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Abstract The procedures based on simulation have become a feasible testing
method that does not require investing valuable resources to create a concrete
prototype, especially with the increasing computational power of computers.
Thus, design changes can be adopted and design errors can be fixed before it is
too late. Simulation turns to be a cheap, safe and often more acceptable from
an ethical perspective. In our work we summarize the results from the analysis
with the help of a computational simulation of an elementary, yet analytically
intractable problem scenario from the field of ecology. Our main goal is to
confirm that even with a seemingly simple agent-based model and simulation,
one could obtain plausible results regarding a system’s real life behavior. As
a last point, we propose an efficient alternative for analysis, rather than the
expensive simulation process.
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2 Balabanov et al.

1 Introduction

Simulation is a a well-known and wide-spread method of system analysis and
fault diagnostics. A lot of different fields of science make use of it due to the
various advantages that it could offer. As an example, it is more economical to
test the aerodynamics of a car without the need of an actual prototype [28].
On the other hand, in some projects it is simply the most suitable approach
with respect to effort-cost ratio, e.g. to simulate a space rover’s mission to
another planet [36]. Simulation can be also used as a prediction tool for an as-
sessment of the effects within possible climate catastrophes [25]. Furthermore,
a well-designed simulation can not only save time and money, but also give a
researchers chance to explore scenarios which are to hazardous to be enforced
in natural environment. These kinds of ecological simulation has become quite
popular recently due to the numerous environmental issues. For example, ac-
cording to [34] one-third of the plant and animal species in the United States
are at risk of extinction. Species are becoming endangered because of reckless
management of the Earth’s resources, indirectly caused by globalization and
industrialization. Having such situation bounds to affect predator/prey chains
in the respective ecosystems. With proper simulation methods one could an-
alyze the consequences of the resulting imbalance without involving actual
animals.

In this paper we present the results we gathered when simulating a simple
marine ecosystem on a micro level. We based our model on the one described
in [5], but extended and formalized it according to the well known design of
cellular systems and more precisely a cellular automaton. The main goals that
we set for this project were to further confirm the statement introduced in [5]
that even somewhat complex real world phenomena/events/scenarios can be
simulated with a relatively simple abstract model, that, nevertheless, exhibits
authentic behavior. Our emphasis, however, was on proving the strengths of
computational simulation when considering analytically intractable problems.
The tests that we present served not only the purpose to verify the accu-
racy of the extended model, but also to deliver useful insights regarding the
problem under consideration, such as input/output relation, without the need
of a complex formal description. Furthermore, we acknowledge the pitfalls of
simulation-based analysis in terms of computational effort needed and shortly
discuss a more efficient approach to optimize the given problem scenario with
the use of an evolutionary programming technique.

The design of the application follows an established model of a simulation
as described by [13]. Essentially it involves a system’s model, some inputs
used in the model and the respective outputs produced by the model (refer
to Fig. 1). In this matter of thought a model is simply an abstraction of a
real world phenomenon or environment, which is too complex to theoretically
describe in detail. Thus, the model is by no means perfect or accurate and
its level of abstraction determines the degree to which the simulation’s results
would resemble the outcome of the experiment should it be conducted in the
real world. Naturally, the higher accuracy of the model comes at a cost, but
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Study on Population Dynamics for Triple-Linked Food Chain 3

experience in the field has confirmed that often as not even low level abstrac-
tions can yield plausible results. The input is usually some initial state of the
system and its components. The unknown variable in a simulation, i.e. the sub-
ject of interest, is the output produced by inserting the input into the given
model. It is rather a relatively simple scenario in which the model description
is known. Although, this is not feasible in many cases. Currently, researchers
focus on developing complex models for dynamic and non-stationary systems.
In such systems, the model is unknown and being estimated by use of universal
functions (artificial neural networks, neurofuzzy networks) whose parameters
can change over time. The area of algorithms and solutions addressing that
problem has been named as evolving intelligent systems (eIS) [2]. In our work
we provide fixed, ready to use description of the model. We focus on analyzing
simulation output rather than searching universal approximations.

Fig. 1 The structure of a typical simulation problem as given by [13], page 9.

A variety of problems can be successfully addressed with simulation means,
which are typically more economical (e.g. when testing the aerodynamics of
cars [28]), more feasible (e.g. simulating a space rover’s mission to another
planet as described by [36] or when the rate of the observed phenomenon is
too fast/slow in real-time as is the case with plant growth or explosions) or
ethically more acceptable (e.g. performing air-bag tests or most experiments
involving animals). Dewdney’s proposal is a typical example of all three and
more precisely the study of an ecosystem. This topic has gained popularity
in the recent years as the globalization and industrialization have taken their
tolls on the environment and the consequences have become evident. Species
are becoming endangered or extinct and while environmentalists are coping
to mitigate the damage, scientists are more concerned with determining the
potential effects of the caused imbalance or lack of a species on the remaining
ones. In other words, how would the predator/prey chains in an ecosystem
change [7].

