)
0<d, (&0)+d, (&)< (4.25)

In the model presented here, we assume that these dynamic coupling factors are positive
constants, denoted by d, a’cg, and d ,. Thus, (4.19) takes the form as follows:

aEl(‘fJ) — qdl pl(g’t)
ag g()gs

(4.26)

where

d=1-d, ~d, 427)

Furthermore, we can apply the non-quasi-static channel charge partition rule (NQSCCPR)
established in Sec. 3.8 to find a relationship between the coupling factors alcg and d ;. Namely,
dividing (4.23) by (4.22), we get:

doy _ 208, Es(&,1)
d' gogs Ecg(gﬂt)

g

(4.28)

On the other hand, from (3.141), we have:
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ch(gat)_ ng

0.0 g, (429

where O, (¢, 1) and ch (&, 1) are excess (small-signal) channel charges per unit area associated
with the channel-to-body and channel-to-gate couplings, respectively.

In accordance with Fig. 4.5, the charges Q , (£, 1) and 0., (&, ©) are determined by the
following:

0,(&.1) =6 E,(S.1) (4.30)
0.,(.1)=¢6¢ E,(5.1) (4.31)
Thus, combining (4.28)—(4.31), we obtain:

dcb g mb
- - (4.32)
dcg g m

4.3. Quasi-2D frequency-domain analysis

In this and the next sections, the symbols for small-signal quantities have the meaning of
phasors unless otherwise stated.

4.3.1. Frequency-domain equations

A set of partial differential equations consisting of (4.3), (4.18), (4.26), (4.4) and (4.6) defines
the model in the time domain. Transforming the equations into the frequency domain, we
obtain, respectively:

dJ, (&, jo) _

4z —q(1+D.)jo p,(, jo) (4.33)
dp,(&,j ‘
(. jo) = qu, | Ey pi(&jo) - V%} vEulp o) @
dEl(éga]a))zqdlpl(fa]a)) (435)
dé: gOgs
Jtl(f’ja)) = Jl(?’ja))—'_‘]disl(g’ja)) (436)
S (S, jo)=jo g s E (S, jo) (4.37)

where j is the imaginary unit (j;j = —1), and w is the angular frequency (in rad/s). The
small-signal displacement current density J, (¢, jo) is discussed in detail in Sec. 4.4.1.

As aresult, we have a system of linear ordinary differential equations for quantities of
the model in the time-independent phasor notation.
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4.3.2. Solution for p_ (¢, jw)

Differentiating (4.34) with respect to &, taking account of (4.35), and then putting the result-
ant equation into (4.33), we obtain:

_pEjo) EodpGjo) | dg,l | jed+D)
déz I/t d§ luq I/t WXch gogx /J V

q t

p(s, jo) (4.38)

The solutions to (4.38) are given in Appendix D. We write them in the form as follows:

(&, jo)=Kexp(y&) (4.39)
P (&, jo)y=K" exp(y&) (4.40)
y=a-jp (4.41)
y=a +jp (4.42)

where o and a” are real parts, respectively, of y and y” [refer to (A.43), (A.45), and (A.46)],

azﬂ—gx/cﬁx/a +b° (4.43)

27,
E
a =#+g a++a’ +b’ (4.44)

whereas £ is defined as fallows [refer to (A.45) and (A.46)]:

:?\/—a +Ja? +b” (4.45)

Rewriting (A.47), we complete a description of the quantities a and b occurring in
(4.43)—(4.45):
E(? 4dl gdso L

a=—+————""—"— (4.46)
Ve w ViW X, &8,

t

40(1+D,)
u, v,

b= (4.47)

Note that £ in (4.45) is an increasing function of the angular frequency w, and =0 if
o =0.
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4.3.3. Wave phenomena in the channel

Using (4.41) and (4.42), we can write (4.39) and (4.40) in the time-dependent phasor notation
as follows:

p.(&, jor) = K exp(al) exp[ j(wt - BE)] (4.48)
p (&, jor)=K" exp(a' &) exp| j(wt + BE)] (4.49)

Equation (4.48) represents a longitudinal wave of a disturbance in the hole density
traveling in the positive {-direction, see Fig. 4.2, whereas (4.49) represents a similar wave
but traveling in the negative ¢-direction.

Since carriers in the channel of the MOSFET move only from the source to the drain
(in the positive direction of &-coordinate in Fig. 4.2), the wave p "(, jot), described by (4.49),
is ignored in the analysis.

As seen from (4.48), the wave p (¢, jwt) is an exponentially damped (a < 0 for all w)
sinusoidal one that travels with a phase velocity v, in the positive ¢-direction,

0]
v, = E (4.50)
Denoted by 4, the wavelength of p (&, jo?) is:
2
1= @51)
B

According to Sec. 3.3, small perturbations in carrier density cause small variations in
the channel thickness. This means that a transverse wave of a disturbance in the channel
thickness X (¢, jwt) is associated with the wave p (C, jot).

Assuming that the dynamic coupling factor of the channel D_. is a positive real number
and transforming (3.21) into the frequency domain, we have:

D X
X,(&.jony =22 ¢ ) @52)
Po($)
or, using (4.48), we can explicitly write:
X, (& jo = S0 exp(aed) vl on )] @53

As seen from (4.48) and (4.53), these waves are in phase if the product KD . is a positive
real number. The waves X (£, jo?) and p (£, jot) are illustrated in Fig. 4.2.

A comprehensive analysis of the wave phenomena in the MOSFET channel is beyond
the scope of this work.
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B

Fig. 4.2. A scheme illustrating waves in the MOSFET channel for the case in which
the product K-D . is a positive real number.

4.3.4.The electric field £ (§, jw)

By solving (4.35), we find the longitudinal small-signal electric field in the channel. Details
of the solution are given in Appendix E.
According to (A.50) and (A.52), we have:

qd, K[exp(y&)-1]

E\(S, jo) = E\(0, jo)+ (4.54)
SOSS}/
where
d K|ex L)y-yL-1
E(0, jo) =2 - 1% [exp (7 2) rb-1] (4.55)
L &&E 7L

4.4. DIBL-included model

To derive the DIBL-included model, we separately analyze non-capacitive currents and then,
by virtue of the principle of superposition, add the capacitive terminal currents, which is
described in Sec. 3.6. In other words, we first develop a four-terminal equivalent circuit for
the non-capacitive currents, and then include the six reciprocal capacitances described in
Sec. 3.6.1.

4.4.1. Non-capacitive terminal currents

In order to develop an equivalent circuit of the transistor for non-capacitive small-signal cur-
rents, we first calculate the non-capacitive terminal currents as a response to a small-signal
control voltage that is turned on in three different configurations. Then, using the principle of
superposition, we add the results obtained for each of the three configurations, thus obtaining
the equivalent circuit for the non-capacitive terminal currents.
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The drain and source non-capacitive currents, generally

Referring to Sec. 3.6.2 and transforming (3.86)—(3.87) into the frequency domain, we obtain
the following formulas for phasors of the total drain- and source-terminal non-capacitive
currents i ' and i ", respectively:

« nc . con + nc
i =1 i (4.56)
. ne . con . ne
i"= 0 4.57)

n n

where i, and i " are phasors of the drain- and source-terminal conduction currents, re-
spectively, whereas i, and i, represent phasors of the drain- and source-terminal non-ca-
pacitive displacement currents, respectively.

Ignoring variations in the thickness of the channel at the drain and source ends, trans-
forming (3.88)—(3.89) into the frequency domain, and finally taking account of (4.1), we

obtain:
i ==-WS8X;J,(L,jw) (4.58)
i =WX;J,(0, jo) (4.59)
The currents i, and i
see Sec. 4.3.3. They are equal only for w = 0.

