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There is a growing awareness that the complexity of managing Big Data is one of the main challenges in the developing field of the
Internet ofThings (IoT). Complexity arises from several aspects of the Big Data life cycle, such as gathering data, storing them onto
cloud servers, cleaning and integrating the data, a process involving the last advances in ontologies, such as Extensible Markup
Language (XML) and Resource Description Framework (RDF), and the application of machine learning methods to carry out
classifications, predictions, and visualizations. In this review, the state of the art of all the aforementioned aspects of Big Data in the
context of the Internet of Things is exposed. The most novel technologies in machine learning, deep learning, and data mining on
Big Data are discussed as well. Finally, we also point the reader to the state-of-the-art literature for further in-depth studies, and we
present the major trends for the future.

1. Introduction

The fast-developing and expanding area known as the Inter-
net of Things (IoT) [1–3] involves expanding the Internet
beyond such standard devices as computers, smartphones,
and tablets to also include the connection of other physical
devices and objects. This allows for a variety of devices,
sensors, etc. to be monitored and controlled, and to interact
and communicate via the Internet. This means that an
abundance of opportunity for brand new and revolutionary
types of services and applications arises. As a result, we are
now witnessing a technological revolution where millions of
people are connecting and generate tremendous amounts of
data through the increasing use of a wide variety of devices.
These include smart devices and any type of wearable that
are connected to the Internet, powering novel connected
applications and solutions. The cost of technology has sharply
decreased making it possible for everybody to access the
Internet and to gather data and an abundance of real-time
information.

One immediate consequence of this revolutionary emer-
gence of novel technological opportunities is the urgent need
for the development and adaptation of other related areas to
further enable the development of the IoT field. Thus, new
words, as well as new expressions, have started to emerge,
such as Big Data [4, 5], cloud computing [6], and Data sci-
ence. Data science has been defined as a “concept to unify
statistics, data analysis, machine learning and their related
methods” to “understand and analyse actual phenomena”
with data [7, 8], and there is now a strong demand for
professional data scientists in a multitude of sectors [9–12].

This article aims at providing a review of IoT related
surveys in order to highlight the opportunities and the
challenges, as well as the state-of-the-art technologies related
to Big Data.Therewill be a particular focus on how to address
the arising problems ofmanaging the ensuing increased com-
plexity. Since it is such a complex area, we have divided the
Big Data procedure into several different stages to establish
the most important points in each, while highlighting to
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Figure 1: A schematic depiction of three different approaches to handle the complexity of the intensive data processing arising as a
consequence of the tremendous amounts of collected IoT data.

the reader the most relevant papers related to every stage.
Due to the complexity of managing Big Data, we have
created separate sections in regard to the aforementioned
stages of Big Data procedure. Our contribution explicitly
indicates the advantages of every stage in the knowledge
discovering procedure in contrast to approaches that offer
more general visions. The advantage of this proposal is to
be able to understand as well as analyse the challenges and
opportunities in every particular phase.

The remainder of this article is structured as follows:
first the next section discusses a set of general approaches to
handle the complexity of managing Big Data in the context
of the IoT as well as the future trends in the development of
these approaches; then a section follows that discusses the
knowledge discovering procedure in data gathered from a
large number of diverse devices in the context of the IoT;
finally, we provide a conclusion that summarises the article
and points out major future trends.

2. The Internet of Things and Complexity
Handling: Architectures for Big Data

The Internet of Things (IoT) paradigm has brought a great
revolution to our society [13–15]. It is a technology that makes
our world better. It allows us to get information about the
physical environment around us, and from this data valuable
knowledge can be inferred about how the world works.
This knowledge enables the deployment of new real-world
applications, and it makes it easier for smart decisions to
improve the quality of life of the citizens of our society. There
are many examples of how this novel technology runs. The
smart city concept is a representative use case, where many
applications have been developed for its ecosystem [16–19].

An important source of complexity within the IoT
paradigm comes from the great amount of data collected. In
most cases, the data also need to be processed in order to be
converted into useful knowledge.