2 Problem Description

In its core the problem scenario used for the experiments is a relatively simple
one: a finite space populated with objects of certain type, that interact with
one another according to predefined rules. A less abstract extension of this
scenario would be any ecosystem and the species populating it. Following re-
search done in [41] biodiversity can enhance ecosystem services and temporal
stability. On the other hand according to [12] equilibrium feasibility vanishes
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4 Balabanov et al.

in species rich systems. In our experiments we modeled a sea ecosystem and
three marine species forming a food chain. For the concrete design we used
the well-known Wa-Tor world described in A. K. Dewdney’s work [10]. It is
a torus-shaped world with no landmass, but only one great ocean inhabited
by marine species. To simulate an actual ecosystem, each species has a spe-
cific behavior according to which it interacts with both the environment and
members of other species’. The behavior consists of a set of predefined rules,
which reflect the real world equivalents of the respective species’ to a certain
degree. All rules are defined on a micro level, i. e. only an individual’s current
state and its direct neighbors are considered [5,29,30]. Each rule can be eas-
ily modified to reflect any introduced change of both internal (evolution) or
external (cataclysmic event) nature, as it happens in the real world, and then
the potential impact on the environment can be observed. Originally Dewdney
described a world inhabited by only two species forming a linear predator-prey
relationship — sharks (predator) and fish (prey). Their interaction was piv-
otal for the environment’s fate: sharks can survive only if there are enough fish
to hunt, and fish can survive only if there are not too many sharks to hunt
them to extinction. Fish feed on infinite plankton, which is not modeled for
the sake of simplicity. Following the example of [5], we extended Dewdney’s
idea with an additional third species to create a slightly more complex food
chain — whales, which hunt both sharks and fish, but have no enemy. This
new species is partially theoretical as it does not depict the actual diet of real
world whales.

Such a scenario related to ecology is a perfect example of a problem domain,
that is well-nigh impossible to solve using real life resources for two major rea-
sons: a) constructing and populating or isolating an actual ecosystem would
be insanely expensive, unless in a very small scale, which might not yield the
desired authenticity and/or results; b) experiments with animals in general
raise a lot of questions regarding moral principles and are often reproached
by modern society. On the other hand, formally specifying a mathematical
model of the problem would prove to be as equally difficult simply due to its
complexity — thousands of agents, each with its own characteristics, dispersed
within the environment, randomly roaming and interacting. In other words,
the given problem, although computationally solvable with finite resources in
theory, can be seen as analytically intractable in practice. Therefore, devel-
oping a computer simulation using a moderately complex model is a viable
approach to obtain valuable insights regarding the problem scenario, albeit
not necessarily the optimal solution [43,39,15]. In our work we strove to con-
firm the accuracy of the model presented by [5] and its ability to self-sustain,
but also tried to determine whether a relation between the input parameters
and the ecosystem’s ability to self-sustain exists. Moreover, we searched for an
approach to efficiently find optimal input parameter combinations, i. e. such
that do not cause an ecosystem collapse (species becoming extinct).
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Study on Population Dynamics for Triple-Linked Food Chain 5

3 Related Work

In last years there was a couple of projects which used a Wa-tor concepts as
the basis of scientific projects. Studies presented in [26] compare two models
against real-life example for hare and lynx population dynamics. First model
was based on differential equations from widely used Lotka-Volterra model
[37] and the second was the Wa-Tor model. Both describe the predator and
pray relationship: hares with lynxes and fishes with sharks. It was shown that
the Wa-Tor results resemble the differential equation model but also go fur-
ther through spatial distribution. According to [40] changes in the dispersion
pattern should be considered alongside changes in size when interpreting pop-
ulation dynamics. The overall population fluctuations of Wa-Tor model suits
better to real-life example charts than the differential equations do. One of
the conclusions was that modeling does not necessarily require a top-down
differential equation model to provide realistic results.

Authors in [4] present general framework for modelling and simulation con-
tinuous dynamic systems with Belief-Desire-Intention paradigm applied and
use of Jason AOP language. Each agent was described as a software mod-
ule that provides an interface with the external world and consists of three
components: belief base, plan library and reasoning engine. For continuous
systems models are defined with help of differential equations and such ap-
proach implies use of numerical integration methods which are described in
the paper. Predator-pray dynamic system experiment was conduced based on
triple node graph-based model. Population dynamic was recorded and conclu-
sion about robustness and efficiency of various numerical integration methods
were drawn.