To improve the accuracy of the analysis, we transform (4.15) into the frequency domain
and use the resultant equation in the further analysis. [One can see that (4.15) is more accu-
rate than (4.18).] Hence, we have a more adequate expression to calculate the frequency-do-
main small-signal conduction current density:

n

are different for @ > 0 due to the wave phenomena in the channel;

E\(S,jo) (4.60)

¢ W X,(£)

Ji (&, jw) = qH, |:E0 (&, jo) - V,

Transforming (3.90) into frequency domain and combining (4.54) and (4.55), we get
a formula for the electric field £ (&, jw) acting on carriers in the channel:

E\(S jo)=E, (&, jo)+E (S, jo) (4.61)

in which £, (£, jw) is an external field set up by v,

lext

E, . (& jo)= —% (4.62)

and £, (¢, jo) is an inner field set up by the small-signal excess charges [p,(S, jo) = K - exp(y<)],

qd, K[ yLexp(y&)—exp (yL)+1]
g8, 7L

E (¢, jo)= (4.63)
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Substituting (4.39) into (4.60) and taking account of (4.61)—(4.63), we obtain:
; gdso Uds
J (¢, jo) = —-=2222_ +gK E,—yV)ex
(&, jo) Wy u,(Ey=yV)exp(7¢)

. qKd g, [rLexp (y&)—exp (yL)+1]
&6, 7 W X\(E)

(4.64)

Setting £ = L in (4.64) and taking (4.1) into account, we obtain the small-signal conduc-
tion current density at the drain end of the channel:

o SUUS
(L. jo) = = Jlt K, (Ey =7V exp (7L)
N

.\ qKd g, [rLexp(yL)—exp (yL)+1]
g &7 WSX,

(4.65)

Similarly, setting &= 0 in (4.64) and taking (4.1) into account, we obtain the small-signal
conduction current density at the source end of the channel:

qul gdso[}/L_exp(}/L)_i_l]

J,(0, jo) = —gV;w—;:quyq (E,-yV) + TR, (4.66)
Given (4.37) and (4.61), we have:
Jus1 (55 J@) = jo &,&, E\,, (5, jo) + jo &,&, E\ (S, jo) (4.67)
The first term on the right-hand side of (4.67), denoted by
S (6, jo)=jog,s E, (&, jo) (4.68)

represents a capacitive displacement current density induced by the external field
(£, (& jo)=—wv, /L] Itis simply a capacitive current density that is associated with the ca-
pacitance C; see Fig. 4.10 and Sec. 3.6. The current density J (¢, jw) produces a capacitive
current flowing through the capacitance C,. The capacitive current is separately taken into
account in the model; see Fig. 4.10.

The second term on the right-hand side of (4.67), denoted by

Ji (&, jo)=jog e E (S, jo) (4.69)

is a frequency-domain non-capacitive displacement current density in the channel.
Taking account of (4.63), one can rewrite (4.69) as follows:

nc . .C() d K
T, jo)y = L2952

=D [ 7Lexp (L) —exp (yL)+1] (4.70)
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Setting ¢ = L in (4.70), we obtain the frequency-domain non-capacitive displacement
current density at the drain end of the channel:

Jjogd K

J*(L, jo) =
dz,s( ] ) 7/2L

[ ¥Lexp(yL)—exp(yL)+1] “.71)

Similarly, setting £ = 0 in (4.70), we obtain the frequency-domain non-capacitive dis-
placement current density at the source end of the channel:

joqd, K[ yL—exp(yL)+1]
y’L

J (0, jo) = 4.72)

As in the case of the time-domain small-signal model presented in Sec. 3.6.2, we as-
sume that the longitudinal electric field £, (&, jw), set up by the small-signal excess charges
p,(& jw), is associated with an equivalent parallel-plate capacitor whose capacitance equals
C,, and the parallel plates are separated by a distance L (L is the channel length). Thus,
denoted by 4, , an effective area of each of the two plates is:

LC
A4 =—% 4.73)
80 gs

Therefore, based on (4.71) and (4.73), the drain-terminal frequency-domain non-capa-
citive displacement current i is:

e ja)qd,KCds[ yL exp(}/L)—exp(ny)+1]

ddis —

3 (4.74)
&& 7

Based on (4.72) and (4.73), the source-terminal frequency-domain non-capacitive dis-
placement current i . is:

sdis

e JOqd KC, [ yL—exp(yL)+1]

sdis

5 4.75)
SO gs 7/

Given (4.56), (4.58), (4.65) and (4.74), we have the following formula for the total
drain-terminal frequency-domain non-capacitive current i,":

i =—qKWSXgF,exp(yL)+g,, U, (4.76)

in which

N d [exp (=yL)+yL—1]

w T JOC, 477
6‘06‘S}/2WSXS (gd‘ J d') @77

£ :'”q(Eo_ﬂ/r)
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Similarly, given (4.57), (4.59), (4.66) and (4.75), we have the following formula for the
total source-terminal frequency-domain non-capacitive current i ":

i =qKWX;F;—g,, 0, (4.78)
where

d/[1+yL—exp(yL)]

F, = E —vV )+
: luq( ’ 7r) EOSS}/ZWXS

( gdso + ]Q) Cds ) (479)

v _-configuration:v_#0andv,=v, =0
gs gs ds bs

This way of controlling the transistor is illustrated in Fig. 4.3. Under these conditions, excess
carriers are injected from the source into the channel, and their rate of injection depends on
the voltage U quasi-static gate transconductance g, , and angular frequency .

Let i,%,§ stand for the quasi-static drain-terminal frequency-domain non-capaci-
tive current of the transistor operating in the circumstances shown in Fig. 4.3, i.c., v, #* 0,
v, =0, =0,and ® — 0.

Based on the definition of the quasi-static gate transconductance g , we obtain the fol-
lowing boundary condition, valid only for quasi-static operation of the transistor:

ldanig = g m ng (480)
Dgs
©
is id
— i f, 10) — —
S | 1(& jo) D
£
0 L
B+l

Fig. 4.3. An MOSFET excited only by the voltage v, —the transistor works
in the v -configuration. '

Equation (4.80) allows us to determine the constant K of (4.39), which in this case is
denoted by KgL. Therefore, setting w =0, v, =0, and K = KgL in (4.76) and (4.77), taking
definition of y into account (see Sec. 4.3.2), and finally solving (4.80) for K, we get (omitting
a lengthy algebra):

_ 8n Ve &XP (=7, L)
£ GqWSXF,,

(4.81)
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where

Yo = l(ﬂ ~a ] (4.82)

)+d1 8iso [exp (_70L)+70L_1] (4.83)

F,, = E, -y, V
DO #q( 0o~ YoVs 50‘9‘;702WSXS
Substituting K by K, and setting v, = 0 in (4.76), we obtain a formula for the drain-
terminal frequency-domain non-capacitive small-signal current of the transistor operating
in the vgs—conﬁguration, denoted by i "

. ne—, F
i[f = 8,0, F—DeXp (¥ =7 L] (4.84)

DO

The source-terminal frequency-domain non-capacitive small-signal current of the tran-
sistor operating in the vgs-conﬁguration, denoted by i "¢, is found in a similar way as the one
presented above for i ",

Let i" ¢ denote the quasi-static source-terminal frequency-domain non-capaci-
tive current of the transistor operating in the circumstances shown in Fig. 4.3, i.e., v, #0,
=v, =0,and ® — 0.

Based on the definition of the quasi-static gate transconductance g, , we get the follow-

ing boundary condition:

Uds

isch_Sg = _gm Ugs (485)

Equation (4.85) allows us to determine the constant K of (4.39), which in this case is
denoted by K, Namely, setting @ =0, v, =0, and K = K, in (4.78) and (4.79), taking defi-
nition of y into account (see Sec. 4.3.2), and finally solving (4.85) for K., we get (omitting
a lengthy algebra):

-g v
p— 1 (4.86)
qW X Fy,
where
d, g, [1+7 L—exp (y, L)]
Fy = (E,—y,V,)+—2%2 s . 4.87
50 /uq( 070 t) 505‘Y702WXS (4.87)
and y  is defined by (4.82).