In view of the recent proposals on how to handle the
complexity of Big Data, there are three general approaches

to carry out the ensuing very intensive data processing:
(A) local processing; (B) edge computing; and (C) cloud
computing. Figure 1 shows a schematic overview of these
approaches, and Table 1 summarises a representative set of
ways and aspects of handling the complexity arising from
the IoT. Table 1 also provides references to corresponding
papers, categorised under the headings of the three general
approaches mentioned above. In the following subsections,
brief descriptions of each of these approaches are presented,
and finally their main future trends are introduced.

2.1. Local Processing. This approach basically consists of
processing the data where the data is collected. In this way, no
rawdata need to be communicated to remote servers. Instead,
only the useful and relevant information is centralised to
make smart decisions [20, 21]. In addition, deploying the first-
level intelligence closer to the sensors produces an increase
in the overall energy efficiency and significantly reduces the
communication needs of many IoT applications.

This approach develops the concept of ‘smart sensor,’
which was initially defined as ‘smart transducer’ [22]. A
smart sensor is a sensor with computing and communication
capabilities to make computations with the acquired data,
make decisions, and store information for further use and
perform two-way communications [23]. Smart sensors are
becoming integral parts of intelligent systems and they are
indispensable enablers of the IoT paradigm and the corre-
sponding development of advanced applications. A typical
example of these developed sensors is the ‘smart wearable.’
This device can acquire several biosignals, process them,
show elaborated information to the user, and send the
relevant information to, for example, external platforms for
medical supervision [23–25]. Other important applications
come from the logistics [26] and industrial fields [27]. Indeed,
the new computation and communication capabilities of the
IoT paradigm allow for the implementation of intelligent
manufacturing systems giving rise to the next generation of
industry, the so-called ‘Industry 4.0’ [28].
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Table 1: A representative set of ways and aspects of handling the complexity arising from the IoT, together with references to corresponding
papers, categorized under the headings of three general approaches (local processing, edge computing and cloud computing) to carry out
intensive data processing of Big Data.

Work Main contributions
(A) Local processing
Smart sensing for IoT applications [21] Discusses emerging trends of smart sensing.
Sensor Fusion and Smart Sensor in Sports and
Biomedical Applications [24] An overview of smart sensors and sensor fusion.

High-level modelling and synthesis of smart sensor
networks for Industrial Internet of Things [27]

Efficient design process and methodology for complex industrial
applications.

Smart Sensing Devices for Logistics Application [26] Analysis of the logistics sector and Cyber Physical Systems (CPS) as
smart connected solutions.

Intelligent Manufacturing in the Context of Industry
4.0: A Review [28]

Review of key technologies such as the IoT and cyber-physical
systems.

(B) Edge computing

Edge Computing: Vision and Challenges [34] Challenges and opportunities in the field of edge computing are
described.

Collaborative Working Architecture for IoT-Based
Applications [20]

Network design, which combines sensing and processing capabilities
based on the MCC paradigm.

IoT-Based Computational Framework [25] Distributed framework based on the IoT paradigm for real-time
monitoring.

Edge Computing [35] Analysis of the edge computing paradigm.
Fog Computing [48] The Fog Computing framework.

Secure Multi-Tier Mobile Edge Computing Model [49] Formal framework to handle the security level of edge computing
environments.

Mobile Edge Computing [38] Analysis of opportunities, solutions, and challenges of the MEC
paradigm.

Cloudlets [39] Introduction to the cloudlet concept for offloading computations.
Future Edge Cloud and Edge Computing for Internet of
Things Applications [40] Discussion of Edge Cloud and Edge Computing research efforts.

(C) Cloud computing
A Smart Sensing Architecture for Domestic Monitoring
[50]

Integrated sensor network deployment with advanced Cloud
Computing Data Mining algorithms.

IoT-as-a-Service [43] Strategy for evaluating the information quality in delivering
IoT-as-a-Service.

The shift to Cloud Computing [41] This paper analyses the impact of the shift to the Cloud-based model.

Accessibility analysis in smart cities [46] Comprehensive system for monitoring urban accessibility in smart
cities.

Big data analytics framework for smart cities [47] Smart City Data Analytics Panel for Big Data analytics.
Sensing and Actuation as a Service Delivery Model [44] A novel systemmodel for Sensing and Actuation as a Service (SAaaS).
User Quality-Of-Experience and Service Provider
Profit in 5G [51]

The Quality-of-Experience (QoE) and the Profit-aware Resource
Allocation problems are analysed.

