
 

Heat transfer intensification by jet impingement 
– numerical analysis using RANS approach 

Tomasz Kura1,*, Elżbieta Fornalik-Wajs1, Jan Wajs2 and Sasa Kenjeres3 

1AGH University of Science and Technology, Faculty of Energy and Fuels, Department of 
Fundamental Research in Energy Engineering, al. Mickiewicza 30, 30-059 Krakow, Poland 
2 Gdansk University of Technology, Faculty of Mechanical Engineering,  
Department of Energy and Industrial Apparatus, ul. Narutowicza 11/12, 80-233 Gdansk, Poland 
3 Delft University of Technology, Faculty of Applied Sciences,  
Department of Chemical Engineering, van der Maasweg 9, 2629 HZ, Delft, The Netherlands 
 

Abstract. Jet impingement is a method of the heat transfer enhancement 
applied in the engineering systems. The idea is to generate fast-flow fluid jet 
which impinge on the heated (or cooled) surface, causing significantly 
higher heat transfer rate. Although some flat surface jet impingement cases 
are described in the literature, the validated data is still limited. The reason 
is coming from the fact, that these flows are hydrodynamically complex. 
Therefore the numerical analysis is necessary to understand the phenomena, 
especially in the range of turbulent flow. The well-known and accurate 
method is Reynolds Averaged Navier-Stokes (RANS) approach. However, 
depending on the applied turbulence model, various results can be obtained. 
The reason is that the jet impingement strongly depends on the complex 
boundary layer effects and their resolving is still challenging for RANS 
models and until now it is their weakest point. In the paper, the 
hydrodynamic and thermal, numerical results of jet impingement are 
presented, depending on selected RANS based models. The aim was to 
indicate their ability to anticipate the turbulence parameters.  

1 Introduction 
The topics of pollution and energy waste, related to energy generation and utilization are ones 
of the biggest scientific issues of modern days. Novel methods of energy generation are being 
investigated, therefore the ideas, such as the fuel cells or hydrogen based cars appear more 
and more common. Moreover, old-fashioned facilities are being refurbished or replaced. This 
approach, to convert already existing object into modern ones is even more important. The 
new techniques, which can reduce energy consumption and/or increase the efficiency are 
searched for. 

Together with many other ideas of how to improve the performance of existing devices, 
the novel concept of heat exchanger was proposed at the Gdansk University of Technology 
[1-2]. It offers interesting combination of increased heat transfer rates between two media 
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and almost negligible pressure losses. The innovation is connected with the implementation 
of partitions around the cylindrical heat exchanging wall, having many small orifices drilled 
through it. As a consequence, the orifices cause generation of the jets, which are influenced 
by the crossflow. When jets hit the surface, they cause increase of the transferred heat flux. 
Experimental investigations are the source of data regarding the macroscale phenomena and 
device performance. However, there is lack of their understanding at microscale. Turbulence 
generated by the jets near the wall is expected to be the main reason of heat transfer 
intensification. Therefore the proof is needed, mainly to get the ability of further optimization 
of the original design.  

The fluid mechanics, gas dynamics, materials durability or heat and mass transfer 
processes – they all are very demanding for scientists. Amongst them however, the most 
problematic is the issue of turbulence. Three approaches are present in the world of science: 
analytical, experimental and numerical. For the case of turbulence, there is no universal 
analytical solution of governing equations (Navier-Stokes), experimental facilities are 
problematic to be constructed, due to existence of many scales characterising turbulence, and, 
lastly, the numerical approaches exist in hundreds of different types, each one able to simulate 
just particular case. Nevertheless, in the Authors opinion, the last approach is the most 
optimistic for complex systems – it is also a subject of the biggest concern of the scientific 
world within fluid dynamics. The reason is rather simple: each year an increasing power of 
the computers allows the users to perform more and more demanding simulations in 
reasonable time, what is described by the Moore’s law [3], coming from the observation. 
With an access to computer clusters it is possible to obtain detailed results faster, than with 
the experimental approach.  

