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Abstract We present a model—a modified standard
map. This model has interesting properties that allow
quantum–classical correspondences to be studied. For
some range of parameters in the classical phase space
of this model, there exist large accelerator modes. We
can create a family of maps that have large accelerator
modes.

Keywords Low-dimensional chaos · Accelerator
modes · Quantum chaos · Husimi function

1 Introduction

We consider a nonlinear, chaotic, Hamiltonian system
that mathematically describes a periodically perturbed
two-dimensional rotator. Depending on the form of the
perturbation, we can get a variety of dynamical prop-
erties of the system. If the perturbation is periodic and
realized by short kicks, modeled as a periodic Dirac
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δ-function:
∑

n δ(t − nT ), then it is possible to inte-
grate it over one period in time and, in the end, obtain
a discrete map [1–3]. One of the most famous models
of this type was introduced by Chirikov [4], and it is
known as a standard or Chirikov map (SM). In SM,
perturbation is realized by periodic kicks in time and
by a sine function of the position. This model is crucial
from a theoretical point of view, as a quite simplemodel
that exhibits Hamiltonian chaos. It has found many
applications in accelerator physics, plasmaphysics, and
solid-state physics. In this article, we investigate prop-
erties of the modified standard map (MSM) introduced
in [5] and its quantum counterpart. In this model, a
two-dimensional rotator is also perturbed in time by
force modeled by a periodic Dirac δ-function, but we
changed the functional dependency of this perturbation
on position. TheHamiltonian function of ourmodel has
the following form:

H(P, Q, t) = P2

2I
+ KV (Q)

+∞∑

n=−∞
δ (t − nT ) , (1)

where P is the momentum, I is moment of inertia, t
is time, T is the period of the force, and V (Q) is a
periodic function-external potential. We can write the
Hamilton equations for the dynamics of our model as

dP

dt
= K f (Q)

∞∑

n=−∞
δ (t − nT )

dQ

dt
= P

I
, (2)
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where f (Q) and V (Q) are related by the standard for-
mula:

V (Q) = −
∫ Q

0
f (Q̃)dQ̃. (3)

In the case of SM, perturbation depends on position Q
according to the formula V (Q) = cos Q.

For the models considered in this article, the so-
called accelerating modes (AMs) emerge [4,6,7] in
phase space for a wide range of parameters. There are
areas of the phase spacewheremomentum increases (or
decreases) approximately linearly in time. In the case
of SM, there are two kinds of AM. However, areas of
AM in SM are quite small. Using our modifications,
we can create AMs that are several times larger and
parametrically control their areas. We can also propose
modification when only one kind of AMs exist with
quite large areas. Simultaneously, trajectories of the
area outside the accelerator modes can “stick” to their
boundaries and follow a linear evolution for a very long
time. This phenomenon leads to statistically interesting
results in the form of power-like tails in the momentum
distribution function [8].

In this paper, we study the classical and quantum
dynamics of a system, for a particular range of parame-
ters for which AMs exist. Because AMs have an impor-
tant practical interpretation [9–12], we hope that our
results may be relevant in this area.

2 Modified standard map

Equations (2) can be integrated over time, and this leads
to classical discrete dynamical system, which is a mod-
ification of SM:

Pn+1 = Pn + f (Qn)

Qn+1 = Qn + Pn+1 mod 2π, (4)

where Qn is a position at the nth step, Pn represents
momentum in the nth step, and f (Q) is a piecewise
linear continuous periodic function:

f (Q) =
⎧
⎨

⎩

a1Q + b1 0 ≤ Q ≤ Θ1

a2Q + b2 Θ1 < Q < Θ2

a3Q + b3 Θ2 ≤ Q < 2π
. (5)

Let us recall that the iteration steps of the map corre-
spond to equal time increments. It is also assumed that
the mean value of the momentum increment 〈Pn+1 −
Pn〉 is equal to zero. We additionally require that there

exists a stable AMwith a center at Q = Θ1/2, and this
implies the following equation:

a1
Θ1

2
+ b1 = 2π. (6)

These assumptions allow one to express parameters
ai , bi , i = 1, 2, 3 as a linear function of one param-
eter, say a1. Moreover, one can easily check that the
solution (Qn, Pn) = (Θ1/2, 2nπ) is an elliptic point
for a1 ∈ (− 4, 0), and therefore, only for this range of
values, there exists a stable AM.

With this modification, it is much easier to inves-
tigate the quantum counterpart of the classical map,
especially effects like tunneling from the AM or the
stickiness of its boundary (see Fig. 1). Using a proper
choice of parameters, the area of AM in the phase space
is relatively large (see Fig. 2). It should be noted that
MSM as well as SMs is obtained from Hamilton equa-
tions in accordance with the assumption that the time
dependence of the acting force is a periodic Dirac δ-
function; thus, we are considering the so-called kicked
model. This also allows the exact form of the quantum
map to be obtained. However, in the case of continuous
and smooth time dependence in the quantum descrip-
tion, one can apply the well-known Floquet Hamilto-
nian.

