
Heavy duty vehicle fuel consumption modelling 

using artificial neural networks 

Oskar Wysocki 

Department of Energy and Industrial Apparatus 
Gdańsk University of Technology 

Gdańsk, Poland 
oskwys@gmail.com 

Lipika Deka 

Department of Computer Science and Informatics 
De Montfort University 

Leicester, UK 
lipika.deka@dmu.ac.uk 

David Elizondo 

Department of Computer Science and Informatics 
De Montfort University 

Leicester, UK 
elizondo@dmu.ac.uk 

Abstract – In this paper an artificial neural network (ANN) 

approach to modelling fuel consumption of heavy duty 

vehicles is presented. The proposed method uses easy 

accessible data collected via CAN bus of the truck. As a 

benchmark a conventional method, which is based on 

polynomial regression model, is used. The fuel consumption 

is measured in two different tests, performed by using a 

unique test bench to apply the load to the engine. Firstly, a 

transient state test was performed, in order to evaluate the 

polynomial regression and 25 ANN models with different 

parameters. Based on the results, the best ANN model was 

chosen. Then, validation test was conducted using real duty 

cycle loads  for model comparison. The neural network 

model outperformed the conventional method and  

represents fuel consumption of the engine operating in 

transient states significantly better. The presented method 

can be applied in order to reduce fuel consumption in utility 

vehicles delivering accurate fuel economy model of truck 

engines, in particular in low engine speed and torque range.  

Keywords – neural network, combustion engine, heavy 

duty truck, fuel economy 

I. INTRODUCTION

Trucks, whether used for freight transportation or as 
utility vehicles, play an important role in a countries 
economy and improving their fuel efficiency can 
undoubtable prove highly beneficial. There is a large 
volume of published studies describing the operational 
efficiency of diesel engines in vehicles [1],[2]. However 
vast majority of work focuses on fuel consumption during 
transportation [3][4], and there is scarce research on duty 
cycle fuel efficiency of utility trucks i.e. garbage trucks, 
dump trucks, concrete pump and concrete mixer trucks, 
trucks with crane etc. Such vehicles use Power Take-Off 
(PTO) units to draw power from chassis combustion 

engine to perform other functions such as waste 
compaction, lifting bins , crane operation, drum rotation in 
concrete mixers and dump lifting.  PTO is an additional 
shaft located on the engine or the gearbox, where a power 
receiving device can be mounted (e.g. hydraulic pump). 
One of the most popular examples of a utility truck is a 
Refuse Collection Vehicle (RCV), which is equipped with 
a hydraulic system. Annual production of these vehicles 
exceeds 6500 units, and about 95% of them are powered 
by diesel engines [5]. RCV’s efficiency and energetic 
model are introduced in [6]-[8]. The important fact is that 
utility vehicles during PTO operation, work at low engine 
speed and low torque range, in comparison to the values 
obtained while driving. It was shown in [6] and [9], that 
proper drivetrain configuration can lead to a significant 
fuel consumption reduction of up to 35% in extreme 
cases. Thus, an engine fuel map, commonly also referred 
to as  a general engine characteristic (GEC), contains 
information about the most efficient engine operation 
points. This map is a requirement for the optimal design of 
a new utility truck drivetrain or the calibration of an 
existing one. The map allows not only to set the engine to 
the optimal engine operation point, but also to compare 
different chassis in terms of their fuel consumption while 
performing similar duty cycles. Such knowledge may lead 
to optimal vehicle choice or route planning leading to 
significant fuel and cost reduction for utility truck fleets. 

Normally, combustion engine characteristics are 
obtained in laboratories using test benches or chassis 
[10],[11]. However, truck body manufacturers and truck 
users usually have little access to such sophisticated 
equipment, which usage is time consuming and associated 
to high costs. An alternative solution to this problem is the 
use of the vehicle’s On-Board Diagnostics system (OBD) 
to log the engine operation data and acquire it via the 
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CAN bus. An example of this for passenger cars is 
presented in [12]. Since the Fleet Management System 
(FMS) standard to log chassis data [13] is widely used in 
trucks manufactured after 2002, data acquisition is 
relatively easy and does not require interfering with the 
vehicle's onboard systems. This standard provides, among 
other parameters: engine speed n, torque T, instantaneous 
fuel consumption or fuel rate Ge. 