Three different types of turbulence numerical analyses are commonly used today [4]: 
 Reynolds Averaged Navier-Stokes (RANS), 
 Large Eddy Simulations (LES), 
 Direct Numerical Simulation (DNS). 

First method is the least demanding from the computational power point of view, while the 
last one is the most demanding and still almost impossible to be used for typical applications. 
LES methods can be stated as the compromise between two other approaches. The difference 
between them is mostly due to the resolved scale of turbulence. As a result, both RANS and 
LES methods include some validated analytical formulas. 

For the purposes of detailed analysis of turbulence phenomenon, occurring in 
abovementioned heat exchanger the Authors have chosen the RANS approach. According to 
suggestions of Zuckerman [5], the 2v f [6] family of models was considered, as those, 
which are expected to provide the best results, when analysing jet impingement. The idea 
behind the research was to start with analyses of single jet in various configurations to gather 
enough data to model whole orifices’ system taken from the heat exchanger. Some results 
concerning this topic were already published in [7]. In the following article, the focus was 
placed on description of the advantages and disadvantages of particular RANS methods. In 
parallel, an attention was placed on the most important parameters characterising the 
phenomena occurring in the boundary layer and close to it as the result of surface jet 
impingement.  

2 Mathematical model  
The system of equations describing phenomenon of single phase jet impingement consists 

of conservation of mass (Equation 1), momentum (Equation 2) and energy (Equation 3). 
Single impinging jet of the constant velocity tends to reach steady-state, therefore the steady-
state simulations, with the use of SIMPLE algorithm, were performed. In the RANS 

2

E3S Web of Conferences 108, 01025 (2019) 
Energy and Fuels 2018

https://doi.org/10.1051/e3sconf/201910801025

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


approach, variables such as for example velocity or temperature are split into two terms, 
constant mean value, and its fluctuation.  Terms including the fluctuations are placed in the 
above system of equations, and to close it, the turbulence model equations have to be 
included. The analysed fluid was the air. Compressibility effect is negligible with small 
temperature differences, such as in analysed cases, therefore density was kept as a constant 
value: 
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where ui,j are the velocity components, m/s; ρ is the density, kg/m3; p is the pressure, Pa; μ is 
the dynamic viscosity, Pa·s; Sij is the strain rate tensor, 1/s; ' '

i ju u  is the Reynolds stress term, 
m2/s2; Θ is the mean temperature, K;  is the temperature fluctuation, K; α  is the thermal 
diffusivity, m2/s and '

ju   is the turbulent heat flux, K∙m/s. The symbol “¯” represents 
averaged quantity. 

3 Numerical model 
Analyses were managed with OpenFOAM, the powerful open-source software, 

developed to perform the finite volume operations on the system of differential equations [8]. 
For single jet, it was possible to perform the stationary analysis. Also, instead of full 3D 
geometry, the axisymmetric cases could be prepared. Both assumptions did not impacted 
quality of the solution. The second-order, upwind discretization schemes were used for the 
advection terms, to obtain the high accuracy of the results.  

In Figure 1, the schematic view of the geometrically important parameters, as well as the 
placement of boundary conditions is presented. Indicated parameters are: D which is the 
orifice diameter, H, which is the height between impinged wall and orifice exit and x, being 
the distance of particular point from the stagnation point. At the inlet the constant bulk 
velocity was kept, with the turbulent flow profile maintained along the orifice diameter. 
Neumann boundary condition (zero gradient of the pressure) was set at the outlet.  

 
Fig. 1. Geometrical and boundary conditions placement. 