Discrete Wa-Tor model can be used as a starting point for more complex
ecosystems. For example, the field of game industry is one where advanced
simulations broadly occurs. In order to make a game-play realistic, digital
characters should provide more sophisticated behavior than a basic if-else in-
teraction. For game designers and programmers it is crucial to model artificial
behaviour in a way where a character state is somehow reflected by the closest
neighbourhood. For these reasons, researchers try to develop new approaches
based on neural networks. The test driven development imply ideas where the
need of an efficient testing framework broadly occurs. Wa-Tor was chosen as
the one in [32] where authors build a simple percepton model in order to de-
scribe the internal emotion of a character. With the help of such a predefined
model, they tested it on predator-prey architectures like Wa-Tor and similar
ones.

Another promising approach for ecosystem modeling will be use of flocking
behaviour [38]. This term was introduced by Craig Reynolds and describes the
set of rules how the individuals would move within a space. In such scenario,
modeling do not center upon the predator-prey relationship but more about
movement of individuals called boids. According to Reynolds and his expla-
nation there are three main rules describing individuals movement: separation
(steer to avoid crowding local flockmates), alignment (steer towards the aver-
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6 Balabanov et al.

age heading of local flockmates), cohesion (steer to move toward the average
position of local flockmates). With this kind of defined rules, one could possi-
bly model the fish behaviour and adapt such sophisticated movement rules to
the Wa-Tor ecosystem.

4 Implementation Details

As more than 30 years have passed since Dewdney’s initial publication, one
can easily find various implementations of the Wa-Tor scenario. Wa-Tor fun-
damental concepts focuses on an environment with only two species and give a
researcher a general description of the interaction rules between them. To test
and verify our ideas one has to find a tools which allow to redesign and interact
with researcher’s proposed model. Such software should be easy to use and be
described as an open source project. Currently there is a only a few software
implementations of Wa-Tor simulation which meets the requirements.

Cute simulations and a sub-project called Wa-Tor simulation [33] is one of
the most recent projects dealing with Wa-Tor. This is a simple and portable
Java application implementing two species: sharks and fishes. One can easily
define input parameters such as the environment size, percentage space-fill of
specific species, simulation length and time for reborn. Such a simply model
could be a good starting point for further research, but currently the project
has no support for more complex models and a scientific analysis. A similar
one, the Wa-Tor android app [14], was developed for simulation analysis only
in scope of testing the basic concepts. Also it is not suitable to verify presented
ideas. Several available projects can be found - they are commercial, non-
scientific or outdated due to the framework support.

To test our ideas we had to developed a simple and robust software ap-
plication. Proprietary software was excluded from consideration. After a brief
evaluation of the open-source solutions according to the criteria maturity (how
well developed is the product so far), longevity (what are the prospects of the
software being further supported and developed) and flexibility (effort needed
to integrate/modify the product) as suggested by [36] showed that neither was
adequate enough, hence our initiative to design and implement a new set of
tools using Java. Lack of tools to simulate three or more species was also a
major point for proving the need to design one’s own solution. Developed ap-
plication for Wa-Tor simulation was designed with focus on proposed cellular
architecture, more detailed in next section. The main component of the pro-
gram is a cellular board of a defined size where individual cells are considered
to be one of the three species from Wa-Tor simulation. Cellular architecture
is reflected in classes corresponding to a given species. For example, the ob-
jects of Fisch.java class will be a cell for fish species with defined interaction
rules. The two genre version of the program was tested for correctness of the
simulation against solutions that were similar in the rules of interaction.
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Study on Population Dynamics for Triple-Linked Food Chain 7

4.1 Application Architecture and Representation

For the design of our application we chose a classic bio-inspired approach: an
abstract cellular system. The idea is derived from biological tissues, where the
fundamental unit is the cell. The cell is, indeed, a quite complex structure by
itself [22], but when multiple cells cooperate even on a very basic local level,
the outcome is a multicellular organism with unmatched capability compared
to that of the individual cells building it. The human body is just one of
countless examples in nature. This approach has already been widely used in
design leading to the generalization of the resulting system type into the so
called cellular systems. One among many precisely described in [31] is a cellular
system describing the interactions between a growing tumor next to a nutrient
source and host’s immune system. Essentially, a cellular system is a finite
collection of basic units building a space. The units can be called cells and the
space an organism accordingly. Each cell is identified by specific information
about itself (e. g. an n-tuple of numerical values) and this information at a
given time is called a state. The dynamics of such a system are expressed with
the change in the cells’ state depending on various factors. This state transition
can depend on the current state of the cell, its past state and/or on the states
of the surrounding cells. The collection of cells that can directly influence each
other’s state is called a neighborhood. Once the system is running, the cells
update their states over time according to a predefined set of state transition
rules and always reside in one from a finite set of possible states. A more
detailed description of cellular systems is offered by [16, chap. 2].