Substituting K by K, and setting v, = 0 in (4.78), we obtain a formula for the source-
terminal frequency-domain non-capacitive small-signal current of the transistor operating
in the vgs—conﬁguration:
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. ne—, FS
[t =-g, o p (4.88)

S0

Coupling currents induced on the gate and in the body—denoted for the vgs—conﬁg-
uration, respectively, by igi”d'g and i,"¢—are calculated from Kirchhoff’s current law for

non-capacitive currents [see (3.85)]:

- ind-g . ne—g . ind-g . ne—g
Iy +i,"7 +i, +i,"* =0 (4.89)

and from the non-quasi-static channel charge partition rule (NQSCCPR) established in Sec.
3.8, whose mathematical form [see (3.146)] is:

. ind—-g
) _
i =1 (4.90)
i
g
where 7 is defined as follows:
n=Snt 4.91)
En

Taking (4.84) and (4.88) into account and solving (4.89) and (4.90) with respect to ig"”d'g
and i,"¢, we have:

- ind— gn Uy | 1 !
lmd g _ m_g | __S __Dex — L 4.92
g 1+7n [ Foo Fp Pllr=7) ]} s
< ind— ng,v ) i
jind=g _ mo& | S "D ex — L 4.93
b 1+7 |i Foi Fy p [(¥=7)L] (4.93)

A four-terminal equivalent circuit for the non-capacitive currents of the transistor work-
ing in the »_-configuration (v, #0and v, =v, =0) is given in Fig. 4.4.
8s gs ds bs

Yes

UgS

i

S

A
b NYgsVes
Fig. 4.4. A four-terminal equivalent circuit for the transistor working in the v -configuration
(vgs #0ando, =0, =0).
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We can infer from (4.84) that the transadmittance y, of Fig. 4.4 is defined by

FD

F

DO

Y = & exp [(7=70) L] (4.94)

Taking account of (4.92), we can define the admittance y, connected between the gate
and source in Fig. 4.4, viz.:

ygx_

L+n| Fy, Fp,

F F
& [_S 2-exp [(y—7,) L ]} (4.95)
A voltage-controlled current source connected between the body and the source in Fig. 4.4
represents the coupling current ,"*¢ determined by (4.93). The value of the source current
(7. -v ) results from taking account of (4.95) in (4.93).

gs  gs

v, -configuration: v, #0andv,_=v_=0
s bs ds gs

In this configuration, the transistor is excited only by the small voltage v, ; see Fig. 4.5.

We find non-capacitive currents of the transistor in a similar way as the one presented
above for the vgs-conﬁguration.

In this configuration, excess carriers are injected from the source into the channel, and
their rate of injection depends on the voltage v, , quasi-static body transconductance g ,, and
angular frequency .

Leti d”fég stand for the quasi-static drain-terminal frequency-domain non-capacitive
current of the transistor operating in the circumstances shown in Fig. 4.5, i.e., v, # 0,
vd‘y=ogs=0,anda)—>0.

Based on the definition of the quasi-static body transconductance g, ,, we get the follow-
ing boundary condition valid only at quasi-static operation of the transistor:

I8 = &, Uny (4.96)
Gsl i
is id
— i f, 10) — b-S—
S 1( Jjo) D
€
0 L
Cgbs B le
N

Fig. 4.5. An MOSFET excited only by the voltage v, —the transistor works
in the v, -configuration.
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Equation (4.96) allows us to determine the constant K of (4.39), which in this case is
denoted by K, . Accordingly, setting @ =0, v, =0, and K =K, in (4.76) and (4.77), taking
definition of y into account (see Sec. 4.3.2), and finally solving (4.96) for K, , we get (omitting
a lengthy algebra):

K, = —8, Uy €XP (=7, L) (4.97)
qWSXF),
where y, is defined by (4.82), and F, | by (4.83).
Substituting K by K,, and setting v, = 0 in (4.76), we obtain a formula for the drain-
terminal frequency-domain non-capacitive small-signal current of the transistor operating
in the v, -configuration, denoted by 7",

. ne— F,
i = g Uy —exp (7 =7)L] (4.98)
DO

The source-terminal frequency-domain non-capacitive small-signal current of the tran-
sistor operating in the v, -configuration, denoted by i ", is found in a similar way as the one
presented above for i ".

Let isf‘é';’ denote the quasi-static source-terminal frequency-domain non-capacitive
current of the transistor operating in the circumstances shown in Fig. 4.5, i.e., v, # 0,
ds=vgv=0,andw—>0.

Based on the definition of the quasi-static body transconductance g
lowing boundary condition:

i
we get the fol-

mb?

. nc—b

ls—QS = _gmb Ubs (499)

Equation (4.99) enables us to determine a constant K of (4.39), which in this case is
denoted by K, . Consequently, setting v =0, v, =0, and K = K, in (4.78) and (4.79), taking

the definition of y into account (see Sec. 4.3.2), and finally solving (4.99) for K, , we get
(omitting a lengthy algebra):
_gmb Ubs
R —— (4.100)
qW X Fs,

where F is defined by (4.87).

Substituting K, , for K and setting v, = 0 in (4.78), we obtain a formula for the source-
terminal frequency-domain non-capacitive small-signal current of the transistor operating
in the v, -configuration:

neb Ey

7 == 8, U N (4.101)

S0

Coupling currents induced on the gate and in the body—denoted for the v, -config-
uration, respectively, by 7" and i,"**—are calculated from Kirchhoff’s current law for
non-capacitive currents [see (3.85)],
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l- ind—b + idnc—b + l-b ind—b + is nc—b — 0 (4102)
and from the non-quasi-static channel charge partition rule (NQSCCPR) established in
Sec. 3.8, whose mathematical form [see (3.146)] is:

l~ ind—b
—i” — =7 (4.103)
g

where # is defined by (4.91).
Taking (4.98) and (4.101) into account and solving (4.102) and (4.103) with respect to

ig"""’b and i, we have:

. F. F,
l- ind—b — gmb UbS S __Dex — L 4.104
; TR pI(y=7)L] (4.104)
ind-b _ 11 &m Uns | E £y
; = dSmbThs | 75 TD oy —v )L 4.105
b 1+7 {Fso F,, p[(r=7) ]j| ( )

A four-terminal equivalent circuit for the non-capacitive currents of the transistor work-
ing in the v, -configuration (v, # 0 and v, = v, = 0) is given in Fig. 4.6.

ig g ansUbs YmbUhS d 4l_d

—

S
S, 0

NYy
Uy,

S
A
b

Fig. 4.6. A four-terminal equivalent circuit for the transistor working in the v, -configuration
(v, #0andv, = v, = 0).

Setting g, = #:g,, in (4.98) and taking (4.94) into account, one can obtain the following
formula for the body transadmittance y , of Fig. 4.6:

Vo =11V, (4.106)

A voltage-controlled current source connected between the gate and the source in
Fig. 4.6 represents the coupling current igi""'b determined by (4.104). The value of the source
current (nyg_;vhs) results from noting that g , = 7-g  and taking account of (4.95) in (4.104).


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

AN\ MOST

4.4. DIBL-included model 83

Denoted by y, , the admittance connected between the body and the source in Fig. 4.6
results from the coupling current 7,"” determined by (4.105). Its value (*y,) is obtained
by setting g . = #-g, in (4.105) and taking (4.95) into account. Hence,

Vos =1 Vg (4.107)

v -~configuration:v, #0andv_=v, =0
s ds gs bs

In this configuration, the transistor is excited only by the small voltage v ; see Fig. 4.7.

ol

ll(é’]w) T

Bsli,

Fig. 4.7.  An MOSFET excited only by the voltage v, —the transistor works
in the v -configuration.

Due to the DIBL effect, excess carriers are injected from the source into the channel,
and their rate of injection depends on the voltage v, , quasi-static drain-to-source conduc-
tance g, , and angular frequency .

