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Abstract

We present a comparison of the dispersion relations derived for anti-plane sur-

face waves using the two distinct approaches of the surface elasticity vis-a-vis

the lattice dynamics. We consider an elastic half-space with surface stresses

described within the Gurtin–Murdoch model, and present a formulation of its

discrete counterpart that is a square lattice half-plane with surface row of parti-

cles having mass and elastic bonds different from the ones in the bulk. As both

models possess anti-plane surface waves we discuss similarities between the con-

tinuum and discrete viewpoint. In particular, in the context of the behaviour

of phase velocity, we discuss the possible characterization of the surface shear

modulus through the parameters involved in lattice formulation.

Keywords: lattice dynamics, surface elasticity, surface waves, anti-plane

shear, Gurtin–Murdoch model

1. Introduction

Recent advances in nanotechnology have resulted in growing interest to the

application of discrete and continuum models for the description and under-

standing of the phenomena at the nanoscale. In particular, the surface elasticity
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model proposed by Gurtin and Murdoch (1975, 1978) and its further extensions5

have found significant applications to the modelling of material behaviour at the

nanoscale, see, e.g., Duan et al. (2008); Wang et al. (2011); Javili et al. (2013);

Eremeyev (2016). Indeed, surface elasticity has been found very useful in the

description of such phenomena due to a prominent size-effect observed for the

nano-structured materials. As in the general framework of continuum mechan-10

ics, a key problem of the material description, also within the Gurtin–Murdoch

model, is the determination of the additional material parameters such as sur-

face elastic moduli and surface mass density. A straightforward experimental

approach to their measurement has been presented by Cuenot et al. (2004);

Jing et al. (2006); Xu et al. (2017) but it requires rather complex techniques as15

well as some additional assumptions concerning the material behaviour and the

used model. An alternative approach uses the numerical technique of molec-

ular dynamics simulations, see, e.g., Miller and Shenoy (2000); Shenoy (2005),

where the surface elastic moduli are determined from direct atomistic simula-

tions. Let us note that the lattice dynamics as described by Brillouin (1946);20

Born and Huang (1985) provides the possibility to solve various dynamical prob-

lems involving waves with attention focussed on the influence of microstructure

in as much detail as possible, including even the surface microstructure, see

Slepyan (2002); Mishuris et al. (2007, 2009); Porubov and Andrianov (2013);

Sharma (2017b); Porubov et al. (2018) and the references therein.25

The aim of this paper is to characterize the material parameters used in

the linear Gurtin–Murdoch model through the lattice model parameters. To

this end we consider the anti-plane surface waves and compare the dispersion

relations derived within the continuum and discrete model.

The paper is organized as follows. First, following Eremeyev et al. (2016) in30

Section 2, we briefly review the anti-plane surface waves in an elastic half-space

assuming the presence of surface stresses within the linear Gurtin–Murdoch

model. The dispersion relation is derived. In Section 3 using the technique

described by Sharma (2015a,b, 2017a) we find dispersion relation for a square

lattice with one surface row of particles which masses and bonds stiffness are35
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different from others in the bulk. Finally, in Section 4 we discuss similarities

between the continuum and the discrete model.

2. Gurtin–Murdoch model of surface elasticity

Let us consider a three-dimensional elastic half-space y ≤ 0, where x, y, z are

Cartesian coordinates, and i, j, k are the unit basis vectors, see Fig. 1(1). On the

free boundary y = 0 we assume the action of surface stresses described within

the model of surface elasticity by Gurtin and Murdoch (1975, 1978). Within the

linear Gurtin-Murdoch model it has been shown earlier that anti-plane surface

waves can be constructed, see Eremeyev et al. (2016). For anti-plane deforma-

tion, given by the displacement u(x, y, t) = u(x, y, t)k, the equation of motion

for x ∈ R, y < 0 is, see e.g. Achenbach (1973),

µ

(

∂2

∂x2
+

∂2

∂y2

)

u(x, y, t) = ρü(x, y, t), (1)

while for the boundary y = 0 we have

µ
∂

∂y
u(x, y, t) = µs

∂2

∂x2
u(x, y, t)− ρsü(x, y, t), (2)

where µ is the shear modulus, ρ is the mass density, µs and ρs are the surface

shear modulus and mass density, respectively. For infinitesimal anti-plane mo-40

tions within the Gurtin–Murdoch model, given µ and ρ for the bulk, one also

needs to find the two surface parameters that is µs and ρs.