The most prominent advantage of cellular systems is that they offer a
simple modeling approach on a micro level, which however, can still yield
plausible insights regarding the global behavior of the model. In the case of
our problem, it is much easier to model the behavior of separate individuals
based on their direct neighbors, rather than model the behavior of the entire
population as one complex object.

From the various kinds known today we adopted the relatively simple, but
popular cellular automaton (CA), more precisely the 2-dimensional game of
life CA, as the base architecture of our application. A vivid example is John
Conway’s Life Game [19,20]. Using Floreano et al.’s [16] decomposition of a
cellular automaton into its components and their elaborate description, we
modeled the Wa-Tor ecosystem scenario as a cellular automaton as follows:

Base unit.The base unit is the cell represented as a square grid tile of certain
color in the cellular space.

Cellular space.The space is a 2-dimensional lattice of cells forming a rectan-
gular grid with size 500× 300 cells.

Time variable.The state transitions in the system unfold along a discrete time
axis with cycle as its base unit. One state transition happens per cell per cycle.
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8 Balabanov et al.

State and state set.The state of each cell consists of the animal type that the
cell represents together with its respective attributes tuple. Therefore, each
cell can reside in one of four major states

{Fish, Shark, Whale, Emptycell}

and a multiple of sub-states defined by the numerical values of the respective
species’ attribute tuple.

State transition function.The transition from one state to another is repre-
sented by the actions that an individual can perform, such as moving, feeding,
reproducing and dying. Both the major state of the neighbor cells and the
instance of the attribute tuple of the considered cell influence the transition.
It is not deterministic (e. g. a fish surrounded by empty cells could move to
any one of it), and where more choices exist, their probability distribution is
uniform.

Neighborhood.The von Neumann neighborhood is implemented, i. e. a cell’s
state is directly influenced only by neighbors at a Manhattan distance of 1
from it (its direct upward, downward, leftward and rightward neighbors).

Boundary conditions.For practical reasons the cellular space cannot be in-
finitely large, hence the need of appropriate boundary conditions to ensure
that the system has a homogeneous neighborhood (every cell has the same
type of neighborhood). We chose periodic boundary conditions by connect-
ing opposite ends of the grid and essentially eliminating the boundaries, i. e.
transforming the 2-dimensional grid into a 2-dimensional toroid (torus).

Initial conditions.The size of each species’ population as well as the initial
numerical values for each individual’s attribute tuple (equal among all indi-
viduals of the same species). Both can be selected by the user before the start
of the simulation. The distribution of the individuals over the cellular space is
uniform.

Stopping conditions.The simulation stops after 3000 cycles (user adjustable).

4.2 Defining the Simulation Model

For the purposes of our study we adopted the simplified model proposed by [10]
and further described in [5]: the behavior of the animal species consists of the
actions moving, feeding, reproducing and dying; an individual is represented as
an n-tuple of quantifiable attributes. The fish class is the simplest one modeled
as the 2-tuple

(Coffs, Arepr),
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Study on Population Dynamics for Triple-Linked Food Chain 9

consisting of the reproduction maturity age and the number of offspring cre-
ated, which are positive natural numbers. Shark and whale objects are further
identified by their life energy (a positive real number), that is constantly de-
pleted and can be replenished only by killing prey, and by the energy gain
from eating the prey (a positive natural number), which varies according to
the prey type. Unlike fish, predators do not reproduce over a constant period,
but do so only if a certain life energy level has been reached, thus their repro-
duction rate is directly related to the presence of prey [42]. The shark class is
modeled as the 4-tuple

(Coffs, Erepr, Elife, Eeat fish)

and the whale class as the 5-tuple

(Coffs, Erepr, Elife, Eeat fish, Eeat shark),

respectively. Each existing individual performs the aforementioned actions as
defined in [5] in a specified order and a cycle in the simulation ends when all
individuals have ’acted’, after which the environment is updated. In terms of
cellular automata the actions of an individual/cell can be seen as the state
transition of that cell or/and one or more of its neighbors, whereas the various
instantiations of the respective attribute tuples as the private information
about the given individual/cell.

5 Performed Tests and Results

5.1 Model Accuracy

In the previous work on the topic [5] the simulation was run with different
combinations of initial population sizes, repeating each combination multiple
times to account for the not entirely deterministic behavior of the individuals.
The obtained results did show similarities with real world population dynamics
[7], e. g. predator overpopulation leads to the prey going extinct, vice versa
with prey underpopulation and predators are more vulnerable than prey since
they have to roam and search for food. Moreover, by plotting the change in the
population sizes over the course of the simulation, it was shown that despite the
simplicity of the model, successful initial population size combinations result
in the system reaching an equilibrium state, and the populations exhibiting
dynamics like those described by the Lotka-Volterra model and presented in
[24].