As shown in Appendix C, the quasi-static conductance g, splits into two parts
[see (A.42)]:

gds = gdso + gdsD (4108)

where g, and g, are, respectively, an ohmic part and DIBL part of g, .
Equation (4.108) can be written in a more convenient form, i.e.:

gds = gdsu+kD gds (4109)

where k, is a dimensionless factor defined as follows:

g
ky = =52, (0<k,<1) (4.110)
gds
Let id"fég stand for the quasi-static drain-terminal frequency-domain non-capaci-
tive current of the transistor operating in the circumstances shown in Fig. 4.7, i.e., v, # 0,

v =0, =0,and w — 0.
gs bs
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Based on the definition of the quasi-static conductance g, and taking account of (4.109),
we get the following boundary condition, valid only at quasi-static operation of the transistor:

. ne—d

Ii“os = &aw Vas T hp 84U (4.111)

Equation (4.111) allows us to determine the constant K of (4.39), which in this case is
denoted by K ;. Thus, setting @ =0 and K = K, in (4.76) and (4.77), taking definition of y into
account (see Sec. 4.3.2), and finally solving (4.111) for K, , we get (omitting a lengthy algebra):

L°

K = _kD gds Uds eXp (_yOL) (4 112)
“ qW S X Fp, -

where y  is defined by (4.82), and I, by (4.83).
Substituting K by K, in (4.76) and taking account of (4.109), we obtain a formula for
the drain-terminal frequency-domain non-capacitive small-signal current of the transistor

operating in the v -configuration, denoted by i ",

0= gy Uy Tk 840y {iexp [(r=r)L]-1 } (4.113)
FDO

The source-terminal frequency-domain non-capacitive small-signal current of the tran-
sistor operating in the v -configuration, denoted by i "*“, is found in a similar way as the one
presented above for i "

Let isf”Q’Sd denote the quasi-static source-terminal frequency-domain non-capaci-
tive current of the transistor operating in the circumstances shown in Fig. 4.7, i.e., v, # 0,
0, =0, = 0,and w — 0.

Based on the definition of the quasi-static conductance g, , we get the following bound-
ary condition:

- ne—d

[ 05 = =~ 8o Vas ~Kp 8uy Vus (4.114)

Equation (4.114) allows us to determine the constant K of (4.39), which in this case is
denoted by K . Consequently, setting @ = 0 and K = K in (4.78) and (4.79), taking defini-
tion of y into account (see Sec. 4.3.2), and finally solving (4.114) for K, we get (omitting
a lengthy algebra):

0°

_—kp 840

= 4.115)
gW X Fy, ¢

do

where F is defined by (3.87).

Substituting K by K in (4.78) and taking account of (4.109), we obtain a formula for
the source-terminal frequency-domain non-capacitive small-signal current of the transistor
operating in the v, -configuration:
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F,
ix’w_d = = 844 — kp 84 Uy [F_S - 1} (4.116)

NU

Coupling currents induced on the gate and in the body—denoted for the v, -config-
uration, respectively, by 7,"““ and i,"*‘—are calculated from Kirchhoff’s current law for

non-capacitive currents [see (3.85)],
- ind-d | : ne-d | - ind-d | - nc-d
iU T+ =0 (4.117)

and from the non-quasi-static channel charge partition rule (NQSCCPR) established in
Sec. 3.8, whose mathematical form [see (3.143)] is:

- ind—d
I8 .
a1 (4.118)

Ly

where 7 is defined by (4.91).
Taking (4.113) and (4.116) into account and solving (4.117) and (4.118) with respect to

ig"”""’ and i,"*, we have:

o k, g, v F F

. ind—d D &dsYds S D

; _ s ex —v )L 4.119
& l+n [lso Fp, plr=r) ]} ( :
ind— kp g0, | F F
izndd — 77 D &Sds™ds _S__Dex — L 4.120
) “an | R, F, p (¥ =) L] (4.120)

A four-terminal equivalent circuit for the non-capacitive currents of the transistor work-
ing in the v, -configuration (v, # 0 and 0, =0, = 0) is given in Fig. 4.8.

l_g> g YDngs d 4l_d
y
ds |V ds
iy
b YpbVds

Fig. 4.8. A four-terminal equivalent circuit for the transistor working in the v, -configuration
(v, #0ando, = 0, = 0).

Based on (4.113), we define the admittance y, connected between the drain and the
source in Fig. 4.8 as follows:
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F
Vas = &us Tkp &as {F—DeXp [(¥=7)L] —1} (4.121)

DO

A voltage-controlled current source (yDg-o ) connected between the gate and the source
in Fig. 4.8 represents the coupling current ig"”d’d determined by (4.119). As seen from (4.119),
the transadmittance Ve of the source current is:

kp 84| Fs Fy
= Lo S _Dexp[(y-y,)L 4.122
Vg 1on | Fy pl(r—7r)L] (4.122)

A voltage-controlled current source (y,,-v,) connected between the body and source in
Fig. 4.8 represents the coupling current i,"*¢ determined by (4.120). As seen from (4.120),
the transadmittance y,, of the source current is:

nk, g | Fs F,
= _1Dods| 7§ "D ay - L 4.123
Yoo 147 |:Fso ., p(r=r)L] ( )

Comparing (4.122) and (4.123), we have:

Vg = Yo (4.124)

Equivalent circuit for non-capacitive terminal currents

By virtue of the principle of superposition, we add the results obtained for each of the three
configurations—see Figs. 4.4, 4.6, 4.8—and obtain a small-signal equivalent circuit for the
non-capacitive terminal currents, which is shown in Fig. 4.9.

i 8
5 &
20 o0)
> [a)
18] >
s |V &
i, 's
S, 0 >
nygs
l)bs ” "
o0 o
5| 2
o0
. > L2
>
b, . il
b

Fig. 4.9. A DIBL-included four-terminal equivalent circuit for the non-capacitive small-signal
currents in the MOSFET.
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The transadmittances y , v, ., Ve You and the admittance Y, are determined by (4.94),
(4.1006), (4.122), (4.123) and (4.95), respectively.

We wish to emphasize thaty ,y | Vg Vow Ve and the voltage-controlled current sourc-
es connected between the gate and the source as well as the body and the source in Fig. 4.9
define the electrical coupling between the channel and the transistor structure.

4.4.2. Four-terminal equivalent circuit for an idealized MOSFET

If we assume that the regions of the gate, source, drain, and body, as well as connection paths
are perfect conductors, then an equivalent circuit for the quasi-2D four-terminal small-signal
MOSFET model is as shown in Fig. 4.10.

By virtue of the principle of superposition, the equivalent circuit is composed of the
circuit of Fig. 4.9 and reciprocal capacitances of Fig. 3.4.

The capacitance Cy is given by [see (3.133)]:

gm 77 TIV
== 4.125
1+7n ( )

gb

where 7,_is the transit time of carriers across the channel; see (3.99).
Alternatively, noting that 7 =L/ (1, Ey) for the model presented here, we obtain:

8. L
= < 4.126
© = (enyu, B, (4.126)
9 (Cad
L
3 3 "
3& 2, o
> A £
18] = > >
g5 y
gs
s [] * *
cS >
Cbs n Ygs C b
— [] ? ? =8
Ubs & 2
2,1 =
>| B
= >
° Il
b Chd

Fig. 4.10. A DIBL-included four-terminal equivalent circuit for an idealized MOS transistor.
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4.4.3. Four-terminal equivalent circuit for the real MOSFET

An equivalent circuit of the quasi-2D four-terminal small-signal model for the real MOSFET
without connecting paths which takes into account a finite conductivity of the gate, source,
drain, and body is presented in Fig. 4.11.

The body-source and body-drain p-n junctions are modeled here in a very simple way,
viz., by the series connections of the junction capacitances and respective parasitic resist-
ances: see combinations C, R, and C, R, in the figure. We are aware that a more adequate
model of the p-n junctions is needed for very high frequencies, however, it is beyond the
scope of this work.

d d
L=t
Ree g d
o1 Jo 0
O¢
5 :% ol o
Ugs >§n 50 Dot) 50 Rds
124 | FHF | g
E Ygs Yds
Lo [[] @ ¢ .
d
: | |
1 MYy
Cbs [ f ? Rgb
Ubs S 9
o
[]R  E e
bs = >
=
Ib Coa  Rpq

Fig. 4.11. A DIBL-included four-terminal small-signal equivalent circuit for the real MOSFET
without connecting paths.