The purpose of this paper is to propose an Artificial 
Neural Network (ANN) based approach for fuel 
consumption prediction from real operational data in order 
to accurately determine diesel engine performance. 
Conventional methods require tests to be conducted in 
quasi-steady states. This assumes that changes to the 
engine parameters (such as increase/decrease in engine 
speed or torque) do not exceed previously assumed limits 
[14]-[17] in given time. However, such methods prove 
infeasible as was shown in [18],[19] that in real world, 
combustion engines rarely operate in steady states. Thus, 
to overcome the challenges of conventional methods, 
effective alternative methods must be developed whereby  
logged CAN bus data is used instead. 

In [12], GEC obtained based on dynamometer tests 
was used to predict fuel consumption and then compared 
to real values logged in via On-Board Diagnostics (OBD). 
Such application resulted in prediction errors of up to 
10%. This was caused by differences in steady and 
transient engine operations as described in [11]. An 
alternative method using artificial networks can be used to 
deal with the problem of transient state prediction 
inaccuracy. Proposed in 2000 [20], the model includes a 
history window of a few seconds of the same data i.e. 
values from few preceding observations before the actual 
observation. This model allows the network to learn non-
linear dependencies between engine working parameters 
and fuel consumption and exhaust gas emissions. Neural 
networks are also widely used in combustion engines tests 
[21][22] and can achieve high accuracy. However, the 
majority of this research focuses on fuel consumption and 
exhaust gas emissions measured using sophisticated 
apparatus and hence costly equipment. Thus its 
application for truck body manufacturers or truck users is 
limited.  

A key aspect of the method presented in this paper is 
based on the development of an ANN model built by 
using CAN data collected from the truck, with no need for 
dynamometer tests. Therefore, the proposed method can 
be easily used without special equipment, examining the 
data collected during real operation of the truck, both 
during transportation and using PTO. However, for  the 
purpose of this study, in order to simulate arbitrary load 
with no need to drive the vehicle, a test bench was used. 
The test bench was connected to the chassis engine via the 
PTO. In [23] the authors describe the design principles of 
this equipment. It uses a hydraulic system to simulate the 
duty cycle load or any arbitrary load defined by the test 
needs. Data is then collected using the CAN bus, as it can 
be done during real daily operation of the vehicle.  

II. DESCRIPTION OF EXAMINED CHASSIS AND TEST BENCH  

The main concept of tests presented in this study, was 
to set the engine in desired operation point and measure its 
fuel consumption. This was done both in quasi-steady and 
transient states, and in the entire n-TPTO, max domain. Then, 
the collected data were used to calibrate different models 
and asses their accuracy.  

Tests were performed using a test bench mounted on a 
Scania P320 chassis, equipped with 9.3 dm

3
 displacement 

engine (max power: 235 kW and max torque: 1600 Nm) 
[24]. The Test Bench (TB) concept is based on the load 
application using the PTO as a controllable engine load 
generator. A pump attached to the PTO drives the 
hydraulic system. The load of the system can be adjusted 
due to expected load history. The engine power is 
determined by its torque T and rotational speed n. This is 
transmitted to the hydraulic system. The power of this 
system is defined by the product of the oil flow Q and the 
pressure p: 

η · T · n = Q ·p 

where η represents the efficiency of the  pump. Using 
a test bench, it is possible to obtain an arbitrary dense grid 
of measuring points within the range of the PTO 
maximum power. The TB can be mounted on any truck 
chassis as long as it is equipped with a PTO. In case there 
is not enough space on the frame, only the pump is 
mounted on the vehicle and the oil is delivered to the 
hydraulic unit using hydraulic hoses.    

For the purpose of this research, the TB was attached 
to the chassis frame with screws and the hydraulic pump 
was connected to the engine’s PTO by means of a 
homokinetic shaft. The final step was to connect the TB 
control unit to the  chassis CAN bus. The entire mounting 
process took less than  an hour for 2 workers. The final 
test stand is presented in Fig. 1. Three types of tests were 
performed: (1) quasi-steady state, (2) transient state and 
(3) validation test. They are described in detail in the 
following sections. 

 

Figure 1.  Test bench during tests, mounted on Scania chassis 

III. REFERENCE MODEL – POLYNOMIAL REGRESSION 

A conventional approach to determine general 
characteristics of internal combustion engine (GEC)  is to 
apply a constant load at a constant speed at different 
operating points and to measure the fuel consumption. 
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Due to the nature of the combustion engine, the above 
conditions are considered as quasi-steady. This method is 
widely used to assess engine performance and fuel 
consumption [25]. Then, a 3

rd
 degree polynomial 

regression is used as an approximating function. As the 
GEC is considered as the function of two variables, the 
result of the approximation corresponds to a surface, with 
the coefficients of the polynomial calculated by using the 
least squares method. It is worth noting, that in this 
method all measuring points are used to build the model, 
leaving no unused points for testing purposes. Quasi-
steady states characteristics are often used to evaluate fuel 
consumption in transient states with acceptable levels of 
error [1],[26]. 