In Figure 2(a), the close-up of the mesh near wall can be seen. Total number of mesh 
elements reached up to 63 000, and the characteristic near-wall mesh parameter y+ was 
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always kept below 0.5, which was equal to the first near-wall element height of 
approximately 4e-6 m. The results of the mesh independence test are shown in Figure 2(b), 
differences between local Nusselt number values for applied meshes were negligible. 
(a) 
 

 
first near wall element height: 4e-6 m 

(b) 

 
Fig. 2. (a) Close-up of the part of the mesh near wall. (b) Mesh independence test results. 

For the validation purposes, the reference case from ERCOFTAC database was chosen 
[9], with boundary conditions listed in Table 1. 

Table 1. ERCOFTAC jet impingement reference case boundary conditions. 

Inlet Reynolds 
number Wall heat flux, W/m2 H/D 

23000 1000 2 

As mentioned in Section 1, the 2v f family of RANS models is considered to be the 
most suitable for the jet impingement. Its superior performance over k-ε model, especially in 
the stagnation zone, can be seen in Figure 3. The original version of 2v f model was 
proposed by Durbin [9], and extended for example by Kenjeres et al. [10]. Nowadays, more 
than 10 different types of it exist, according to Billard [11]. The Authors focused on two of 
them, proposed by Lien and Kalitzin in 2001 [6] and Hanjalic in 2004 [12]. The first one is 
available in the most common CFD software, while the second one, as it will be presented in 
the following article, shows noticeably better performance, but was not previously 
implemented. Therefore Hanjalic’s model was implemented and verified in OpenFOAM by 
Authors for the purposes of the described research. The models are characterized by the 
system of four complementary equations of the following variables: 

 k (turbulence kinetic energy), 
 ε (dissipation of turbulence kinetic energy, k), 
 2v (fluctuations of the velocity component normal to streamlines), 
 f (relaxation function, controlling the distribution of 2v near the wall). 

According to [11], while being very accurate, the original 2v f model of Durbin 
presented highly unstable behavior. The reason was mostly due to the formulation of wall 
boundary condition for f: 

  2 2

4

24 4
,wall

N v
f

y
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
 

  (4)

where N is the model constant; ν is the kinematic viscosity, m2/s; y is the distance between 
the wall and the first mesh node near it, m. Such models require dense mesh near the wall for 
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a proper calculation of the boundary layer processes, therefore possible value of y can be very 
small. As it can be indicated in the denominator of Equation 4, fourth power of y suggests 
that the resulting value of the fwall might cause computational problems. Lien and Kalitzin [6] 
reformulated the whole model, with the main modification proposed for the problematic 
term: 

0.wallf   (5)
Their model turned out to be very robust, but it lacked accuracy of the original one. That is 
the reason of the Hanjalic’s research, who besides another reformulation of fwall: 

2

2 ,wallf
y


  (6)

with noticeable difference being the y second power in the denominator, changed also one 
variable in the equations system. Instead of 2v , ζ was proposed, which is 2v normalized by 
k. Therefore the Hanjalic’s model is called ζ-f. 

4 Results  
 In the following Section, the brief explanation of important parameters concerning jet 
impingement and their relations is presented and explained. In Figure 3, the very important 
feature of local heat transfer distribution, the secondary peak along the heated surface, can 
be seen. It occurs under particular conditions, which was confirmed also by the experiments 
[13], and is very difficult to obtain using the numerical models, as it can be seen through 
Behnia results. The reason lies in overproduction of turbulence kinetic energy, k, in the 
stagnation zone, which is typical for the most common RANS models, as shown in Figure 
4(a) and 4(b).  

  

Fig. 3. Local Nusselt number values at the impinged surface. Comparison of numerical and 
experimental data from Behnia [9] and Yan [13] with the results obtained by Authors (k-ε and ζ-f).  