3 Quantum map

In this section, we construct a quantum counter-
part of Equations (4). With this aim, we start from
Schrödinger’s equation

i h̄
∂

∂t
ψ(Q, t) = Ĥ(Q, t)ψ(Q, t), (7)

with the Hamilton operator in the following form:

Ĥ(Q, t) = − h̄2

2I

∂2

∂Q2 + KV (Q)

+∞∑

n=−∞
δ(t − nT ),

(8)

where the second term represents periodic kicks with
period T . Due to the form of the Hamiltonian, the evo-
lution operator from time t = 0 to t = T may be
written as a product of two simple operators:

Û (T, 0) = exp

(

− i

h̄
K V (Q)

)

× exp

(

− i

h̄
T Ĥ0

)

= ÛQÛP (9)
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Fig. 1 Stickiness of AM. 105449 points of trajectories starting in chaotic part of phase spacewhosemomentum increased approximately
5000 × 2π after 5000 iterations. In the figure, momentum is plotted modulo 2π

Fig. 2 Points of trajectories in the phase space of MSM for
parameters when AMs exist after a large number of iterations.
Points belonging to AM escape to the large value of momentum

where Ĥ0 is the operator of free rotation and we
assume that we start from free rotation. It should be
noted that each operator in the above equation is a
simple multiplication in the corresponding represen-
tation: ÛQ is a multiplication in position representa-
tion, and ÛP is a multiplication in momentum repre-
sentation. In our case, the phase space is a cylinder
with periodicity in variable Q; therefore, we have dis-
crete momentum representation with Pm = mh̄, m =
. . . ,−2,−1, 0, 1, 2, . . .. In numerical computations,
we take into account only a finite number of P-
values say Pm = −Nh̄, . . . , (N − 1)h̄ and conse-

quently a finite number of discrete Q-values: Q j =
2π j/(2N ), j = 0, 1, 2, . . . , 2N − 1. The transitions
between both representations are given by the discrete
Fourier transform and its inversion:

ψ̃(Pm, t) =
2N−1∑

n=0

ψ(Qn, t)e
−i2πnm/(2N )

ψ(Qn, t) = 1

2N

N−1∑

m=−N

ψ̃(Pm, t)ei2πnm/(2N ) (10)

In the classical map (4), the area Cn = [0, 2π) ×
[(2n − 1)π, (2n + 1)π) is an elementary cell, that is,
if the point (Q0, P0) is transformed into (Q1, P1) then
(Q0, P0 +2kπ) is transformed into (Q1, P1 +2kπ)—
i.e., the classical mapping is invariant with respect to
the translation of 2kπ in momentum. The number of
quantum states that belong to such an elementary cell is
strictly determined by the value of constant h̄. However,
we can treat h̄ as a parameter that may take any positive
value. Then, the number of quantum states belonging
to the elementary cell can be calculated as 2 [π/h̄]+1,
where symbol [·] means an integer part of the fraction
π/h̄ or as 2π/h̄, when multiples of h̄ are equal to π .

4 Classical and quantum correspondence

In the studies of relationships between classical and
quantum dynamics, it is useful to represent a quantum
state in phase space. Such possibility gives us aWigner
function and Husimi–Kano function. In our case, the
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phase space has a cylindrical geometry and position is
a cyclic variable. For that geometry of phase space, the
Wigner function can be written in the following way
[13]:

Wψ(Q, Pn) = 1

π h̄

∫ + π
2

− π
2

exp

(

−2
i

h̄
PnQ

′
)

×ψ∗(Q + Q′)ψ(Q − Q′)dQ′, (11)

and the Husimi function on cylinder is defined by the
following formula [14,15]:

Hψ(Pn, Q) =
∣
∣
∣
∣h̄

+∞∑

m=−∞

(
s

π h̄2

) 1
4

× exp

(

− s(Pm − Pn)2

2h̄2
+ i Q(Pm − Pn)

h̄

)

ψ(Pm)

∣
∣
∣
∣

2

,

(12)

We analyze the quantum evolution of a state given
by:

ψ(Q, 0) = 1

(2πD)
1
4

exp

(

− (Q − Q0)
2

4D

)

× exp

(

i
P0
h̄
Q

)

, (13)

where D ∈ 	 (real number), Q0 and P0 denote the
mean value of position and momentum, respectively.
Whenwe choose the numbers Q0 and P0, we can local-
ize the maximum of the Husimi function in various
regions of the classical phase space both in accelera-
tor modes and in the chaotic part of phase space. We
can also transform initial Gaussian states to obtain a
rotated Husimi or Wigner function. Such a situation is
presented in Fig. 3 where both functions are drawn as
contours inside theAMwhich has the shape of a rotated
ellipse.