Modeling a three-dimensional nature of the current flow in the gate region is a difficult
issue and can lead to a very complex circuit representation. To model this phenomenon
in a simple way, we introduce a concept of an internal gate. The concept is illustrated in
Fig. 4.12, where a sector of multi-finger structure of the transistor is shown. The internal gate
(point g in Fig. 4.12) is connected with a so-called front wall (face) of the gate by a resistor
representing a spreading resistance (Rgg in Fig. 4.11). In Fig. 4.12, the symbols gy S, and d
refer to the front walls (faces) of the gate, source, and drain, respectively.

It is important to realize that although we have developed the four-terminal small-signal
model based on the source-referenced analysis, the model can be used in an analysis based
on any reference node via a straightforward transformation of the voltage phasors.
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g f //’.

7

Fig. 4.12. A scheme illustrating the concept of an internal gate represented by point g.

4.5. Long-channel MOSFET model

The model presented in the previous section can be simplified if the MOSFET channel is
long enough to have the DIBL effect ignored. In this case, setting £, = 0 in (4.121)—(4.123),
the model of Fig. 4.11 reduces to the one shown in Fig. 4.13.

C Ry

gd|
1

Rgg g 1ﬂlYgsUbs Ymogs YinbVbs

o—+—[ }—o0—

gf R Ygs Rgb gds Rds
0 ol

§ T Ces CaT
1

Fig. 4.13. A four-terminal small-signal equivalent circuit for the real long-channel MOSFET
without connecting paths.

Q.6

4.6. Conclusion

A novel DIBL-included quasi-2D NQS four-terminal frequency-domain small-signal MOS-
FET model is proposed in this chapter. The model takes into account: the velocity saturation
effect of carriers in the channel, the dependence of the mobility on the electric field, the elec-
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trical coupling between the perturbed charge in the channel and the gate and the body, local
variations in the channel thickness, and the drain-induced barrier lowering (DIBL) effect.
Unlike other models, this one is composed only of reciprocal capacitances.

A closed set of partial differential equations defining the model in the frequency domain
is formulated and solved. The solution indicates that two types of waves can propagate from
the source to the drain, viz., a longitudinal wave of a disturbance in the carrier density and
a transverse wave of a disturbance in the channel thickness.

A closed set of equations for frequency-domain non-capacitive terminal currents in the
MOSFET under dynamic operation is derived.

The four-terminal model can be used in analyzing any circuit topology, and can be im-
plemented in commercially available circuit simulators. The model we propose is believed
to enable us to gain a deeper insight into the principle of operation of the MOS transistor.

The results of experimental verification of the model derived in this chapter and discus-
sion are presented in the next chapter.
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Chapter 5
VALIDATION OF THE FREQUENCY-DOMAIN MODEL

Wiestaw Kordalski, Tomasz Stefarski, Damian Trofimowicz

5.1. Introduction

In this chapter, the results of an experimental verification of the new, physically consist-
ent, DIBL-included quasi-2D four-terminal non-quasi-static frequency-domain small-signal
MOSFET model, derived from the first principles in Chapter 4, are presented.

In Section 5.2, the layout of pads and interconnects in the measured transistors are
shown. A small-signal model of the measured MOSFETs is presented in Section 5.3. The
de-embedding procedure is briefly described in Section 5.4. In Section 5.5, the results of our
experimental verification of the model in the range of up to the characteristic frequency /.
are reported. In Section 5.6, the new small-signal model for long-channel MOSFET (without
DIBL effect) is experimentally verified up to 30 GHz. Section 5.7 contains a summary.

A general note: the symbols for physical quantities occurring in this chapter are con-
sistent with those applied in Chapter 4.

5.2. Layout of the measured MOSFETs

5-finger enhancement-mode NMOS transistors with the channel length of 0.35 pm, and
1.4 pm and the width of 50 um were used to validate the NQS small-signal model up to
30 GHz. The test structures were optimized for measurements of scattering parameters of the
transistor in the common-source configuration with the use of air coplanar probes (ACPs).

The layout of pads and interconnects in the measured transistors is shown in Fig. 5.1.
The bulk and source of the transistor were shorted by grounding the probes during RF
measurements.

For the purpose of our verification of the NQS model, dummy structures (OPEN,
SHORT, THRU) of the measured transistors were designed; see Fig. 5.2.
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Body Drain Source

Gate

Fig. 5.1. The layout of pads and interconnects in the device under test (DUT).

DUT THRU SHORT OPEN

=

[ .
[ —

Fig. 5.2. The layouts of the devices under test (DUT) and dummy structures (OPEN, SHORT,
THRU) for the de-embedding of RF characteristics.

5.3. Small-signal model of the measured MOSFETs

A new DIBL-included quasi-2D NQS four-terminal frequency-domain small-signal model
of the real MOSFET (without connecting paths and pads) is developed in Sec. 4.4.3 and
depicted in Fig. 4.11.


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

AN\ MOST

5.4. De-embedding procedure 93

To simulate the theoretical frequency characteristics of the device under test (DUT), the
model of Fig. 4.11 is adapted. This model is supplemented by some resistive and inductive
elements corresponding to the transistor structure as measured by the ACPs.

In Fig. 5.3, we present a complete small-signal model of the DUT. Resistors R,, R , R,
and R as well as inductances L, L , Lg, and L_represent, respectively, the resistances and
inductances of the connection paths connecting the gate, source, drain and substrate of the
transistor; see [1-3].

Admittances Ve and y,, and transadmittances y , y and Ve and a parameter 7 are

mb’ yDb,

defined in Sec. 4.4. The gate-to-body capacitance C, is calculated from (4.126).

G D
L, Ly
R C R R

gd d d
¢ |-

ansUbs YDngs Ymogs YmbVbs

| Ygs h Rds d
Rgb YdE C &

—J

Fig. 5.3. A DIBL-included quasi-2D NQS four-terminal small-signal model for the DUT of
Fig. 5.1.

5.4. De-embedding procedure

To obtain reliable and repeatable measurement results, four transistor structures were meas-
ured based on two different calibration techniques of a vector network analyzer (VNA). Two
structures were measured with the use of the SOLT calibration method [4] in the 65MHz-
to-25GHz frequency range, whereas the other structures were measured with the use of
the LRM method [5] in the 65MHz-to-30GHz frequency range. The impedance substrate
standard (ISS) was used to calibrate the VNA. Transmission lines on ISS were used to verify
the quality of the VNA calibration. The procedure of de-embedding was based on the widely
used open-short method [4]. The S-parameters were measured for the DUT, OPEN, SHORT,
and THRU structures. Then, parallel parasitic elements were removed from DUT, SHORT
and THRU by subtracting the Y-parameters of OPEN. Next, series parasitic elements were
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removed from DUT and THRU by subtracting the Z-parameters of SHORT. Finally, the
quality of the de-embedding procedure was positively verified with the use of the THRU
structure. Almost the same results were obtained for the other tested transistors, thus the risk
of a one-time wrong measurement was eliminated.

5.5. Results of the verificationup to .

Some representative results of experimental verification of the new small-signal MOSFET
model for transistors (denoted by DEVICE-1 and DEVICE-2) of two different channel
lengths are shown in Figs. 5.4-5.7 and Table 5.1.

Biasing voltages, widths and lengths of channels of the tested transistors are presented
in Table 5.1. There are also presented the values of quasi-static small-signal gate transcon-
ductance g , quasi-static small-signal body transconductance g ,, and quasi-static small-sig-
nal drain-source conductance g, at the Q-point. The values of the other model parameters
obtained by curve-fitting of the theoretical admittance frequency characteristics to the ex-
perimental ones are also given in Table 5.1; the capacitance C, is calculated from (4.126).

Table 5.1

Model parameter values for the devices under test.

