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Abstract—In this letter, it is shown how direction-of-arrival 

(DoA) estimation for electronically steerable parasitic array 

radiator (ESPAR) antennas, which are designed to be integrated 

within wireless sensor network (WSN) nodes, can be improved by 

applying support vector classification approach to received signal 

strength (RSS) values recorded at antenna’s output port. The 

proposed method relies on ESPAR antenna’s radiation patterns 

measured during the initial calibration phase of the DoA 

estimation process. These patterns are then used in support vector 

machine (SVM) training process adapted to handle ESPAR 

antenna-based DoA estimation. Measurements using a fabricated 

ESPAR antenna indicate that the proposed SVM approach 

provides more accurate results than available RSS-based 

estimation algorithms relying on power pattern cross-correlation 

(PPCC) method. 

Index Terms—Switched-beam antenna, electronically steerable 

parasitic array radiator (ESPAR) antenna, direction-of-arrival 

(DoA), received signal strength (RSS), support vector machine 

(SVM), wireless sensor network (WSN). 

I. INTRODUCTION

electronically steerable parasitic array radiator (ESPAR)

antennas [1]-[4], which are single output structures having 

only one active element surrounded by a number of passive 

elements connected to variable reactances, can successfully be 

used to estimate direction-of-arrival (DoA) of signals 

impinging the antenna from unknown directions in cost- and 

energy-efficient ways [5]-[10]. In contrast to the most popular 

approach involving antenna arrays with a number of digital 

signal processing (DSP) units, DoA estimation relaying on 

ESPAR antennas require only one DSP-based radio-frequency 

(RF) receiver [5]-[8] or even a single inexpensive RF 

transceiver used in wireless sensor network (WSN) nodes [9], 

[10] connected to the antenna output port.

All methods proposed in the literature for DoA estimation in

RF systems involving an ESPAR antenna use its capability of 

forming a directional radiation pattern by setting variable 

reactances to specific values. By changing these values 

electronically during continuous reception of a signal at the 

antenna output port, one will obtain signal samples recorded for 

different directions of the main beam, which can be then 

processed by one of the available DoA estimation algorithms, 

namely multiple signal classification (MUSIC) [5], [6], 
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estimation of signal parameters via rotational invariance 

techniques (ESPRIT) [7], and power pattern cross-correlation 

(PPCC) [8]-[10]. However, it has to be noted that MUSIC and 

ESPRIT algorithms require a DSP unit that gathers a 

considerable number of signal samples for every main beam 

direction [6], [7] and suffer from high computational cost [7], 

while PPCC method can provide more accurate results using a 

limited number of recorded received signal strength (RSS) 

values and a simple cross-correlation estimator [8]. In 

consequence, in measurements involving an ESPAR antenna 

having six parasitic elements connected to varactor diodes as 

variable reactances, it was possible to estimate DoA of a signal 

impinging the antenna with precision, which after [8] is the 

maximum absolute estimation error, equal to 2°, 3° and 7° using 

PPCC, MUSIC and ESPRIT methods respectively [5], [7], [8]. 

Because RSS-based DoA estimation together with 

beamforming capabilities can improve  connectivity, coverage 

and energy efficiency in WSN applications [11], initially 

proposed ESPAR antenna [8], that requires applying correct 

bias voltages to varactor diodes using a DSP unit having six 

digital to analog converters (DAC), has been further adapted to 

work with WSN nodes based on simple and inexpensive 

transceivers able to measure RSS of incoming packets. To this 

end, an ESPAR antenna with twelve parasitic elements and 

simplified beam steering circuit, which relies on RF switches 

providing required load to the parasitic elements (close to open 

or short circuit), has been introduced [9]. However, such 

simplification have led to 4° maximum absolute estimation 

error when PPCC algorithm was used [10] in the similar 

conditions as those in [8]. 

 In this letter, we propose to estimate DoA of a signal 

impinging the ESPAR antenna with twelve parasitic elements 

and simplified beam steering circuit by using support vector 

machine (SVM) technique, which so far has been used in  DoA 

estimation involving linear [12] and planar [13] antenna arrays. 