Orchestrated Platform for Cyber-Physical Systems [45] Discussion on the scalability of the sensor data back-end and the
predictive simulation architecture for CPS.

In these environments, network virtualization plays a sig-
nificant role in providing flexibility and better manageability
to Internet [29]. This is a way for reducing the complexity of
the infrastructure since network resources can bemanaged as
logical services, rather than physical resources. This feature
enables us to implement smart scheduling methods for
network usage and dataflows routing from IoT applications
[30].

In order to properly carry out this resource management,
network performance monitoring needs to be performed

in effective and efficient ways. However, it remains a chal-
lenge for network operators [31] since active monitoring
techniques used to dynamically acquire it can introduce
overheads in the network [32]. In general, existing methods
are hard to use in practice and further research is needed
in this area. Nevertheless, a promising idea to address this
challenge consists in reducing the data measurement by
implementing intelligent measurement schemes based on
inference techniques from partial direct monitoring data
[33].
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2.2. Edge Computing. Edge computing is a novel paradigm
which has spawned great interest recently. It consists of the
deployment of storage and computing capabilities at the
‘Edge’ of the Internet.The ‘Edge’ of the Internet can be defined
as the portion of the network between sensors or data sources
and cloud data centres [34]. The edge computing paradigm
aims at deploying computing, storage, and network resources
in this portion. The physical proximity of the computing
platforms to where the data acquisition happens makes it
easier to achieve lower end-to-end latency, high bandwidth,
and low jitter to services [35].

There are several ways to implement edge computing
that have in turn led to different approaches, such as Fog
Computing, Mobile Edge Computing (MEC), and Cloudlet
Deployment. Fog Computing consists in using the network
devices such as routers, switches, and gateways as Fog
Nodes to provide storage and computing resources [36]. In
addition, network virtualization has significantly contributed
to developing this paradigm by considering the fog devices as
virtual network nodes. This trend increases the deployment
flexibility of Fog Computing services and their integration
with mobile devices and ‘things’ [37]. MEC is a novel
paradigm based on deploying cloud computing capabilities
in the base stations of the telecom operators [38]. Finally,
Cloudlet Deployment consists in the same concept as Cloud
Computing, but without the Wide Area Network (WAN)
inconveniences. The servers are installed within the local
networks where the data sources are connected.These servers
are known as cloudlets [39].

Applications for edge computing, such as in Virtual
Reality and Gaming Applications [40], cannot tolerate high
latency, or its unpredictability. This is something that remote
cloud servers cannot deliver.

2.3. Cloud Computing. The Cloud Computing paradigm is
one of the most disruptive technological innovations in the
last few years. It makes available to anyone a flexible amount
of computing resources under per-use payment methods,
the so-called ‘as-a-service’ model. Currently, more and more
software and hardware solutions are redesigned for this cloud
paradigm [41].

The cloud computing model favours the development of
large-sized data centres where the resources are optimised
through virtualization and efficient management systems.
This technology gives the IoT applications the possibility to
work in different environments in a very agile way using
the same infrastructure [42]. In such a way, combining the
cloud computing paradigm with IoT forms a new type of
distributed system able to provide IoT-as-a-Service (IoTaaS)
[43]. This concept allows for the integration of powerful
computing resources with different types of devices such as
sensors, actuators, and other embedded devices to deliver
advanced services and applications based on the gathered
data. A particular instance of this idea is the Sensing and
Actuation Cloud where the connected IoT devices are mainly
sensors and actuators [44], or the Cloud Cyber Physical
Systems (CPS) composed of sensors or sensor networks [45].

There are a great variety of successful examples of this
trend in many areas, where the data are analysed in the cloud

through Big Data and data mining methods to infer valuable
knowledge from them and deliver rich and smart services
to the stakeholders. For example, the smart city concept,
mentioned above, is in part made possible by a centralised
cloud-based data analysis and service provision [41, 46, 47].

In addition, a combination of these options can be
designed taking several aspects into account, such as power
consumption, communication networks, and the availability
of computing platforms. Dynamic solutions can easily adapt
to the more favourable approach to better handle the com-
plexity and meet the operation constraints.