Model parameter DEVICE-1 DEVICE-2
Vs [V] 2.1 33
Vi [V] 1.0 0.9
L [um] 1.42 0.37
W [um] 50 50
u, lem? Vs] 360 220
g, [mS] 2.3 8.3
g, mS] 1 2
8, [KS] 30 350
k, [-] 0.1 0.4
D.[-] 0.8 2
d,[-] 0.08 0.29
ST-] 1.25 22
X [nm] 105 125
C,, [fF] 35 20
C,. [fF] 50 50
C, [fF] 8 18
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continued tab. 5.1

Cgb [fF], calculated 41 5

C,, [fF] 8.3 9.8
C,, [fF] 170 40

R, [Q] 1.4 1.4
R,[Q] 1 1

R, [Q] 1 1

R [Q] 1.4 1.4
L, [pH] 29 29
L,[pH] 1.5 L5
L, [pH] L5 L5
L, [pH] 29 29
R, ,[Q] 400 400
R, [Q] 350 350
R, [Q 20 20
R, [Q 2 2

R, Q] 2 23
R, [Q 1.9 22
R, [Q] 58 63

/,[GHz], measured 1.55 21.5
/, [GHz], calculated 1.6 21.4

In Figs. 5.6 and 5.7, two different representations of the measured and theoretical cha-
racteristics of H, —parameters vs. frequency are displayed for DEVICE-1 and DEVICE-2,
respectively.

One can see in the above-mentioned figures that close accuracy is attained in theoretical
description of the measured data in the frequency range of up to the characteristic frequency
f,- It is worth noticing that the model parameters have realistic values.

Magnitude, real and imaginary parts of the calculated transadmittances y , v, Y, V8.
frequency for DEVICE-1 are shown in Figs. 5.8, 5.10, and 5.12, whereas analogous frequency
characteristics for DEVICE-2 are presented in Figs. 5.9, 5.11, and 5.13. One can observe in
these figures that magnitude, real and imaginary parts of the calculated transadmittances y ,
Vo Yy, 1€ monotonic functions of frequency from zero Hz to f;.
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4
——Re Y11 theory
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Fig. 5.4. Real and imaginary parts of the Y, —parameters vs. frequency: comparison between
the measured (exp.) and theoretical (theory) data for DEVICE-1; f, = 1.55 GHz.
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Fig. 5.4. (continued).
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Fig. 5.5. Real and imaginary parts of the Y —parameters vs. frequency: comparison between
the measured (exp.) and theoretical (theory) data for DEVICE-2; f, = 21.5 GHz.
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Fig. 5.5. (continued).
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Fig. 5.6. Magnitude, argument, real and imaginary parts of the //, —parameters vs.
frequency: comparison between the measured (exp.) and theoretical (theory)
data for DEVICE-1; f, = 1.55 GHz.
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Fig. 5.13. Magnitude, real and imaginary parts of the transadmittance Vg VS. frequency
for DEVICE-2; f, = 21.5 GHz.

5.6. Results of the verification in the range of up to thirteen times f,

Some final results dealing with a simplified version (without the DIBL effect) of the new
model of long-channel transistors are presnted in this section. The results refer to DEVICE-1
(L = 1.4 pm) biased with the dc drain-to-source voltage V= 2.1 V and the gate-to-source
voltage V.. = 1.2 V (the measured f, = 2.21 GHz at the Q-point). The results are obtained
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under assumption &, = 0, and—as in the previous section—the capacitance Cy is calculated
from (4.126).

Real and imaginary parts of the measured (exp. in figures) and theoretical (theory in
figures) Y, _—parameters for the transistor under test vs. frequency are shown in Fig. 5.14.
In Fig. 5.15, two different representations of the measured and theoretical H, —parameters
vs. frequency are displayed. One can see from Figs. 5.14 and 5.15 that the theoretical and
empirical characteristics are in good agreement even in the frequency range well above the
characteristic frequency f. (about 2.2 GHz).
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Fig. 5.14. Real and imaginary parts of the Y, —parameters vs. frequency: comparison
between the measured (exp.) and theoretical (theory) data for DEVICE-1
Vy)s=21V, V. =12V, f =221 GHz).


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

AN\ MOST

104 5. Validation of the frequency-domain model
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Fig. 5.14. (continued).

An interesting issue is to estimate the frequency f, for an idealized MOS transistor in

the common-source configuration (f,., ); such a transistor has no capacitances, resistances,

and inductances, as shown in Fig. 4.9. It is intuitively obvious that the idealized transistor
should have a finite value of /., if we take into account the fact that the velocity of prop-
agation of the charge carriers in the channel of the transistor is finite. Using the new model,

Calculations give /.., = 10 GHz, so the value is over four times

one can calculate f, doal =

Tideal’
greater than that of the real device.
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Fig. 5.15. Magnitude, argument, real and imaginary parts of the /7, —parameters vs.
frequency: comparison of the measured (exp.) and theoretical (theory) data
for DEVICE-1 (V,,=2.1V, V,;= 1.2V, f,=2.21 GHz).
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5. Validation of the frequency-domain model

5.7 Conclusion

A new DIBL-included physics-based quasi-2D non-quasi-static four-terminal small-signal
model of the MOSFET has been successfully verified experimentally up to 30 GHz. The
model parameters have realistic values. The model can be implemented in commercially
available circuit simulators.
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TIME- AND FREQUENCY-DOMAIN QUASI-2D
SMALL-SIGNAL MOSFET MODELS

A novel approach to small-signal MOSFET modeling is presented in this monograph. As
a result, time- and frequency-domain physics-based quasi-2D NQS four-terminal small-sig-
nal MOSFET models are proposed. The time-domain model provides the background to
a novel DIBL-included quasi-2D NQS four-terminal frequency-domain small-signal MOS-
FET model. Parameters and electrical quantities of the frequency-domain model are de-
scribed by explicit functions.

The models take into account: the velocity saturation effect of carriers in the channel,
the dependence of the mobility on the electric field, the electrical coupling between the
perturbed charge in the channel and the gate and the body, local variations in the channel
thickness, and the DIBL effect.

Derivation of the models is based on an analysis of a current density vector field and the
following newly introduced phenomena: gradual channel detachment effect (GCDE), channel
thickness modulation effect CTME), and channel-lengthening effect (CLE).

A set of partial differential equations for the new physics-based small-signal MOSFET
models is derived. The set consists of a quasi-2D small-signal continuity equation, a quasi-2D
small-signal Poisson’s equation, and a quasi-2D small-signal transport equation. All the
equations give a mathematical description of the behavior of the carriers in the channel and
charges in the gate and the body. A set of supplementary equations for coupling and non-ca-
pacitive displacement currents in the MOSFET under dynamic operation is also derived.

Based on the quasi-2D dc MOSFET representation, a useful formula for the gate-to-
body capacitance Cgh is derived, and some rules dealing with channel-to-gate and channel-
to-body coupling currents are established. Only reciprocal capacitances are present in these
models.

The quasi-2D approach to the MOSFET modeling shows that two types of waves can
propagate from the source to the drain, i.e., a longitudinal wave of disturbance in the carrier
density and a transverse wave of disturbance in the channel thickness.

It is shown that the magnitudes of both gate and body transadmittances are decreasing
functions of frequency.

The new frequency-domain small-signal MOSFET model has been successfully verified
experimentally up to 30 GHz. The model parameters have realistic values.
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108 Summary

The new model is valid from zero Hz to well above the cut-off frequency f,.

Each model parameter describes some physical phenomenon.

The time- and frequency-domain four-terminal small-signal models can be used in an
analysis of any circuit topology, and can be implemented in commercially available circuit
simulators. The models are believed to enable us to gain a deeper insight into the principle
of operation of the MOS transistor.
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QUASI-DWUWYMIAROWE MODELE
MALOSYGNALOWE TRANZYSTORA MOS
W DZIEDZINIE CZASU | CZESTOTLIWOSCI

W ksigzce przedstawiono nowe podejscie do modelowania matosygnalowej pracy tranzysto-
ra MOS. Jego rezultatem sg opracowania dwoch quasi-dwuwymiarowych, nie-quasi-statycz-
nych, czterokoncéwkowych modeli matosygnatowych MOSFET-a w dziedzinie czasu i czg-
stotliwosci. Opracowany quasi-dwuwymiarowy model w dziedzinie czasu stanowi podstawe
matematyczno-fizyczng do wyprowadzenia quasi-dwuwymiarowego, nie-quasi-statycznego,
czterokoncowkowego modelu matosygnatowego MOSFET-a w dziedzinie czestotliwos$ci,
uwzgledniajgcego efekt DIBL (ang. Drain-Induced Barrier Lowering). Parametry charakte-
ryzujace model czgstotliwosciowy opisane sg funkcjami jawnymi czestotliwosci 1 wielkosci
elektro-fizycznych tranzystora.