IV. TRANSIENT STATE TEST 

During the RCV operation, as well as in most utility 
vehicles, the engine speed is usually set to a constant 
value. Due to power demand generated by the hydraulic 
system, the engine indicated torque keeps changing in 
order to maintain a constant speed. This process is 
managed by the Electronic Engine Control Unit (EECU), 
which also allows for data to be logged via the CAN bus. 
A transient state test was performed based on this settings: 
the engine speed was set constant for 50 seconds and the 
load was changed every 3, 4 or 5 seconds at random. Then 
the engine speed was set stepwise on the next value from 
range: [700, 750, …, 1150, 1200]. Then, 50 seconds of 
load changes were applied again. This process was 
repeated, resulting in collected measurements for 11 
different engine speeds. An excerpt of this is presented in 
Fig. 2. A delay (time lag) Δt between the Ge and the T 
increase or decrease can be easily visualized with values 
ranging from 0.5 to 1.5 seconds. Thus, in order to obtain 
the most accurate model, it seems that engine parameters 
from preceding observations should be included in the 
model in addition to actual values, as suggested by 
[20],[27].  

 

Figure 2.  Engine speed n, torque T and fuel rate Ge during transient 

state tests. Δt – delay between local torque and Ge extremum 

Transient state test resulted in 6000 observations 
within the entire examined engine speed range. For further 
analysis, the dataset was randomly sampled to the size of 
600 and split into train and test set in proportion of 80:20 
respectively Training points in the n-T domain are 
presented in Fig. 4. 

V. VALIDATION LOAD TEST 

To validate the models a second set of measurements 
was collected. Similarly to the transient state test, for each 
constant engine speed, the load was applied 6 times with 
10 min intervals inbetween tests. This time, the focus was 
on fuel consumption in 33 s load cycles, which are similar 
to the real RCV duty cycle [6],[7]. Examples of this are 
shown in Fig. 3. The validation test resulted in 65 load 
cycles, 6 per engine speed (1 cycle was discarded, due to 
logging error). The test summary is presented in Table 1.  

 

Figure 3.  Load cycle in Nm for n=900 (blue), n=1000 (red) and 

n=1200 (green) rpm in validation tests 

TABLE I.  SUMMARY OF PERFORMED TESTS 

Test Transient states Validation 

load 

N range 650 ÷ 1250 rpm 

T range 50 ÷ 500 Nm 

Nb of observations 6000 12000 

Duration time 10 min 20 min 

Total fuel used 1110 g 2670 g 

VI. POLYNOMIAL REGRESISON FOR TRANSIENT STATES 

Before presenting our ANN based approach it is 
useful/necessary to investigate the result of the application 
of a more conventional method to transient state data. 
Training set points were approximated using a 3

rd
 degree 

polynomial surface (Fig. 4.). The train scores for this 
model are: RMSE = 1.33, R

2
 = 0.811 and MAE = 1.02. In 

the following chapters the polynomial regression model 
trained on transient state data is refered to as the TSM 
(Transient State Model). This model can also be regarded 
as the GEC obtained from non steady states using a steady 
state method. Based on the Least Squared Criterion, the 
conventional approach does not seem to be robust enough 
when it comes to outliers or high leverage points. The 
polynomial surface fit is highly sensitive to the 
observation distribuiton in the n-T domain and it may 
cause overfitting and an incorrect surface shape. A 
solution to this problem may be the application of more 
sophisticated regression models, e.g. LASSO regression, 
Elastic Net. However, this is beyond the scope of the 
presented work. 
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Figure 4.  Transient state model (TSM): 3rd degree polynomial surface 

aproximation of transient states observations (red points).  

VII. NEURAL NETWORK MODEL 

In the analysis of transient states of combustion 
engines, the inclusion of information related to speed and 
torque changes in the model, generally results in higher 
accuracy of the model. In [27] as additional input 
variables, derivatives of n and T were used. In [20] a 
number of values from a time window before observation were 

considered.  However, the examined engines differ from 
the one presented in this paper in terms of size, ignition 
type and even emission regulations which they need to 
comply to. There is no direct suggestion as to which 
additional values preceding observations should be 
included in order to obtain an accurate model. Moreover, 
it seems that this issue depends on the inertia of the 
engine, which is directly related to the engine 
displacement. In this research it was assumed, that 
changes should be consider up to 1.5 s before the 
measuring point.  