2.4. Future Trends. Regarding the future trends of the devel-
opments of these three general approaches to intensive data
processing of IoT related Big Data, there are developments
at several fronts. The following is a summary of those most
relevant.

When it comes to local processing, the efforts are
directed towards the continuous improvement of smart
sensor devices. We can distinguish several research lines here.
One is the efforts to increase the performance of the devices
while simultaneously reducing their power consumption.
Another is the integration of multiple sensing modalities on
the same chip. Still another is the efforts directed towards the
improvement of the methods employed for the extraction of
useful information from the raw data [21].

Edge computing has a promising future since it decen-
tralises the computing power along the network and produces
clear benefits when it comes to response time and reliability
[34].The research lines in this field aim at reaching a smooth
engagement with the IoT ecosystem, mainly by reducing
the management complexity of dispersed edge resources and
developing mechanisms to maintain the security perimeter
for the data and applications [49].

The cloud computing paradigm has triggered a strong
growth of computing services around the world. For this
reason, there is intensive ongoing research on expanding
cloud services and solutions to new fields of application.
These tasks seek to simplify business and make services
easier for stakeholders. In this way, the new 5G protocol will
facilitate access for services and applications in the cloud
improving the Quality-of-Experience [51].

3. Knowledge Discovering Procedure

In Figure 2, a classical procedure of discovering knowledge
from the data gathered froma large number of diverse devices
is depicted. In this figure, we get an overview of all the
stages involved in such a process. There are many challenges
involved in these stages that will be described next.

3.1. IoT Data Gathering. The gathering of data for IoT archi-
tectures involves collection from different sources like social
networks, the web, various devices, software applications,
humans, and not the least various kinds of sensors. In
addition to physical sensors, there are also virtual sensors
that are created by the combination and fusion of data
from different physical sensors in the cloud [52]. When it
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Figure 2: A classical procedure for the discovery of knowledge
based on data gathered from a large number of diverse devices.

comes to the gathering of data from sensors, not only the
raw sensor data are collected and stored, but these are also
often linked to, for example, relevant contextual information,
which increases the value of the data [53]. All these different
sources engender large amounts of various types of data
that, of course, also increases the requirements for storage
capacity. The increasingly affordable storage resources that
have recently become available mitigates this problem to
some extent though.

Sensor networks are central for realising the IoT and
in order to handle large amounts of polymorphous, het-
erogeneous sensor data on a large scale. Very Large-Scale
Sensor Networks are employed using Cloud Computing [54].
Some of the main challenges regarding Very Large-Scale
Sensor Networks are to handle the sensor resources and the
computational resources and to store and process the sensor
data.

Table 2 provides references to papers focused on the
gathering of data in the context of the IoT.

3.2. Data Cleaning and Integration. A consequence of the
way information is gathered through various sources and
devices within IoT is that the information varies broadly
in structure and type. This leads to a need for integration,

which can be defined as a set of techniques used to combine
data from disparate sources into meaningful and valuable
information.

Integration is one of the most challenging issues of Big
Data, which is also associated with one of the most difficult
Vs of Big Data, i.e., the variety of data. Table 3 shows a
summary of papers that are focused on the problem of variety
of information in Big Data.

Moreover, given the current context in which companies
are organized, it is not enough to work with internal, local,
and private databases. In most cases, there is also a need
for the World Wide Web where many diverse databases
and other data sources must interact and interoperate. This
circumstance leads us to concepts such as heterogeneity and
uncertainty.

Table 4 summarizes papers that deal with integration
by means of a diversity of techniques and methods like
XML, ontological constructs from knowledge representation,
uncertainty, and data provenance.

3.3. Data Mining and Machine Learning. As more devices,
sensors, etc. generate large amounts of data within the IoT,
the question arises whether there are possibilities of finding
hidden information in that data.

Data mining is a process that detects interesting knowl-
edge from information repositories. This process is partly
based on methods derived from modern machine learning
algorithms adapted to fit Big Data and that extracts hidden
information from, e.g., databases, data warehouses, data
streams, time series, sequences, text, the web, and the large
amount or valuable data generated by the IoT. Data mining
aims at creating efficient predictive and descriptive models of
large amounts of data that also generalize to new data [78]. It
includesmethods such as clustering, classification, time series
analysis, association rule mining, and outlier analysis [79].
The precise choice among diverse data mining and machine
learning techniques often depends on the taxonomy of the
dataset.