Figures 5 and 6 concern different parameters, local turbulence kinetic energy k, defined 
in [7] and vorticity, ω, defined in [8] and obtained with the application of the ζ-f model. It is 
important to notice, that in both figures the values from two different probed lines are shown, 
one inside and one outside the boundary layer (H/D = 4e-4 and H/D = 0.1). Line inside was 
placed according to the location of the first mesh node near the wall, while the one outside 
was placed above the boundary layer height. As it turned out, only values investigated inside 
boundary layer, just above the heated surface are meaningful for the purposes of presented 
research. Both distributions of k and ω for that location can be compared with location of the 
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local Nusselt number from Figure 3. Inflections of all curves occur nearly at the same x/D 
points, as shown by dashed lines in all figures. However, the order of maximal values is 
reversed. Another conclusion regards the fact that vorticity values near the wall turned out to 
be significantly higher, than outside it. For turbulence kinetic energy, the situation was 
opposite. 

(a)   
                                      k-ε 

 

(b) 
                                       ζ-f   

 

 
Fig. 4. (a) k-ε case and (b) ζ-f case values of local turbulence kinetic energy, k, m2/s2. Noticeable 
overproduction in the stagnation zone visible in Figure 4(a). 

  
Fig. 5. Turbulence kinetic energy k distribution at line parallel to the heated surface, located outside 
boundary layer (H/D = 0.1) and inside it (H/D = 4e-4), ζ-f model. 
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Fig. 6. Vorticity ω distribution at line parallel to the heated surface outside (H/D = 0.1) and inside the 
boundary layer (H/D = 4e-4), ζ-f model. 

In Figure 7 another turbulence kinetic energy k profile is shown, obtained for both k-ε and 
ζ-f models – perpendicular to the heated surface, at the distance from stagnation point equal 
to x/D ≈ 1.78, where the secondary peak of Nusselt number occurs. The results correspond 
with the results presented in Figure 4(a) and 4(b). In addition, the velocity U profile is also 
shown. The scale for both parameters remains the same.  

 
Fig. 7. Profiles of the velocity U and the turbulence kinetic energy k at line perpendicular to the 
heated surface, located at the distance from the stagnation point x/D ≈ 1.78, where the secondary peak 
of Nusselt number occurs. 

The visible peaks of turbulence kinetic energy is located above the peak of velocity. They 
occur in the zone of the k maxima area, noticeable in Figures 4(a), 4(b) and 5. As presented 
earlier, the situation outside the boundary layer does not have the direct impact on the thermal 
performance of the jet impingement heat transfer. The differences between both turbulence 
models are visible, especially in the near-wall zone, where the characteristic skew of 
turbulence kinetic energy k profile can be noticed for ζ-f model.  
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Fig. 8. Profiles of the velocity U and the vorticity ω at line perpendicular to the heated surface, 
located at the distance from the stagnation point x/D ≈ 1.78, where the secondary peak of Nusselt 
number occurs. To unify the scale, values of vorticity are divided by the factor of 1000. 

In Figure 8 the profile of vorticity ω is shown, obtained for both k-ε and ζ-f models, 
located at the same distance x/D ≈ 1.78 as the profile of turbulence kinetic energy k, shown 
in Figure 7. In contrary to the analysis of Figure 7, the profiles of vorticity and velocity 
exhibit similarities outside the boundary layer. Highly turbulent character of the flow in the 
area of the boundary layer is also visible, with noticeably high values of vorticity visible at 
the lowest part of the Figure 8. Discrepancies between both utilized models can be noticed. 

4 Summary 
 The scope of presented research was to provide information related to the selection of 
proper turbulence model, when analysing the jet impingement. In addition, some suggestion 
were provided about the appropriate post-processing and analysis of the results – as suggested 
in Section 1, the phenomena causing the heat transfer intensification during the jet  
impingement occur mostly close to the wall. The focus should be placed on investigation of 
the boundary layer, as fluid behaviour outside it not necessarily impacts the intensification. 
Presented own results proved, that the chosen ζ-f model can be accurate enough to represent 
impingement heat transfer. 

 
The present work was supported by the Polish Ministry of Science and Higher Education and by the 
PLGrid Infrastructure. 
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