5.2 Ecosystem’s Capability to Self-Sustain

Since not every initial population size combination is favorable regarding the
ecosystem’s survival, and some combinations have only a partial success rate,
a second series of experiments was aimed to a) prove that there is an integral

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


10 Balabanov et al.

not empty solution space (initial population size combinations) for which the
given model of the simulated ecosystem can reach the so called equilibrium
state; and 2) to define its boundaries. Equilibrium state, also called stability,
has a field of science depended definition. According to [11] the term used in
context of ecosystem modeling will be a property of ecosystem where all com-
ponents are acting together i.e. all species will survive the ongoing experiment
and nothing foreshadow his nearly collapse. To discover and define the equi-
librium state system was run automatically over a long period of time with
randomly generated initial population sizes from a specified domain for the
three species. It was shown that the successful input combinations form a set
in 3-dimensional space, which with enough runs would resemble an irregular
solid. In other words a solution space exists and the ecosystem is with high
probability capable to self-sustain given any input from the respective set.

5.3 Input/Output Relation

From the results discussed in 5.1 and 5.2 it is clear that the system has a
high chance to reach equilibrium for some input combinations, and a very
low chance for others, i. e. a relation between the input parameters and the
outcome of the simulation presumably exists. This can be proven formally
by finding a function f(p1, p2, ..., pn) that maps an instance of the input
parameters p1, ..., pn to the respective output. As already stated, however,
the problem under consideration is in practice analytically intractable, thus
such a function cannot be obtained with a reasonable amount of effort. In-
stead, in our approach we decided to reuse the empirical formula described
in [5], which is based on the statistical data gained from the initial tests
and on the observations made while analyzing it. The function is defined as
S(Pf [nf ], Ps[ns], Pw[nw]), where S is the dependent variable (ecosystem sta-
bility), and Pf [nf ], Ps[ns], Pw[nw] are the independent variables representing
the probability with which the respective initial population sizes of fish, sharks
and whales would survive. Moreover, from the already made conclusions it is
known that some species are more vulnerable than others, and so their survival
should be weighted more, e. g. sharks. One the other hand, as stated in [23],
some may contribute relatively little to ecosystem properties. As a result the
stability of the system is defined as a function of the survival probability of
each species, given its initial size, combined with a weighting factor based on
the species’ vulnerability:

S(Pf [nf ], Ps[ns], Pw[nw]) = Pf [nf ] · 0.2 + Ps[ns] · 0.5 + Pw[nw] · 0.3 (1)

where Px[nx] is the survival probability of species x with initial size nx in
the respective test case. Using this approximation formula the ecosystem’s sta-
bility factor was calculated for various initial predator population sizes within
the range [2 , 50000] and two distinct fish population sizes: 5,000 and 50,000.
The results are illustrated in Fig. 2 and show an obvious relation between
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Study on Population Dynamics for Triple-Linked Food Chain 11

Fig. 2 Relation between the initial predator population sizes and the stability of the ecosys-
tem obtained with Eq. 1. Two different fish population sizes have been used in the experi-
ments: 5,000 (left) and 50,000 (right). Darker/colder colors represent lower stability factor.
The stability factor ranges from 0.0 (no species survived any of the test cases) to 1.0 (every
species survived all of the test cases).

the starting conditions and the simulation outcome. It is easy to see that
an increasing predator population decreases the stability factor rapidly, indi-
cated by the colors becoming darker towards the maximum values of the x-
and y-axis. This is especially true for the whale population since the heat map
darkens faster vertically (along the y-axis), rather than horizontally (along the
x-axis). Ample quantities of fish prey also contribute for a better ecosystem
stability (compare the visibly brighter heat map for the test cases involving
an initial fish population of 50,000).

These results correspond to the conclusions made earlier about the accu-
racy of the model (see section 5.1). Any combination representing a predator
overpopulation resp. prey under-population is colored in dark. Additionally,
the greater part of both heat maps is in blue/purple hue, indicating a value
less than 0.3. In other words, in most test cases both predator species, but
especially the sharks, went extinct before the stopping condition of the sim-
ulation was met. Nevertheless, a comparison with the results regarding the
system’s ability to self-sustain documented in [5] reveals a partial error in the
solution space’s bounds. It is our belief that this could be eliminated with a
better approximation of the solution space boundaries (by performing more
runs) as suggested in the corresponding section or a light modification of the
weighting factors used in Eq. 1.

Other set of tests we conducted were run to determine a similar relation be-
tween the system’s stability factor and the initial numerical values of a species’
attribute tuple. For that purpose we repeated all test cases illustrated in Fig. 2
(left), while only changing the instance of the fish species’ attribute tuple from
(2, 20) to (5, 20), i. e. increasing the maximum number of offspring a fish can
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12 Balabanov et al.