Clustering includes unsupervised learning and uses the
available structure to group data based on various kinds of
similarity measures. Some examples of clustering methods
are hierarchical clustering and partitioning algorithms, e.g.,
K-Means.

Classification is the process of finding models/functions
describing classes that allow the prediction of class member-
ship for new data. Some examples of classification methods
are the K-Nearest Neighbour algorithm, Artificial Neu-
ral Networks, Decision Trees, Support Vector Machines,
Bayesian Methods, and Rule-Based Methods.

In time series analysis meaningful properties are
extracted from data over time, and in association rule
mining, association rules are detected based on attribute-
value conditions that are found frequently in the dataset.

Outlier analysis detects patterns that differ significantly
from the main part of the data. The methods used are based
on properties such as the density distribution or the distances
between the instances in the data.
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6 Complexity

Table 2: The table summarizes and refers to a representative set of papers focusing on the gathering of data in the context of the IoT.

Reference Title of paper Description/Objective

[2] Sensing as a Service and Big Data
Examines new approaches of IoT architectures, big

sensor network applications, sensor data, and
context-aware capturing techniques.

[55] Internet of Things (IoT): A vision, architectural
elements, and future directions

Describes an approach based on the cloud for
worldwide implementation of Internet of Things.

[56]
Health monitoring and management using

Internet-of-Things (IoT) sensing with cloud-based
processing: Opportunities and challenges

Emphasis on the opportunities and challenges for the
IoT and its future perspective in the health care area.

[15] Internet of Things: A review of Surveys based on
Context Aware Intelligent Services

A review of IoT studies that offer integrated and
context-aware intelligent services.

[57] Compressed sensing signal and data acquisition in
wireless sensor networks and Internet of Things

Discusses how new insights can be supplied by
compressed sensing into data sampling and acquisition

for IoT.

[58] A Computational Architecture Based on RFID Sensors
for Traceability in Smart Cities

A novel approach of a distributed system to represent as
well as providing the pathway and movement of people

in densely geographical areas by means of a smart
sensor network based on RFID.

[59]
Introducing a Novel Hybrid Artificial Intelligence
Algorithm to Optimize Network of Industrial

Applications in Modern Manufacturing

General modelling to evaluate and optimize nonlinear
RFID network planning problems utilizing artificial

intelligence techniques.

Table 3: The table summarizes and refers to a representative set of papers focusing on the variety of information in the context of the IoT.

Reference Title of paper Description/Objective

[60]
Data-intensive applications, challenges,

techniques and technologies: A survey on Big
Data

Survey on Big Data: applications, opportunities challenges,
techniques and technologies.

[61] The rise of “big data” on cloud computing:
Review and open research issues

Important concepts of Big Data are introduced in this study
and relationships among those concepts are provided. Finally,
it summarizes the open research areas and how they need to

be addressed.

[62] Deep learning applications and challenges in
big data analytics

In this paper, it is indicated how beneficial Deep Learning
could be for several aspects of Big Data pattern recognition,

analytics, semantic, etc.

[63] On the use of MapReduce for imbalanced big
data using Random Forest

In this experimental study, the performances with Random
Forest classifier and MapReduce scheme have been used in

order to deal with Imbalanced dataset.

Table 5 provides a summary of, and references to, papers
focusing onmachine learning and data mining in the context
of Big Data.

3.4. Deep Learning. In recent years, deep learning has
become an important technology for solving a wide range
of machine learning tasks [85]. There are applications for
natural language processing [86], signal processing [87],
and video analysis that allows for the achievement of
significantly better results than the state-of-the-art baselines.
Also, deep learning is a very useful tool for processing large
volumes of data [62]. Because of high efficiency of processing
data obtained from complex sensing environments at
different spatial and temporal resolutions, deep learning is
a suitable tool for analysing real-world IoT data. According
to Gartner’s Top 10 Strategic Technology Trends for 2017
(https://www.gartner.com/smarterwithgartner/gartners-top-

10-technology-trends-2017/), deep learning and IoT will
become one of the most strategic technological two-way
relationships: from the IoT side there are large volumes
of data produced that require advanced analytics offered
by the deep learning side. A wide range of deep learning
architectures [88] finds applications for processing the
data from IoT environments: convolutional networks for
image analysis, recurrent networks for signal processing,
autoencoders for denoising, feed forward networks for
classification, and regression. Figure 3 represents a general
architecture of deep learning.