This initial Gaussian state can be obtained by rotat-
ing theWigner function (13) by the angle ϕ and finding
its wave function ψϕ(Q). In the case of the plane as a
phase space, one obtains the following form of this
function:

ψϕ(Q) =
(

α

π h̄(α2 cos2 ϕ + sin2 ϕ)

)1/4

× exp

{

− Q2

4Σ2

}

, (14)

where

α = 2D

h̄
, (15)

0 2
Q

-

0P

0 2
Q

-

0

Fig. 3 Husimi (left) and Wigner (right) functions for the same
initial state with the following parameters:

√
D = 1.3, ϕ =

1.005, α = −2.1, θ1 = π , θ2 = 3
2π . The dots represent the

sticking area of classical AM, while ellipses are contour lines of
corresponding functions, P = Pmmod2π

and

Σ2 = h̄

2

α cosϕ − i sin ϕ

cosϕ − iα sin ϕ
. (16)

We can see that the transformation from ψ(Q) to
ψϕ(Q) is equivalent to replacing D with a complex
parameter. We can say that the function ψϕ(Q) is a
product of Gaussian and linear chirp. The formula
above can also be used in the cylinder case if the Gaus-
sian function is sufficiently narrow, i.e., if its width is
much smaller than 2π .

In Fig. 4, we present the Husimi function for the ini-
tial state (rotated Gaussian) localized in AM in the cell
described by the Cartesian product: [0, 2π)×[−π, π)

and five of its iterations for n = 1, 2, 10, 100, 1000.
We can observe that the Husimi functions of these iter-
ations are localized in AMs in cells of phase space
described by [0, 2π ] × [(2n − 1)π, (2n + 1)π ], where
n is the iteration number. Moreover, the form of the
Husimi function changes slightly.However, there exists
tunneling from AM to the remaining phase space. In
order to investigate the properties of this tunneling, we
calculate the probability W (n) = ∑

i |ψ(Pi )|2, where
Pi ∈ [(2n − 1)π, (2n + 1)π ] at each iteration of the
initial state. When proceeding in this way, however, we
are calculating rather the escape rate from the cell with
AM than from AM itself.

The results of numerical calculations for the chosen
value of D and h̄ are presented in Figs. 5 and 6. In the
first one,we presentWigner functions of the initial state
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Fig. 4 Husimi function of
the states for various
iteration steps:
n = 0, 1, 2, 10, 100, 1000

0 2
Q

-

0P

0 2
Q

-

0P
m

Fig. 5 Absolute value of Wigner functions for n = 0 (left side)
and n = 4000 (right side). Dots represent the sticking area of
classical AM, P = Pmmod2π

(h̄ = 2π/24, D = 0.35803) (left side of the figure)
and of the same state after 4000 iterations in the cell
with a number n = 4000 (right side of the figure). We
can see that the state is still well localized in AM as
W (4000) ≈ 0.996.

These two pictures give an alternative presentation
of states to the Husimi representation.

The left side of Fig. 6 presents a graph of function
ln(W (n)) and suggests that it can be described by the
formula:

W (n) ∼ exp(−βn), (17)

with β = 9.46×10−7. Such a good fit was obtained for
the same initial state as in the previous figure. On the
right side of Fig. 6, where the initial state has larger
values of parameter D, we obtain a good fit to the
straight line for results with n > 5000. A value of
β = 9.44 × 10−7 was estimated for iterations with
n > 30000. Such a calculated value of the β param-
eter is practically the same as in the previous figure
(D = 0.358).

Similar simulations can be performed when the
Husimi function is well localized outside of the AM, in
the chaotic part of phase space. In contrast to the situ-
ation presented in Fig. 4, the initial state gradually fills
the chaotic part of phase space leaving intact regions
where AMs are localized, which is clearly visible for
the iteration n = 3 in Fig. 7.