Fig. 3 Relation between the attribute ’offspring count’ for the fish species and the stability
of the ecosystem obtained with Eq. 1. Two different instances of the maximum offspring
count have been used in the experiments: 2 (left) and 5 (right).

spawn from 2 to 5. This yielded a definite increase in the ecosystem’s chance to
reach equilibrium, as highlighted by the considerably brighter coloring of the
heat map even in predator overpopulation/prey under-population scenarios
(see Fig. 3, right).

The stability information gathered from all tests listed in Table 1 and from
additional ones is visualized in Fig. 4 (left) as a function of the predator initial
populations. It is easy to see that an increasing whale population is decreasing
the stability rapidly (indicated by the sharp steps along the direction of the
whale axis), whereas that of the sharks in a more gradual manner (indicted
by the smaller steps along the shark axis). Beyond some point, however, the
joint number of predators becomes too large for the environment to sustain.

A number of additional tests using random initial populations between 10
and 50,000 were conducted without repetition to gain insight regarding the
boundaries of the set of successful combinations. Out of several hundred tests
only those were chosen, where the system reached a balanced state. This subset
of the tried input combinations can be seen in Fig. 4 (right). It is apparent
that the fish population’s size can vary, whereas that of the whales must not
exceed 10,000. Similarly, the upper limit for the sharks is around 25,000. These
results correspond to the information regarding the system’s stability shown
in Fig. 4 (left), and therefore support the approximated coefficients used in
(1). To further examine the validity of the results one more test was made with
initial populations taken from the subset illustrated in Fig. 4 (right). Since the
subset is just an approximation of the actual one, moderate values were used
taken from its center rather than its edges: 40,000 fish; 3,500 sharks: 4,500
whales; The test yielded a success rate of 200 out of 200 repetitions.

Unfortunately, the data shown so far is not very informative regarding
the dynamics of the ecosystem, i.e. how do the species’ populations vary over
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Table 1 The effect of the three species’ initial population size on the environment’s stability
calculated with (1).

Initial Population Survival Probability P (x)

# Fish Sharks Whales Fish Sharks Whales System Stability

(1) 10000 50000 10000 0.0 0.0 0.0 0.0
(2) 10000 50000 50000 0.0 0.0 0.0 0.0
(3) 50000 50000 50000 0.0 0.0 0.0 0.0
(4) 50000 50000 10000 0.1 0.0 0.0 0.02
(5) 100 10000 10000 0.6 0.0 0.0 0.12
(6) 10 10 10 1.0 0.0 0.0 0.2
(7) 10 100 100 1.0 0.0 0.0 0.2
(8) 100 10 10 1.0 0.1 0.1 0.28
(9) 1000 100 10000 1.0 0.0 0.3 0.29
(10) 100 1000 10000 0.9 0.0 0.4 0.3
(11) 100 10 100 1.0 0.0 0.5 0.35
(12) 1000 10000 10000 1.0 0.0 0.6 0.38
(13) 100 100 100 1.0 0.1 0.55 0.415
(14) 1000 1000 10000 1.0 0.0 0.8 0.44
(15) 100 10000 100 1.0 0.0 0.9 0.47
(16) 100 100 1000 1.0 0.0 1.0 0.5
(17) 100 1000 100 1.0 0.6 0.1 0.53
(18) 100 10000 1000 1.0 0.1 1.0 0.55
(19) 100 1000 1000 1.0 0.2 1.0 0.6
(20) 50000 10000 10000 1.0 0.3 1.0 0.65
(21) 10000 1000 10000 1.0 0.4 1.0 0.7
(22) 10000 1000 1000 1.0 0.8 1.0 0.9
(23) 1000 100 100 1.0 1.0 1.0 1.0
(24) 1000 1000 100 1.0 1.0 1.0 1.0
(25) 1000 10000 1000 1.0 1.0 1.0 1.0
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Fig. 4 The stability of the system for various initial predator populations calculated with
(1) (left) and a set of initial populations for all three species, with which the system reaches
a balanced state (right).

the course of the simulation. Therefore, the changing population sizes were
recorded as a function of the time. A plot produced from such data can be
seen in Fig. 5. Despite the simplicity of the model, one can easily distinguish
the famous predator-prey relation described by the Lotka-Volterra model [24].
With the increase of the prey population the predators thrive and increase in
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Fig. 5 A graph plotting the population sizes changing over the course of the simulation as
a function of the time. The input consisted of 50000 fish (cyan), 10000 sharks (dark blue)
and 1000 whales (pink).

numbers as well. The latter coupled with environmental factors such as over-
population or diseases lead to a decrease in the prey population. Accordingly,
soon after the predators dwindle as food becomes sparse. If the populations
are big enough and no devastating disaster happens, the system will oscillate
between some relatively constant boundaries, i.e. be stable. Past the 1000th
cycle a similar phenomenon can be seen in Fig. 5. All three populations in-
crease and decrease periodically with that of the sharks being slightly delayed
relative to the fish population, and that of the whales relative to both fish and
shark.