Usually, the data are processed in dedicated frame-
works such as Tensorflow (https://www.tensorflow.org/),
Theano (http://deeplearning.net/software/theano/), Caffe
(http://caffe.berkeleyvision.org/),H20 (https://www.h2o.ai/),
and Torch (http://torch.ch/). Often GPUs or clusters of GPU
servers are used for the processing [78, 79].
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Table 4: The table summarizes and refers to a representative set of papers focusing on Data Integration in the context of the IoT.

Reference Title of paper Description/Objective

[64] Principles of Data Integration
This paper brings up the notion that new services have to be able to
share data among several applications and organizations, as well as

integrating the data efficiently and flexibly.

[65] Answering queries using views: A survey This paper presents a survey of important methods that are employed
to answer queries using views.

[66] MiniCon: A scalable algorithm for answering
queries using views

In this paper a survey of methods for efficient and comprehensive
answering of queries using views is presented.

[67] XQuery: the XML query language This paper introduces the XML query language XQuery.

[68] From semistructured data to XML: Migrating
the Lore data model and query language

This paper discusses the adaptation to XML of databases and
semistructured languages.

[69] Querying XML streams In this paper a construct called TurboXPath, similar to x-scan, is used
for processing hierarchical “native XML” data pages written to disk.

[70] Semantic integration: a survey of
ontology-based approaches

This paper provides a survey of ontology-based approaches to
semantic integration.

[71] Learning to map between ontologies on the
semantic web

This paper presents assisting tools for the mapping between
ontologies on the semantic web.

[72] Containment of conjunctive queries on
annotated relations

This paper indicates the relationships between different provenance
formalisms.

[73] Perm: Processing provenance and data on the
same data model through query rewriting

This paper presents a provenance model similar to that of semi-rings
focusing on supporting other operators such as semi-joins.

[74] Google fusion tables: web-centered data
management and collaboration

A presentation of a cloud-based system that facilitates the integration
of data on the web. Datasets, e.g. in the form of CSV files or

spreadsheets, can be uploaded to the system and made public or
shared with collaborators.

[75] Global detection of complex copying
relationships between sources

Methods that are developed to detect copying relationships between
sources in order to find the number of independent occurrences of

facts are discussed in this paper.

[76] Crowdsourcing systems on the world-wide web A survey to get a global picture of crowdsourcing systems on the Web
is presented in this paper.

[77] A Novel Multidimensional Approach to
Integrate Big Data in Business Intelligence

In this paper, an approach for integrating different formats into the
recent RDF Data Cube format is presented.The approach is based on

a MapReduce paradigm.

Table 5: The table summarizes and refers to a representative set of papers focusing on Machine Learning and Data Mining in the context of
Big Data.

Reference Title of paper Description/Objective

[4] Big data: A survey
This paper discusses technical challenges and reviews advances of the
value chain (data generation, data acquisition, data storage, and data

analysis) of Big Data

[80] Data mining with big data
A HACE theorem that characterizes features of the Big Data

revolution is presented, and a Big Data processing model, from a Data
Mining perspective, is proposed in this paper.

[81]
Big Data, Data Mining, and Machine Learning:

Value Creation for Business Leaders and
Practitioners

A look into how to leverage Big Data analytics efficiently in order to
foster positive change.

[82] Mining Big Data: current status, and forecast to
the future

This paper forecasts the future and presents the current status and
controversies when it comes to some of the most interesting

state-of-the-art topics in Big Data Mining.

[83]

Complex Power System Status Monitoring and
Evaluation Using

Big Data Platform and Machine Learning
Algorithms: A Review and a Case Study

This paper reviews intelligent machine learning methods for complex
power systems and key technologies in Big Data management.

[84] Mining Outlier Data in Mobile Internet-Based
Large Real-Time Databases

In this paper a novel mining outlier data method for analysing
real-time data features is presented.
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Figure 3: As can be seen in the figure, a Deep Learning Neural Net-
work contains several hidden layers. Often the heavy computations
are run on GPUs or clusters of GPU servers.