W odroéznieniu od znanych modeli, w modelach nowoopracowanych uwzgledniono na-
stepujace zjawiska: efekt nasycenia predkosci nosnikéw w kanale tranzystora, zalezno$¢
ruchliwoéci no$nikow od natezenia pola elektrycznego, zjawisko sprzg¢zenia elektrycznego
pomiedzy zaburzong koncentracja nosnikéw w kanale a bramka i podtozem, lokalng zmiang
grubosci kanatu oraz efekt DIBL.

Wyprowadzenie tych modeli matosygnalowych oparte jest na analizie pola wektorowe-
go gestosci pradu i nieuwzglednianych dotychczas takich zjawisk jak: zjawisko tagodnego
(stopniowego) odrywania si¢ kanatu, zjawisko modulacji grubosci kanatu (statyczne i dyna-
miczne) oraz zjawisko wydtuzania kanatu.

Biorac pod uwagg najbardziej podstawowe (rudymentarne) prawa fizyki, wyprowadzo-
no uktad rownan rézniczkowych czastkowych opisujacych model matosygnatowy tranzy-
stora MOS w dziedzinie czasu. Uktad ten sktada si¢ z quasi-dwuwymiarowego réwnania
cigglosci, quasi-dwuwymiarowego rownania Poisson’a i quasi-dwuwymiarowego rownania
transportu. Rownania te stanowig matematyczng podstawe kinetyki no$nikéw w kanale
i pozwalaja obliczy¢ tadunki indukowane w bramce i podtozu. Wyprowadzono rowniez
rownania opisujace prady sprzezenia kanal-bramka i kanat-podloze oraz zdefiniowano nie-
pojemnosciowe prady przesunigcia.

Opierajac si¢ na opracowanej quasi-dwuwymiarowej reprezentacji statopradowe;j tran-
zystora MOS wyprowadzono wzor na pojemnos¢ bramka-podtoze C,, oraz sformutowano
reguty ustalajace relacj¢ pomiedzy pradami sprz¢zenia kanat-bramka i kanat-podtoze. No-
woopracowane modele zawieraja tylko pojemnos$ci wzajemne.
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110 Summary

Z przeprowadzonej analizy wynika, ze dwa typy fal moga propagowac si¢ w kanale
tranzystora MOS: podtuzna fala zaburzen koncentracji nosnikoéw i poprzeczna fala zaburzen
grubosci kanatu.

Wykazano, ze moduty zespolonych transadmitancji bramki i podtoza sa malejacymi
funkcjami czgstotliwosci.

Nowy malosygnatowy model MOSFET-a w dziedzinie czgstotliwo$ci zostat pozytyw-
nie zweryfikowany eksperymentalnie az do czestotliwosci 30 GHz. Parametry modelu przyj-
muja realistyczne warto$ci.

Matosygnatowy model czestotliwosciowy moze by¢ stosowany od zera Hz do cz¢sto-
tliwosci kilkakrotnie wigkszej od f,.

Kazdy parametr modelu opisuje jakie$ zjawisko fizyczne.

Obydwa nowe modele matosygnatowe moga by¢ uzyte do analizy scalonych uktadow
mikroelektronicznych o dowolnej topologii, a takze moga by¢ zaimplementowane w komer-
cyjnych symulatorach uktadow elektronicznych.

Jestesmy przekonani, ze zaproponowane nowe modele pozwalaja glebiej wniknaé w za-
sade¢ dziatania tranzystora MOS.
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Appendix A
DERIVATION OF QUASI-2D CONTINUITY EQUATION

Wiestaw Kordalski

Let L'(&, ©) be the limit of the left-hand side of (3.25) as A — 0, i.e.:

Eaé O
L't = Aliz ; A§ —[p(é NX(&.0]ds (A1)

The quotient of the integral of the right-hand side of (A1) by A has the limit:

. 1 0
Jim 1. = ‘fa [ p(E,0) X(&,1)]dE = t[p(g’,t)X(é,t)] (A2)

Indeed, noting that p(¢, 7) and X (£, ¢) are nonnegative functions and applying the mean value
theorem to the integral, we can write:

&+ae 0 0
Aéj S [PENXEN]dE = —[pEra-st
(A3)
x X(E+a-A&D)] —= E[P(f,f)X(fJ)]
since a = a (&, AE) € (0, 1).
Thus, combining (A1) with (A2), we obtain:
. 0
L =q E[X(é,t) p(&D)] (A4)
Differentiating (A4) with respect to ¢ and employing (3.14) and (3.15) leads to:
0 | 0 1
L(@t)—q{po(rf) N )}
(A5)
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Confining considerations to linear analysis (ignoring the two mixed terms in the preced-
ing equation) and using (3.21) yields:

19180 p1(§ 1)

L'(&,0) = ¢ X, (&) [1+ D (&,1) (A6)

Denoting the right-hand side of (3.25) by R(¢, £) and inserting the following formulas:

oJ
JER0E) = JEN 2008 10 00) a7
H(E+ 88D = X(EN+ T 2008 o 08) (A8)
into (3.25), we obtain:
RED = 17 | XEDTTZ0AE JEN T ZDAE X ED 0,08+ JE0) 0,09)
6](5 t)A A 0X(&,1) 0J(S,1) A A A 0X (¢, t)A A
o $-0,(AS)+ o¢ 693(5) +0,(A8)-0,(AS)+ o¢ ¢-0,(AS)
(A9)
where 0,(A¢) and 0,(A{) are some infinitesimals of higher order than A as A — 0.
Denoting the limit of (A9) as A — 0 by R*(, 1), i.e.:
R'(¢,0) = lim R(&,1) (A10)
and taking account of (3.15) and (3.16), we obtain:
RN =~ XOTEE 5O P X, 20 s 0TS
(Al1)
dJ,(&) 0X,(S,1) 0X,(S,1) 0J,(S,1)
~X,(&, -J, -7, - X,
1(6:0) 4z 9] o¢ (&.—07— o¢ (E:N—7— o¢

The first two terms in (A1l) represent the continuity equation in differential form for
dc conditions, and their sum is equal to zero. Indeed, differentiation of (2.18) with respect
to ¢ leads to:

dJ,() | 0(§)dX(§) 0 (A12)

X () — o e

which is what we wanted to prove.
Thus, taking (A12) into consideration and combining (A6) with (A1l), we have:
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d X1+ Do (60] PLED o(:)a"a(g D e t)d)flf)

(A13)
L dA©) L oX(ED X (1) oJ, ()
X (0T gy SRUED g e Sy e P
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Appendix B
DERIVATION OF QUASI-2D POISSON’S EQUATION

Wiestaw Kordalski

Let L'(&, £) be the limit of the left-hand side of (3.50) as A — 0, i.e.