This technique, which relies on well-established learning-by-

examples paradigm (LBE), is backed up by solid mathematical 

foundation in statistical learning theory and can provide a good 

balance between accuracy and fast computations [14]-[17]. The 

proposed SVM-based DoA algorithm for ESPAR antennas 

relies on a LBE process involving radiation patterns of the 

antenna measured in an anechoic chamber and can easily be 
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integrated within inexpensive radio transceivers of WSN nodes 

equipped with ESPAR antennas. Measurement results indicate 

that the proposed approach increases the overall accuracy of 

RSS-based DoA estimation for ESPAR antennas. 

II. RSS-BASED DOA ESTIMATION USING ESPAR ANTENNAS 

The most effective and accurate way to estimate DoA of a 

signal impinging an ESPAR antenna, what can be concluded 

after a detailed analysis of the experiments available in [5], [7] 

and [8], is PPCC method originally proposed in [8]. This 

method relies on recorded RSS values at the antenna output port 

for different directions of the directional radiation pattern. 

Moreover, it  can easily be implemented within a WSN node 

that is integrated with an ESPAR antenna [9], [10]. 

One of ESPAR antenna designs, which is presented in Fig. 1, 

has recently been proposed in [9] and [10] to provide beam 

steering and DoA estimation capability to a simple WSN node. 

The antenna has been optimized to work at 2.484 𝐺𝐻𝑧 and then 

fabricated using inexpensive FR4 laminate, in which top layer 

metallization is the antenna’s ground plane. Because the digital 

single-pole, double-throw (SPDT) switches in Fig. 1 are 

connected to both parasitic elements’ ends at the bottom layer 

of the structure and WSN node’s microcontroller digital input 

output (DIO) ports, the antenna’s radiation pattern can be 

shaped by setting a corresponding steering vector 𝑉 =
[𝑣1, 𝑣2, ⋯ , 𝑣12] within the microcontroller as for 𝑣𝑛 = 0 n-th 

parasitic element is connected to the ground and opened for 

𝑣𝑛 = 1. In consequence, using 𝑉𝑚𝑎𝑥
1 =

[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] a directional main beam having 

73.2° 3 𝑑𝐵 beamwidth with the maximum at 𝜑𝑚𝑎𝑥
1 = 90° 

(aligned with y axis) will be created [10] and, by applying a 

circular shift to 𝑉𝑚𝑎𝑥
1 , twelve different horizontal directions of 

the main beam, each shifted by 30˚, can be produced [9], [10]. 

 

 
Fig. 1. An ESPAR antenna with simplified beam steering proposed in [10] for 

WSN nodes. The central element, fed by an SMA connector that can be 

connected to RF transceiver’s output, is surrounded by parasitic elements, 
which ends are connected to SPDT switches (at the bottom layer of the 

structure) that can shorten individual elements to the ground or leave them open. 

Parasitic elements {6, 12} and {3, 9} are aligned with  𝑥 and 𝑦 axes respectively. 

 

In order to perform DoA estimation based on recorded RSS 

values associated with received packets using PPCC method, 

one has to calculate cross-correlation coefficient 𝛤(𝜑), 

originally proposed in [8], which, for the considered ESPAR 

antenna, can be written as [9]: 
 

𝛤(𝜑) =
∑ (𝑃(𝑉𝑚𝑎𝑥

𝑛 , 𝜑) 𝑌(𝑉𝑚𝑎𝑥
𝑛 ))12

𝑛=1

√∑ 𝑃(𝑉𝑚𝑎𝑥
𝑛 , 𝜑)2 12

𝑛=1 √∑ 𝑌(𝑉𝑚𝑎𝑥
𝑛 )2 12

𝑛=1

 (1) 