Considering an anti-plane surface wave of the form

u(x, y, t) = u0 exp(ikx− iωt) exp(γy), (3)

where ω is the circular frequency, k is the wave number, u0 is the amplitude,

and i is the imaginary unit, we find the dispersion relation

µγ(k, ω) = ρsω
2 − µsk

2, γ = γ(k, ω) ≡
(

k2 − ω2

c2T

)1/2

, (4)

where cT =
√

µ/ρ is the shear wave speed, see Eremeyev et al. (2016) for details.

Introducing the phase velocity c = ω/k and the characteristic length r = ρs/ρ,
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Figure 1: 1) Half-space with surface stresses and 2) a square lattice with different particles at

the surface.

we transform (4) into the dimensionless form

c2

c2T
=

c2s
c2T

+
1

|k|r

√

1− c2

c2T
, (5)

where cs =
√

µs/ρs is the shear wave speed in the thin film associated with

the Gurtin–Murdoch model. The solution of (5) exists if and only if c is in the

range cs < c ≤ cT . In addition, we have the following properties c(0) = cT and45

c(k) → cs at k → ∞.

3. Lattice Model

Following the technique by Brillouin (1946); Mishuris et al. (2009); Sharma

(2015a, 2017a) let us consider a square lattice which occupies half-space y ≤ 0 as

shown in Fig. 1(2). The positions of the lattice particles are described through

its lattice coordinates x ∈ Z, y ≤ 0, y ∈ Z. The lattice mostly consists of

identical particles of mass M connected to each other by linearly elastic bonds

(springs) of stiffness K. In order to model surface tension we assume that the
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free surface y = 0 is constituted by particles with masses mM and bonds with

spring constant αK, whereas m and α are dimensionless parameters. The anti-

plane displacement of a particle, indexed by its lattice coordinates x ∈ Z, y ∈ Z,

is denoted by ux,y. Herein and after, let Z denote the set of integers. The motion

equation for square lattice is given by

M üx,y = K
(

ux+1,y + ux−1,y + ux,y+1 + ux,y−1 − 4ux,y
)

(6)

for x ∈ Z, y < 0, y ∈ Z, see, e.g. Sharma (2017a). On the free surface that is

for x ∈ Z, y = 0 we have

mM üx,y = αK
(

ux+1,y + ux−1,y − 2ux,y
)

+K
(

ux,y−1 − ux,y

)

. (7)

Let us consider the discrete analogue of the surface wave form (3), i.e.,

ux,y = u0 exp(iξx− iωt) exp(ηy), (8)

where ξ is the discrete wave number, ξ ∈ (−π, π), and η is assumed to be

positive. It is found that ω and η satisfy the two equations

−Mω2 = K (2 cos ξ + 2 coshη − 4) , (9)

−mMω2 = αK (2 cos ξ − 2) +K(exp(−η)− 1). (10)

Motivated by a continuum context (Sharma, 2015a), let

M = ρa3, K = µa, (11)

where ρ and µ are the mass density and shear modulus introduced in Section 2.

Then from (9) and (10) we get

ω2 =
c2T
a2

(4− 2 cos ξ − 2 coshη) , (12)

ω2 =2
αc2T
ma2

(1− cos ξ) +
c2T
ma2

(1− exp(−η)). (13)

These two equations result in a dispersion relation for the surface waves on

square lattice half-plane with surface structure. As ξ and η play a role of k and

γ, respectively, Eqs. (12) and (13) are the discrete analogues of the dispersion50

relation (4) for the elastic half-space with surface stresses.
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4. Comparison of surface wave dispersion

In order to compare the dispersion relation (5) with (12) and (13) we sub-

stitute ξ = ka and consider k in the range k ∈ [0, π/a]. The typical dispersion

curves is shown in Fig. 2. All curves start from the point (0, cT ) with a hori-

zontal tangent c = cT . Two horizonal dashed lines correspond to c = cT and

c = cs, respectively. Curves c = cGM (k) and c = clm(k) present the solutions of

(5) for the Gurtin–Murdoch model and of (12) and (13) for the lattice model.