L@n=lim L] XENG) + pen]ds "

By analogy with (A2), the quotient of the integral of the right-hand side of (A14) by A
has the limit:

1 pe+ac

— |, XED[NE+pEn]de= XEN[NE) +pE0]  (AL5)

lim
AES0 Aé: &
Thus, inserting (A15) into (A14) and taking account of (3.14) and (3.15), we obtain:

L&) = q [Xo(&) N(E)+Xo(E) po(E)+ X, (&) pi(&.0)

(A16)
+N(&) X,(&,0)+ po (&) X,(&,0+ pi(&) X, (&,0)]

Now, we proceed to calculate the limit of the right-hand side of (3.50) as A — 0. We
denote the limit by RS, 7).
By analogy with (A15), we note:

. 1 E+AE

lim 2 [ Ea(E0 48 = By (60 (17
L% Ende =B

i ggle Feol6nde =Eolé (A1

To compute R*(, £), we need to know the limit of B(, £) as AE — 0, where

B(1) = A%E[X(&Acf,t) E(E+AED-X(E.0) EED)] AL9)
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Inserting the following formulas:

E(E+AE1) = E(E.0)+ (:f OESD ng 4 o, (A) (A20)

X(E+AS) = X(S.0)+

aX(§ D p A& +0,(AS) (A21)

into (A19), we obtain:

@X(ff DA

B, = X6 —Z—AS+X(,0)-0,(AS)+ E(C,)——AS

5
+E(5,0)0,(AS) +

OE(S,1)
o

6X(§ 2]

AS-0,(AS)+

aE(g ) XD peo(a8)  (a2)

N 0X(&,1) 0E(E,1) (

o6 oc AS)" +0,(A)-0,(A)

where 0,(A) and 0,(A{) are some infinitesimals of higher order than Al as A — 0.
The limit of (A22) as A & — 0 is:

lim B&0) = XL (g Dy pent (§ 1) (A23)
Taking account of (3.6), (3.7), (A23), and noting that
aX;::,z) _ d§0;§)+aXéf’t) (A24)
5Ea(?t) _ dﬁ;égf) N aE,a(ef,t) (A25)
we can write:
lim B(E0) = X,(6) dE‘f) LE(©) dX"f) LX(6) aElaf’ DB dx‘f) (A26)
FX(ED f) o(f)”f’) El(é,t)”éf D, (;f &

Utilizing (A17), (A18), (A26) and taking account of (3.8) and (3.9), we can write the
limit R*(, ) of the right-hand side of (3.50) as A& — 0 as follows:
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R'(E0) = ey, (m@+%@0+xw)°f)(@ﬂxf)
OE,(£.1) , ax, (&) , 0X,\(&:0) | dE,(S)
XD EEN TR B O KGN a)
X, (&,1) (&)
)+ EnE0+ EEN T +&@@—E;ﬂ

Equating (A16) with (A27), L'(&, {) = R'(&, ¢) and confining considerations to linear
analysis, i.e., ignoring mixed terms in (A16) and (A27), we obtain:

q [Xo(S) NS+ X,(S) py(5)+ Xy (S) p(E,0)+N(E) Xi(S,0)+py (&) X, (&,0)]

= by, [Eeo(©)+E (E0 4 6ye, | X&) 508 f) £, %) f)+ECBO(r:)+ECb<§,r)
OE (S,1) dX,(¢) dE(S) X, (&,1)
U T B ) 0 B TS

(A28)

One can see that (A28) contains terms corresponding to both dc conditions and
small-signal time-varying conditions. We can thus split (A28) into two equations: a quasi-2D
Poisson’s equation for dc conditions,

qLX(E)N(E)+ X (E) Po(E)] = €16, [E 60 (E) + E 5 (S)]
dE(&) dXO(f)} (A29)

X,
+ 88, | Xo(&)—7— E +E,(5) E

and a quasi-2D Poisson’s equation for small-signal time-varying conditions,

[X, (ﬁf)Pl(ﬁ D+NE) X,(E,0+p(8) X,(5.0]= 6, [E, (5.0) + E,(S,0)]

1(50 dX,(&) dE, (&) 0X,(&1) (A30)
+e,6, | Xo(&)——— oc +E(S,0)— i +X,(5,1) E +E,(S) o }
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Appendix C
QUASI-STATIC SMALL-SIGNAL CONDUCTANCE g i

Wiestaw Kordalski

Combining (2.16) and (2.17), an equation for the dc drain current /,, of a p-channel MOSFET
(see Fig. A.1) at a given Q-point can be written as follows:

Iy ==W Q¢ (5)vy(S) (A31)

where Q (<) is the channel charge per unit area [see (2.17)] and v (<) is the velocity of car-
riers.
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Fig. A.1. An MOSFET under a quasi-static small perturbation dV .

In the circuit shown in Fig. A.1, the voltages V. and V,  do not vary. Considering that,
we may state that an infinitesimally small quasi-static increase in the drain-source voltage
dV ,; causes an infinitesimally small quasi-static variations in the velocity v of carriers
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[through an increase in longitudinal electric field £(¢)] and in the charge O, (through an
injection of carriers into the channel due to the DIBL effect). Therefore, we may rewrite
(A.31) in the form:

Iy == W Qu(EVps) 0y (Ey()) (A32)

An infinitesimally small quasi-static increase in the drain current d/, can be calculated
by differentiation of (A.32) with respect to V. and £ ({), yielding:

d
ity = 1 0@y ) i )y (5,0) 200 gy a3y

dE (&) oV s

If we assume that, for small perturbation in the drain-source voltage dV,, the differ-
ential of the longitudinal electric field dE({) is independent of ¢, then, differentiating (4.7),
we obtain:

dEy(&) = —dVy /L (A.34)

Taking account of (A.34) and noting that the derivative dv (E ({)) /dE (<) is equal to the
differential mobility x, at the Q-point, see (4.10), we can rewrite (A.33) as follows:

Ha 9 Vis) gy gy e,y 20T s ss)

da,=Ww
0V
One can see that the first term of the right-hand side of (A.35) represents an ohmic
current, whereas the second one is a current determined by DIBL effect. Therefore, we can
introduce the following two notions: a quasi-static small-signal (differential) ohmic con-
ductance, denoted by g, , and a quasi-static small-signal (differential) DIBL conductance,
denoted by g, | and determined by DIBL effect. Hence, (A.35) can be written as

dly = (84 +8un ) AVps (A.36)
where
V,
gm=Wﬁé@E3Q (A37)
‘ L
and
00:0(&.Vs)
gM=—W%@EQ—Q£JL (A38)
OV
Using (2.17), we have an alternative form of (A.37):
w
gd,m :q_lud pO(é‘:)XO(é) (A39)
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On the other hand, taking into account the definition of the quasi-static small-signal (differ-
ential) drain-source conductance g,

_ 0Ly (Vs sVs>Vs)

5 A40
8 A (A.40)
we can write the following:
dl, =g, dVig (A41)
Comparing (A.36) and (A.41), we obtain:
gds = gdso + gdsD (A42)

One can see from (A.42) that g, consists of two components, viz., g, and g, . For
simplicity, they can be called, respectively, an ohmic part of g, and a DIBL partof g, .
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Appendix D
FINDING THE HOLE CONCENTRATION p1(Zj,jw)

Wiestaw Kordalski

A solution to (4.38) is sought in the following form:

P (&, jo)=Kexp(y<) (A43)

Putting it into (4.38), we get a characteristic equation for y:

Ozyz—ﬂ}/— d gL +j50(1+Dc)
V EOESlqu/tWXL‘h luql/t

t

(A44)

Using standard procedure, we obtain two solutions for y:

E
72_0_%’/‘”“/“2 +b° —j%\/—a +Na’ +b (A.45)

2,
E 2 / /
7= 2; +%\/a+\/a2 +b’ +jg —a++\a’ +b’ (A.46)
t
in which
E; 4d, g, L 40 (1+D
a :_2+ lgdso , b: (0( C) (A47)
I/t gogs lquVt WXCh lquI/t
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Appendix E
FINDING THE ELECTRIC FIELD E1(Z_.‘, jow)

Wiestaw Kordalski

Substituting (4.39) into (4.35), one can obtain the following differential equation with sepa-
rable variables:

dEl — qdlKeXp(}/é)dg

A48
2ot (A.48)
Integrating (A.48) yields
E&je) - qd K ¢
Lo 9E1 = HJ o XP(r)de (A49)
Solution to (A.49) is:
. o qd Kexp(ys)-1
E\(¢, jo) = E(0, jo) +— [ ] (A.50)
80 gs 7
Electric field £ (£, jw) must satisfy the following boundary condition:
L .
v, = [ E(& jo)ds (AS1)

where v, is the drain-source voltage phasor.
Inserting (A.50) in (A.51) and integrating the resultant equation, one can obtain a for-
mula for £(0, jw) as follows:

ﬁ_qd,K[exp(;/ﬁ)—/lL—l]

E 0, jow) = -
10, j@) L g8, 7 L

(A.52)
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