 

where {𝑃(𝑉𝑚𝑎𝑥
1 , 𝜑), 𝑃(𝑉𝑚𝑎𝑥

2 , 𝜑), … , 𝑃(𝑉𝑚𝑎𝑥
12 , 𝜑)} are twelve 

ESPAR antenna’s radiation patterns measured in the horizontal 

plane (i.e. 𝜃 = 90°) in an anechoic chamber for all 

corresponding steering vectors {𝑉𝑚𝑎𝑥
1 , 𝑉𝑚𝑎𝑥

2 , … , 𝑉𝑚𝑎𝑥
12 } during a 

calibration phase, while {𝑌(𝑉𝑚𝑎𝑥
1 ), 𝑌(𝑉𝑚𝑎𝑥

2 ), … , 𝑌(𝑉𝑚𝑎𝑥
12 )} are 

RSS values recorded at the antenna output for the 

corresponding steering vectors during the actual DoA 

estimation process. It has been shown in [8], that the estimated 

DoA angle of a signal impinging the antenna 𝜑̂ is an angle 𝜑 

associated with highest value of 𝛤(𝜑). 

III. PROPOSED DOA ESTIMATION USING SUPPORT VECTOR 

CLASSIFICATION 

It has been introduced recently in [10], that because  radiation 

patterns 𝑃(𝑉𝑚𝑎𝑥
𝑛 , 𝜑) in (1) are measured in an anechoic chamber 

with certain angular step precision ∆𝜑 before the DoA 

estimation, they can be represented as vectors 𝒑𝑛 =
[𝑝1

𝑛 , 𝑝2
𝑛, ⋯ , 𝑝𝐼

𝑛]𝑇 , which values correspond to discretized angles 

𝜑 that can be written as 𝝋 = [𝜑1, 𝜑2, ⋯ , 𝜑𝐼]𝑇. In consequence, 

to implement (1) one can re-write it as: 
 

𝒈 =
∑ (𝒑𝑛 𝑌(𝑉𝑚𝑎𝑥

𝑛 ))12
𝑛=1

√∑ (𝒑𝑛 ∘ 𝒑𝑛) 12
𝑛=1 √∑ 𝑌(𝑉𝑚𝑎𝑥

𝑛 )2 12
𝑛=1

 (2) 

 

where the symbol ’∘‘ stands for the Hadamard product, which 

is element-wise product of vectors, while 𝒈 =
[𝛤(𝜑1), 𝛤(𝜑2), ⋯ , 𝛤(𝜑𝐼)]𝑇 is a vector of length 𝐼 containing 

discretized values of the correlation coefficient Γ(𝜑) associated 

with the discretized values of 𝜑 in the vector 𝝋. As a result, by 

finding the highest value of 𝒈 and the corresponding value in 

the vector 𝝋 one will simultaneously determine the estimated 

DoA angle  𝜑̂. 

 As 𝝋 is a set of discretized angle values and 𝜑̂ belongs to the 

same set of values, the task described above in (2) can be seen 

as a classification problem with 𝐼 classes. Power levels 

measured at every angle from within 𝝋 for all considered 

steering vectors {𝑉𝑚𝑎𝑥
1 , 𝑉𝑚𝑎𝑥

2 , … , 𝑉𝑚𝑎𝑥
12 } can serve as a vector of 

𝑁 = 12 features for classification. Thus, the training data set to 

be used for classification [18] can be defined as D = {(𝒑0, 𝜑0),
(𝒑1, 𝜑1), … , (𝒑𝐼 , 𝜑𝐼)}, in which 12 element vector 

𝒑𝑖=[𝑃(𝑉𝑚𝑎𝑥
1 , 𝜑𝑖), 𝑃(𝑉𝑚𝑎𝑥

2 , 𝜑𝑖), … , 𝑃(𝑉𝑚𝑎𝑥
12 , 𝜑𝑖)] contains a set of 

all measured radiation pattern values at a particular angle 𝜑𝑖.  

Among many classification algorithms, Support Vector 

Machine (SVM) is one of the most popular and gained its 

popularity by large successes in image recognition and analysis 

with both accuracy and fast performance [16]. This approach 

derives from a maximal margin classifier and originally realizes 

linear, binary classification [19]. The main idea behind it is to 
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compute a hyperplane in 𝑁-dimensional space, where 𝑁 equals 

to number of features, as a decision boundary, which leads to 

the following binary prediction [20]: 
 

𝑦̂ =  {
0, 𝑤ℎ𝑒𝑛 𝒘𝑇 ∙ 𝒙 + 𝑏 < 0

1, 𝑤ℎ𝑒𝑛 𝒘𝑇 ∙ 𝒙 + 𝑏 ≥ 0
 (3) 