The dashed blue curve in Fig. 2 corresponds to the equation

c = co(k) ≡ 2cT

∣

∣sin
(

ka
2

)
∣

∣

ka
, (14)

which gives the phase velocity co for an infinite square lattice (Brillouin, 1946;

Sharma, 2017a). Here we used the following values of material parameters:

cT = 1, cs =
√
0.2, r = 0.005 for continuum model and a = 0.01, α = 0.1 and

m = 0.5 for the lattice. Note that these parameters are chosen to satisfy the

relation

cGM (0) = cT = clm(0), (15)

which constitutes the first correspondence between continuum and discrete model.

From (15) we get the relation

cT =

√

µ

ρ
= a

√

K

M
,

which is consistent with assumption (11). So for long wave approximation (k ≈
0) we have good coincidence between both discrete and continuum model.

Clearly, while keeping m and α constant as a → 0 we cannot obtain anti-55

plane surface wave as a continuum limit of the discrete model, since in this case

we recover an elastic half-space for which it is well known that such waves do

not exist (Achenbach, 1973). Hence, to capture the behaviour of the Gurtin–

Murdoch model one needs to apply an appropriate scaling for m and α.

We propose the following scaling law

α =
1

a

µs

µ
, m =

1

a

ρs
ρ
. (16)

6

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


PSfrag replacements
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c = cGM (k) is the phase velocity for the Gurtin–Murdoch model given by (5)

c = clm(k) is the phase velocity for the lattice model given by (12) and (13)

c = co(k) is the phase velocity for an infinite square lattice given by (14)

Figure 2: Phase velocity vs. wave number for discrete and continuum model.

With (16) we find that the surface bond stiffness becomes constant as a → 0,

αK = µs, whereas the mass of surface particles mM = ρsa
2. As a results, for

cs we have

cs =

√

µs

ρs
=

√

αK

mM
a =

√

α

m
cT . (17)

Thus, the scaling law (16) establishes the second correspondence between con-60

tinuum and discrete model or, more precisely, between lattice model with surface

particles different from the ones in the bulk and the Gurtin–Murdoch model of

surface elasticity. Using (16) in Fig. 3 we present the dispersion relations for

a = 0.001 and a = 0.0001. In general, the choice of scaling laws is not unique,

one may propose another one as well.65
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Figure 3: Phase velocity vs. wave number for discrete and continuum model for a = 0.001

(on the left) and a = 0.0001 (on the right).

Let us note that the relations between the linear Gurtin–Murdoch model and

the lattice model in a certain sense similar to relations between surface elasticity

and the Toupin–Mindlin linear strain gradient elasticity. Indeed, both theories

possess surface energy and the corresponding dispersion relations for anti-plane

surface waves are qualitatively similar for both models (Eremeyev et al., 2018).

The relations between material parameters of these models can be obtained

from the equations

cGM (0) = cT = cTM (0), lim
k→∞

cGM (k) = cs = lim
k→∞

cTM (k),

where cTM = cTM (k) is the phase velocity for the Toupin–Mindlin constitutive

relations. Nevertheless, there is difference in decay with the depth, so their

correspondence is not straightforward as in presented case here. In addition, for

the discrete model clm(k) is defined for the finite range of k.

Conclusions70

For anti-plane surface waves, we demonstrate the essential similarity between

dispersion relations derived within both discrete and continuum model of a

surface structure. We consider a square semi-infinite lattice with a surface

row of particles which properties are different from ones in the bulk, and the

linear Gurtin–Murdoch model of surface elasticity. These different models can75
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capture material behavior related to presence of surface energy. On the other

hand the transition from the lattice model to the Gurtin–Murdoch model is

not straightforward, as it requires additional assumptions on the dependence of

surface particles’ mass and surface bond stiffness on the lattice cell length a.
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