We have also studied the asymptotics of numeri-
cally obtained densities, where a maximum of Husimi
functions lay outside the accelerator mode. In Fig. 8,
we present an evolution of a wave function amplitude
|Ψ (P, t)| in momentum representation. The amplitude
has a maximum, which moves in the direction of the
negative P-values with constant velocity. At the same
time, it possesses a long tail for positive P-values with
the front which moves with constant velocity as well
(the front jumps by 2π at every iteration). In order to
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n

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

ln
(W

(n
))

10-3

=-9.46e-07
D=0.358

0 0.5 1 1.5 2 2.5 3 3.5 4

n 104

-0.5

-0.4

-0.3

-0.2

-0.1

0

ln
(W

(n
))

=-9.44e-07
D=2.78

Fig. 6 Logarithm of probability as a function of iteration step (marked by circles) and straight line fitted to the last ten points

Fig. 7 Husimi function in selected iterative steps. The initial
state n = 0 is a Gaussian onewith parameters D = 0.1 Q0 = 3π

2
and P0 = 0. For n = 1, 2, 3, we have the next quantum iterative
steps. We use following parameters: I = 1.0000018, K = 1,
a1 = −2, 1, θ1 = π , θ2 = 3

2π , h̄ = π
64 , T = 1 and the

momentum range [−8π, 8π ]

×104

10

P

5

0
0

0.5

1

n

1.5

×104

0

0.02

0.04

0.06

2

|ψ
(P
)|

Fig. 8 Amplitude |Ψ (n, P)| of a wave function in momentum
representation for selected iteration steps n

verify the nature of this tail, we consider a state after a
large number of iterations as is presented in Fig. 9 on
the left side. The value of the wave function amplitude
is drawn in two scales, which can be seen on the right
side of this figure. The upper figure presents a linear
fit to the results in log-log scale that has a high coef-
ficient of determination. It is a strong numerical argu-
ment that the asymptotics of the fragment of |Ψ (P)|
under consideration has an inverse power character as
in the classical case (see Fig. 2 in [5]).

Taking into account the results of our numerical cal-
culations, we can state that basic properties of quantum
distribution retain the properties of the classical model
(despite quite a large Planck constant). The AMs still
have an influence on quantum evolution as in the clas-
sical model. Both in the classical picture and the quan-
tum one, densities have a pronounced maximum for
some values of momentum while for larger values of
momentum they have inverse power asymptotics.

5 Further modifications of the standard map

Replacing the function f (Q)with a four-part piecewise
linear continuous periodic function for which 〈Pn+1 −
Pn〉 = 0. For certain parameter values, we can observe
the emergence of two kinds of AM in phase space.
In one type of AM, the P value grows approximately
linearly during successive iterations. In the other type
of AM, the movement goes in the opposite direction.
Both types of AM are presented in Fig. 10.
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Fig. 9 The picture on the
left presents amplitude
|Ψ (P)| in momentum
representation for 16,000
iterations. In the pictures on
the right, the upper graph is
a fragment of distribution in
both logarithmic scales with
linear fitting and a slope
value of −1.78; the bottom
graph presents results in a
linear-logarithmic scale for
the same range of P values
as in the upper graph

P ×104
-2 0 2 4 6 8 10

|ψ
(P

)|

0

0.01

0.02

0.03

ln(P)
10 10.5 11 11.5

ln
|ψ
(P

)|

-8

-7.5

-7

-6.5

P ×104
2 4 6 8 10

ln
|ψ
(P

)|

-8

-7.5

-7

-6.5

Fig. 10 Phase space of a modified standard map, where f (Q)

have four piecewise linear parts. Color represents the velocity
changes of momentum

We can also modify function (5) requiring that it be
differentiable, i.e., that it be a function of class Cn . It
can be realized by joining its adjacent linear parts by a
polynomial of order n + 1 on some small intervals of
length D. All coefficients of the linear and polynomial
parts can be uniquely determined by periodicity, con-
tinuity of functions, and their derivatives. The proper
choice of model parameters allows us to obtain AM in
the phase space (see Fig. 11). In the limit D → 0, this
function becomes f (Q) defined by formula (5).

Fig. 11 AM for another modification of SM

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


2874 P. Pepłowski, P. Weber

6 Conclusions

We have presented a model that is a modification of the
SM. The kicking function is a smooth piecewise linear
function parametrized by one parameter (besides posi-
tion of three intervals). For properly chosen param-
eters, there exist large AMs. This feature simplifies
the numerical analysis of the quantum mapping. Our
analysis shows that AM and its stickiness property are
retained in the quantum picture. The quantum evolu-
tion of states localized in AM follows classical evolu-
tion, i.e., the quantummap translates the localized state
in AM to the next AM, practically without changing
its Husimi function, with the exception of very small
tunneling to the rest of phase space. Quantum prob-
ability density in momentum representation preserves
many essential features of classicalmomentumdensity.
Numerical results show that states which are localized
in the chaotic part of phase space delocalize under the
influence of quantum mapping in a manner similar to
the classical case. For a sufficiently long time (a num-
ber of a map iterations), density has an inverse power
asymptotic for large momentum with a characteristic
frontmovingwith constant velocity. Thismodel is rela-
tively easy to analyze when instead of kick, i.e., δ-time
dependence, we use a continuous periodic function. In
such a case, one has to apply Floquet theory.
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