 

where 𝒘 is weight vector of length 𝑁 produced as output in a 

SVM training process defining the hyperplane, b is a constant 

coefficient obtained in the same process and 𝒙 represents a 

vector of features. It is worth mentioning, that the decision 

boundary, defined by 𝒘 and b, is computed using soft-margin 

approach [20]. In consequence, the following constrained 

optimization problem has to be solved: 
 

minimize 
𝒘,𝑏,𝜁

1

2
𝒘𝑇 ∙ 𝒘 + 𝐶 ∑ 𝜁(𝑘)

𝐾

𝑘=1

 

subject to: 𝑡(𝑘)(𝒘𝑇 ∙ 𝒙(𝑘) + 𝑏) ≥ 1 − 𝜁(𝑘) 𝑎𝑛𝑑 𝜁(𝑘) ≥ 0 

(4) 

 

where 𝜁(𝑘) is a slack variable measuring margin violation, C is 

a hyperparameter associated with soft-margin width, 𝑡(𝑘)  ∈
{−1,1} defines classification instance and 𝑘 = 1,2, … , 𝐾 is a 

training sample number. 

The considered DoA classification problem cannot be solved 

by the original SVM technique [19], [20], which deals with 

binary (i.e. two-class only) classification and relies on linear 

boundaries (3). In order to extend the number of classes to the 

required 𝐼, one has to use multiple binary SVMs with a specific 

scheme determining mutual decision boundaries. The “one-

versus-rest” method allows to train 𝐼 SVM classifiers, with 𝐼 

being the number of necessary classes, and treats each class as 

opposition to the rest. It means, that a recorded data sample 

belongs to the class, which scores the highest decision function 

[17]. Additionally,  kernel trick technique [20], which allows 

for computationally effective transformation of vectors by 

using a special function called kernel [20], can be employed in 

order to use SVM in nonlinear DoA classification problems. 

IV. MEASUREMENTS 

In order to verify the overall accuracy of the SVM-based 

DoA estimation, we have performed measurements of the 

ESPAR antenna, shown in Fig. 1, in our 11.9 × 5.6 × 6.0 𝑚 

anechoic chamber in a setup presented in Fig. 2. As a first step, 

all twelve ESPAR antenna radiation patterns associated with 

twelve main beam directions were measured at 2.484 𝐺𝐻𝑧 with 

1° angular step precision. These patterns have been then used 

as a training set in the learning process described in the previous 

section to obtain SVM-based DoA classification. 

For SVM algorithm implementation, a library for support 

vector machines (LIBSVM) [21] and Scikit-Learn packet [22] 

were used. During the training process, which took only 1.78 s 

on Intel Core i7 2.6 GHz laptop, hyperparameter C=1 and 

Gaussian Radial Based function as the kernel function have 

been applied in order to achieve higher generalization in the 

DoA classification problem. Additionally, the “one-versus-

rest” approach have been used to solve multiclass problem with 

the decision function of this scheme, which has been produced 

in the training process, shown in Fig. 3. 

 
Fig. 2. The anechoic chamber, in which ESPAR antenna radiation patterns have 

been measured, together with a turntable with the installed antenna prototype. 

 
Fig. 3. The decision function in a matrix form of “one-versus-rest” multiclass 

SVM produced using measured ESPAR antenna radiation patterns for the 

proposed DoA estimation approach. The higher the value, the more probable 

match between classes, which in case of the proposed RSS-based approach 

corresponds to the angle of an unknown signal impinging the ESPAR antenna 

(see text for explanations). 
 

During DoA estimation phase we have set up a test system 

presented in Fig. 4. To this end, a signal generator within NI 

PXIe-5840 Vector Signal Transceiver (VST) has been 

connected to a transmitting antenna placed in the anechoic 

chamber on a pole stand at 𝐻 = 4.1 𝑚 to generate 10 𝑑𝐵𝑚 

2.484 𝐺𝐻𝑧 BPSK test signal, while the ESPAR antenna has 

been mounted on a turntable at the same height and 8.0 𝑚 from 

the transmitting antenna. The signal impinging the ESPAR 

antenna  has been received by the same NI PXIe-5840 VST 

connected to ESPAR antenna’s output. Moreover, additive 

white Gaussian noise has been added to the received signal to 

generate a specific signal-to-noise ratio (SNR), so the results 

are more realistic and can easily be compared to those already 

available in the literature. 