They offer different execution models as standalones or
utilize high-performance computing based on, e.g., Hadoop,
or Spark Cluster that allows a reduced time of computations.
The frameworks have been widely compared and the reviews
can be found online (https://dzone.com/articles/8-best-deep-
learning-frameworks) (https://www.exastax.com/deep-learn-
ing/a-comparison-of-deep-learning-frameworks/). It should
be noticed that these frameworks implement a processing
model where the data are transferred to a server performing
the analysis and in a final stage the response is returned.
This model is subject to latency that could not be acceptable
in some applications where there are requirements for high
reliability, like, for example, when it comes to autonomous
cars [89]. Thus, if efficiency constraints require real-time
data processing, then a particular implementation of the
algorithm is made on a local node. In its basic setting,
this solution does not allow the use of information from
other sources. An example of on the node-processing has
been presented in [90], where on the node spectral domain
preprocessing is used before the data is passed onto the deep
learning framework for Human Activity Recognition.

For the IoT the deep analytics are made on large data
collections and are usually based on creatingmore descriptive
features of processed objects. For example, in temporal data
processing for indoor location prediction [91], a Semisuper-
vised Deep Extreme Learning Machine algorithm has been
proposed that improves the localisation performance. The
wireless positioning method has been improved with the
usage of the Stacked Denoising Autoencoder and that also
improves the performance by creating reliable features from
a large set of noisy samples [92]. The prediction of home
electricity power consumption has been analysed with a deep
learning system that automatically extracts features from the
captured data and optimises the electricity supply of the smart
grid [93].

In Edge Computing with the analytics performed by a
deep learning cluster [94], the resource consumption has
been efficiently reduced [95]. Convolutional neural networks
with automatically created features appeared to be a very

good solution for privacy preservation [96]. Also in the
security domain, deep learning finds many applications, e.g.,
it allows the construction of a model-based attack detection
architecture for the IoT for cyber-attack detection in fog-to-
things computing [97].

Video analysis integrated in IoT networks is strongly sup-
ported by neural networks, e.g., deep learning-based visual
food recognition allows for the construction of a system
employing an edge computing-based service for accurate
dietary assessment [98]. RTFace, amechanism for denaturing
video streams, has been based on a Deep Neural Network
for face detection [99]. It selectively blurs faces and enables
privacy management for live video analytics.

3.5. Classification, Prediction, and Visualization. This section
discusses the final stage in the chain of the “Procedure for
Knowledge Discovery,” which is the obtainment of the final
knowledge extracted from the raw data.

When employing machine learning methods for classi-
fication and prediction, it is important to use methods with
good ability to generalize. The reason for this is that when we
apply any of the aforementioned techniques, and after they
have been trained on the original data, we want them tomake
good classifications and predictions of novel data rather than
on the data used for training.

After machine learning methods have been applied, it is
crucial to know how to interpret their outputs and under-
stand what these mean and how they improve the knowledge
in each application area. To that end, visualization methods
are employed. Such methods are widely used within Big Data
scenarios as they are very helpful for all types of graphical
interpretations when the Volume, Variety, or Velocity are
complex. In Table 6, we present a summary of, and referral
to, papers that deal with visualization.

4. Conclusion

As indicated by the journal articles and the conference papers
we have reviewed in this article, the complexity of Big Data
is an urgent topic and the awareness of this is growing.
Consequently, there is a lot of research carried out on this,
and we will in all likelihood find more and more progress in
this field during the next few years.

Additionally, a key issue that we really want to emphasize
in this study is the aspects related toBigDatawhich transcend
the academic area and that, therefore, are reflected in the
company. An observation is that more than 50% out of
560 enterprises thinks Big Data will help them increase
their operational efficiency as well as other things [60]. This
indicates that there are a lot of opportunities for Big Data.
However, it is also clear that there are many challenges in
every phase of the knowledge discovery procedure that need
to be addressed in order to achieve a continued and successful
progress within the field of Big Data.

As is shown in Figure 1, there are three general approaches
when carrying out intensive data processing in IoT architec-
tures: (a) local processing, (b) edge computing, and (c) cloud
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Table 6:The table summarizes and refers to a representative set of papers focusing on Visualization and Prediction in the context of Big Data.