5.4 Approach to Efficiently Optimize Input Parameters

The final question we would consider during this work is how to optimize
the entire set of input parameters, so that the outcome of the simulation is
favorable. Up to now only the size of the initial populations was regarded, but
when comparing the improvement of the system’s stability by changing these
as depicted on Fig. 2 with the improvement gained by modifying the attribute
tuple of a species (see Fig. 3), one can quickly acknowledge the significantly
better results of the latter approach. A major difficulty, however, is again the
size of the input space. By using the 3-tuple (Fish, Sharks, Whales) as
input, where each element represents the respective species’ population size
within the range [10 , 50000], yields a total of

449913 ≈ 500003 = 1.25 · 1014

possible input combinations. In a similar way we can count the possible in-
stances I for the attribute n-tuple of each species with Eq. 2:

I =

n∏
i=1

|Ai|, (2)
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where |Ai| is the number of distinct numerical values, that attribute Ai can
take. For instance the 2-tuple of the fish species could have the following ranges
for its elements

(Coffs, Areproduce)⇒ ([1 , 5], [1 , 100]),

yielding a total of Ifish = 5 · 100 = 500 possible attribute instances. Analo-
gously the shark 4-tuple and the whale 5-tuple could be defined as

(Coffs, Erepr, Elife, Eeat fish)⇒ ([1 , 5], [51 , 100], [1 , 100], [1 , 10])

and
(Coffs, Erepr, Elife, Eeat fish, Eeat shark)⇒

([1 , 5], [101 , 200], [1 , 200], [1 , 10], [1 , 50]),

yielding Ishark = 5 · 50 · 100 · 10 = 250000 and Iwhale = 5 · 100 · 200 · 10 · 50 =
50000000 possible instances respectively. The total count of input parameter
instances Itotal is then

Itotal = Ifish · Ishark · Iwhale = 500 · 250000 · 50000000 = 6.25 · 1015 .

Even though this number is not much greater than the number of population
size combinations, there are 11 input parameters when summing the tuple ele-
ments of all three species, yielding an 11-dimensional input space respectively,
unlike the 3-dimensional one for the population sizes. Therefore, applying the
graphical solution approaches presented so far in the previous sections would
be less than feasible. Moreover, the conclusions made were obtained using ex-
cessive testing at the cost of hundreds of hours of computational processing,
and could be classified as good approximations at best, which is supported by
the small contradiction between the results described in sections 5.2 and 5.3.
This raises doubts regarding the efficiency of the simulation-based problem
solving should problem complexity increase (e. g. more input parameters).

A more promising approach, that we would like to propose, is to combine
the simulation-driven architecture of the cellular automaton as it is with an
evolutionary search algorithm to traverse the input space for combinations
that yield a stable ecosystem. Essentially, we would transform a simulation
problem into an optimization one, where a model consisting of objects with
specific characteristics and rules for their interaction is known, a desired output
range is specified and the point of interest is the unknown set of input instances
that yield an output within the desired range.

Inspired by biological evolution, hence their name, evolutionary algorithms
(EA) have gained significant importance in the recent years, especially in the
domain of optimization. Their use can be quite rewarding as an efficient al-
ternative to traditional deterministic methods, more so in very complex and
intractable problem scenarios. In the following a short summary of the basics
is given, as well as an outline of the modifications needed to incorporate the
evolutionary optimization technique in our application. It is our strong belief
that the integration effort would not be considerable, but the obtained insights
might prove to be of value. For a more comprehensive discussion on the topic
of EA basics and application refer to [21,35,13].
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Solution candidate space.As the name implies this is the set of all possible
candidate solutions. It can be indefinitely large, but for practical reasons it has
to be bounded. Candidate solutions can be anything from numerical values to
entire objects. In the case of our Wa-Tor application, the candidate solution
space consists of all attribute combinations for the three species (e. g. 6.25·1015

if the aforementioned example is taken).

Genetic operators.These operators are functions that randomly modify the ex-
isting collection of candidate solutions to increase diversity. Typical operators
are a) mutation — changing a random characteristic of a candidate solution;
and b) recombination — combining two or more solutions to produce new
ones; Integrating this functionality in the existing Wa-Tor simulation can be
done quite easily in the reproduction action of the animals, e. g. when off-
spring are spawned their attribute instance can be created by combining that
of the parent with those of other existing individuals. Mutation can be im-
plemented similarly as a random change in a spawned offspring’s attribute
instance inherited by the parent. Genetic operators modify only the genotype.
The phenotype cannot be inherited, but is crucial for the fitness of the respec-
tive candidate.