Directions of the signal impinging the ESPAR antenna were 

set by rotating the turntable in the horizontal plane with 5° 

angular step, hence providing 72 test directions. For every 

impinging signal’s direction, 10 snapshots were generated for 

each of the radiation patterns and, in consequence, twelve RSS 

output power values {𝑌(𝑉𝑚𝑎𝑥
1 ), 𝑌(𝑉𝑚𝑎𝑥

2 ), … , 𝑌(𝑉𝑚𝑎𝑥
12 )}, which 

correspond to steering vectors {𝑉𝑚𝑎𝑥
1 , 𝑉𝑚𝑎𝑥

2 , … , 𝑉𝑚𝑎𝑥
12 }, has been 

recorded. The whole testing procedure took 33 min and 9.94 s. 
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Fig. 4. Anechoic chamber test system used to determine DoA estimation errors 

(see text for explanations). 

 

 
Fig. 5. DoA estimation errors obtained using PPCC algorithm (the thin blue 

line) and SVM technique (the thick black line with circle markers) from 

measurements at SNR = 20 dB. 

 

 

DoA estimation errors calculated using both PPCC algorithm 

and SVM technique are shown in Fig. 5. Additionally, to better 

compare the results, the estimation error mean, standard 

deviation, root-mean-square (RMS) error and precision, which 

after [8] is the maximum absolute estimation error, have been 

calculated from these 72 values and gathered in table I together 

with results obtained for three other SNR levels. It is clearly 

visible that the proposed SVM-based approach give much 

better DoA estimation results. In fact, for the ESPAR antenna 

with simplified beam steering, it was possible to reach  

0.67° estimation error mean and 2° precision level previously 

reported in [8] for the ESPAR antenna with beam steering 

relying on varactor diodes and DACs within a DSP unit. 

Because for SNR equal to 30, 20 and 10 dB the proposed 

method provide RMS levels that are halved when compared to 

PPCC algorithm and below 1°, the SVM-based DoA estimation 

can successfully be applied within WSN nodes equipped with 

ESPAR antennas not only to provide DoA estimation 

functionality to each node, but also to enable self-localization 

capability within a wireless sensor network operating in 

realistic scenarios [11]. 

One additional factor that should be considered is time 

required by both algorithms. Initial anechoic chamber 

calibration takes 33 min and 14.32 s. When PPCC algorithm is 

used this calibration time can easily be halved by using simple 

linear approximation of coarsely measured radiation patterns 

[10]. In case of SVM algorithm, in which the training requires 

only 1.78 s on Intel Core i7 2.6 GHz laptop but uses training 

sets being radiation patterns measured during the calibration 

procedure with fine 1° angular step precision, such time 

reduction cannot easily be implemented. As a consequence, to 

obtain good SVM-based classification, one has to provide 

accurate ESPAR radiation pattern measurements. 

V. CONCLUSIONS  

In this letter, it has been shown, how the overall accuracy of 

RSS-based DoA estimation using ESPAR antennas can be 

improved when support vector classification is applied. In the 

proposed approach, ESPAR antenna radiation patterns are 

measured in an anechoic chamber and then used as a training 

set in the learning process to obtain SVM algorithm for RSS-

based DoA classification. Measurements indicate that the 

proposed method is much more accurate than PPCC-based DoA 

estimation algorithm and, for ESPAR antennas with simplified 

beam steering that can easily be integrated with inexpensive 

radio transceivers of WSN nodes, it allows to reach error levels 

reported previously only for the sophisticated beam steering 

solutions relying on varactor diodes controlled by DACs within 

a DSP unit. In consequence, the proposed SVM-based approach 

can successfully be  used in WSN in order to provide not only 

DoA estimation functionality, but also self-localization 

capability within WSNs operating in noisy environments. 
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