Reference Title of paper Description/Objective

[100] Beyond the hype: Big Data concepts, methods,
and analytics

The main objective described in this paper is analytic methods and
how are they used for Big Data, in particular, the ones related to

unstructured data.

[101] Key Performance Indicators: Developing,
Implementing, and Using Winning KPIs

This book represents a guide with tools and procedures to discover
the KPIs and how they are developed and used.

[102] The visual organization: data visualization, Big
Data, and the quest for better decisions

The paper describes data visualization myths, such as: that all data
must be visualized, when in fact only good data should be visualized;
visualization will always manifest the right decision or action; and

that visualization will lead to certainty.

[103] Big Data and Visualization: Methods,
Challenges and Technology Progress

The paper presents applications, technological progress of Big Data
visualization, and discusses challenges of it.

[104] Big-Data Visualization A special issue which focus on the current situation and new trends of
Big Data Visualization.

computing.The text explained each of these approachesmore
in detail.

We also explained the knowledge discovery procedure by
dividing it into several stages as shown in Figure 2. These
steps are IoT Data Gathering, Data Cleaning, Integration,
Machine Learning, Data Mining, Classification, Prediction,
and Visualization.

We have also discussed that many research papers are
focused on the variety of information because this is in itself,
in conjunction with integration, one of the most challenging
issues when it comes to the IoT.This is also the reason why it
is very often also associated with one of the most difficult Vs
of Big Data, which is the variety of data.

The trend for the future seems to be that more investiga-
tions will be carried out in such areas as (a) techniques for
data integration, again the V of Variety; (b) more efficient
machine learning techniques on big data, such as Deep
Learning and frameworks such as Apache’s Hadoop and
Spark, that will probably have a crucial importance; and (c)
the visualization of the data, with, e.g., dashboards, and more
efficient techniques for the visualization of indicators.
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andM.D. Andújar-Montoya, “Improving urban accessibility: A
methodology for urban dynamics analysis in smart, sustainable
and inclusive cities,” International Journal of Sustainable Devel-
opment and Planning, vol. 12, no. 3, pp. 357–367, 2017.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


10 Complexity

[17] Z. Lv, X. Li,W.Wang, B. Zhang, J. Hu, and S. Feng, “Government
affairs service platform for smart city,” Future Generation
Computer Systems, vol. 81, pp. 443–451, 2018.

[18] J. Macke, R. M. Casagrande, J. A. R. Sarate, and K. A. Silva,
“Smart city and quality of life: Citizens’ perception in a Brazilian
case study,” Journal of Cleaner Production, vol. 182, pp. 717–726,
2018.

[19] H. March, “The Smart City and other ICT-led techno-
imaginaries: Any room for dialogue with Degrowth?” Journal
of Cleaner Production, vol. 197, pp. 1694–1703, 2018.

[20] H. Mora, M. Signes-Pont, D. Gil, and M. Johnsson, “Collabora-
tiveWorking Architecture for IoT-Based Applications,” Sensors,
vol. 18, no. 6, p. 1676, 2018.

[21] W. Lee and A. Sharma, “Smart sensing for IoT applications,” in
Proceedings of the 13th IEEE International Conference on Solid-
State and Integrated Circuit Technology, ICSICT 2016, pp. 362–
364, October 2016.

[22] Institute of Electrical and Electronics Engineers, IEEE Std
1451.0� 2007, IEEE Standard for a Smart Transducer Interface for
Sensors and Actuators Common Functions, Communication Pro-
tocols, and Transducer Electronic Data Sheet (TEDS) Formats,
2007.

[23] T. Islam, S. C. Mukhopadhyay, and N. K. Suryadevara, “Smart
Sensors and Internet of Things: A Postgraduate Paper,” IEEE
Sensors Journal, vol. 17, no. 3, pp. 577–584, 2017.

[24] J. Mendes Jr., M. Vieira, M. Pires, and S. Stevan Jr., “Sensor
Fusion and Smart Sensor in Sports and Biomedical Applica-
tions,” Sensors, vol. 16, no. 10, p. 1569, 2016.

[25] H. Mora, D. Gil, R. M. Terol, J. Azoŕın, and J. Szymanski, “An
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