Solution candidate encoding.A candidate solution is typically represented as a
phenotype-genotype pair. Just like in biology the phenotype is comprised of a
candidate’s visible attributes that change over its lifespan due to interaction
or external events. On the other hand the genotype is the entire information
about the core structure of a candidate in some encoded form, e. g. DNA
in real life and usually a binary string in software applications. In the Wa-
Tor scenario the phenotype of an object would be its actual instance in the
simulation, whereas an adequate genotype would be the information about
the object’s attributes received at its creation, that is immutable during the
lifespan of the object, but inheritable by its offspring.

Fitness function.The idea behind the fitness function is to decrease the popu-
lation diversity by eliminating poor candidate solutions, but thus improve the
overall quality of the candidate solution space (called ’survival of the fittest’ or
’ natural selection’ in the field of biology). The fitness function in the Wa-Tor
scenario is the simulated interaction between the individuals. Using the prede-
fined interaction rules such as moving and feeding, individuals may survive or
get killed by predators/die out of starvation. Certain genotype instances may
have higher chances to prevail than others, e. g. individuals that can give birth
to multiple offspring are more likely to pass down and spread their genotype
in the respective population.

6 Conclusion and Future Work

The main goal of our project was to design and develop an application to
test the strengths of a simulation-based analysis. A relatively simple and well-
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known problem domain was chosen, which, however, poses multiple challenges
regarding its formal specification, hence the need of an alternative approach.
An ecosystem and various species inhabiting it were modeled in the fashion
of Dewdney’s Wa-Tor [10]. Even though the created model is a fairly basic
one, including only several interaction rules between the organisms within the
simulation, and a handful of attributes to characterize them, no mathematical
specification of the system can be derived without a significant amount of
effort. Via simulation however, it was possible to define very simple rules on a
micro level, and still obtain valuable insights regarding the global behavior of
the environment and the populations inhabiting it.

As a preliminary work on the topic we performed extensive testing to gather
enough data and visualize the relation between the inputs and the output of
the system. For that an empirically derived formula (see Eq. 1) was used to
calculate the system’s output (stability factor) as a function of the probability
that a species with a given population size would survive. The formula uses
weight coefficients to discriminate between more robust and more vulnerable
species. In Figures 2 and 3 we showed the direct dependence of the ecosystem’s
stability on the initial population sizes and on a specific species’ attribute —
the number of created offspring after reproduction. In the final part of the
paper the challenges of extensive testing were discussed and a new approach
based on evolutionary programming was proposed as a possible more efficient
alternative.

Future work would revolve around the expansion of the application to incor-
porate the described evolutionary technique and allow for the model (species’
attributes) to change over the course of the simulation similar to the evolu-
tion of organisms in the real world. The potential optimization benefits of this
approach are to be evaluated and compared to those of the extensive test-
ing. Moreover, new typicality- and eccentricity-based data analytics method
(TEDA) presented in [3] might be applied to detect anomalies within cellular
space. Anomalies detected by TEDA can provide information on the stability
of small centres of individual species and their influence on the global popula-
tion sustainability. By introducing a generic framework of the knowledge and
data integration (KDI) and paradigms of evolving fuzzy and neuro-fuzzy mod-
els, that means an evolving computational intelligence system (ECIS) could
bring more perspectives in this approach [1]. Similarly, applying the CEDA
method described in [18] can provide information about the species formed
into so called arbitrarily shaped clusters thus demonstrating the population
dynamics in smaller communities. An essential element of such an analysis is
the ability to process the data in an on-line manner. Incoming data evolve
over time (individuals disappear or their attributes are changing) therefore
forming not-regular shaped clusters. Spatial analysis of these clusters can lead
to conclusions about population self-sustaining and ability to achieve a state
of equilibrium.

We plan to apply presented simulation framework for further real-life ex-
amples. Modeling the honey bee population from [27] show that population
size is related with forager bees death rate. Quantitative modeling results show
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that if death rate is sustained higher than some threshold colony failure is in-
evitable. This thesis could be set against the cellular automata system like it
was done in [26]. In such research species should be now defined as forager bees
and their enemies (bee-eater birds, wasps, temperature dropout or unexpected
heavy rain). Proper formulas and rules of interactions should be defined [17].
The Wa-Tor model should be extended and significantly expanded (e.g global
number of bees factor should be included). Hive-specific threats might be also
examined. Bee swarm simulation connected with presence of the enemies like
parasite Varroa destructor could be an appealing issue. Varroa strikes only
against younger bees what may lead to bees distinction in the future. More-
over, in [9] it was shown that bees change their mood depends on presence of
a queen bee liable for laying eggs. Healthy queen is prerequisite for sustaining
the colony life and any disturbances could lead to replacing disabled queen bee
by newborn queen. Modeling the feelings of bees on the principles described
in [32] in combination with the aging queen and thus laying less eggs (ever
smaller population growth) will allow us to answer the question about the
optimal amount of bees feeders, foragers and honey or weather dependencies.
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