The neural network model used in this study is the 
ANN. This model is based on a multi-layer feedforward 
artificial neural network, that is trained with stochastic 
gradient descent using back-propagation. A rectifier was 
used as activation function. In order to produce an optimal 
ANN, 5 sets of predictors and 5 numbers of neurons in 
one hidden layers were analyzed resulting in 25 models. 
These are summarized in Table 2. A subscript in 
predictors notation indicates the time in milliseconds 
before the observation. Additionally, Δ indicates that the 
variable corresponds to the difference between the actual 
value and the value x milliseconds before; e.g. T500 
corresponds to torque value 500 ms before the 
observation, and Δn1500 corresponds to difference between 
n and n1500. 

In ANN 1, only 2 input variables (n and T) are 
included and this is the model with closest similarity to the 
polynomial reference model in terms of predictors. As the  
polynomial regression is replaced by a neural network 
algorithm, nonlinear dependencies in the data are expected 
to be explained better. ANN 2 and ANN 4 consist of 
actual and preceding n and T values. Thus, they can be 
considered as models averaging actual observation values 

with preceding ones. However, thanks to the deep learning 
capabilities, nonlinear dependencies can be unveiled. In 
ANN 3 and ANN 5 from n and T, differences between 
actual and preceding values are included. This idea seems 
to focus more on the actual observation and the changes 
for preceding Δt.  

Each neural network model was computed using the 
training set with a 10-fold cross-validation; the epochs 
were set to a 100. To measure the performance of the 
model RMSE was used (Table 3). As expected, ANN 1 
performed significantly worse than other models, with the 
3 times higher values of RMSE. Higher number of 
predictors led to better scores, what is shown by lower 
RMSE for ANN 4 and 5 than for ANN 2 and 3. The 
number of neurons in hidden layer does not have 
significant impact on the models’ performance. RMSE 
scores for each Nhidden differ no more than one standard 
deviation from each other. Thus, it was assumed that there 
is no point in using the model with Nhidden higher than 5. 
ANN 5was chosen to be  applied  to the validation dataset, 
as it performed best with RMSE equal to 0.097, and it is 
referred to the ANN model later in the text. 

VIII. VALIDATION DATASET – RESULTS 

The level of generalization the  polynomial regression 
model and ANN model was compared using a validation 
dataset consisting of 65 load cycles, described in section 
VII. For each load cycle the RMSE, R

2
 and MAE were 

calculated. Additionally an absolute relative error score 
was introduced, as it focuses on the engineering 
application of the model. This is given by the equation: 

 

Where, Ge,i – corresponds to the measured fuel rate,       
Ge,i,pred – to the predicted fuel rate, ∆t – to the time step 
between i-th and i+1 to the actual observation. The level 
of accuracy of the models was based on the total fuel 
consumption prediction for the load cycle with no 
consideration for goodness of fit on a particular 
observation. Mean scores from 65 load cycles for each 
model are presented in Table 4 together with  test scores 
from the training process. Examples of real and predicted 
fuel rates for each model and 4 engine speeds are 
presented in Fig. 5. Engine speeds 750, 850, 1000 and 
1150 rpm were chosen to be shown, as they correspond to 
the different areas of the engine performance map. 

In terms of statistical scores the ANN model 
outperforms the TSM model. Both the RMSE and the 
MAE scores are almost three times and more than two 
times smaller, accordingly for the ANN model. The R

2
 

values of the ANN model are close to 1 compared to TSM 
model which are equal to 0.83. The ANN model exhibits 
also much improved fit to the Ge, revealing an almost 
overlaying of the real and predicted Ge values (As seen in 
Fig. 5). On the contrary, the TSM model fails to predict 
accurately the Ge, when fast changes of Ge appear. This is 
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not a crucial problem as long as the total fuel consumption 
is predicted well. The mean absolute relative error are 
3.6±2.8 %and 2.4±1.2 % for the TSM and ANN models 
respectively. These are reasonable values for engineering 
applications. However, considering the maximal εabs,rel in 
some cases the TSM can be inaccurate by as much as 
10%. It is worth noting, based on the presented results, 
that the ANN model scores are better in all assumed 
criteria. 

TABLE II.  NEURAL NETWORK MODELS: 5 SETS OF PREDICTORS, 5 

SETS OF HIDDEN LAYERS EACH 

Model Predictors 𝑁𝑖𝑛𝑝𝑢𝑡 𝑁ℎ𝑖𝑑𝑑𝑒𝑛 𝑁𝑜𝑢𝑡𝑝𝑢𝑡 

ANN 1 𝑛, 𝑀 2 

5 
10 
15 
20 
30 

1 

ANN 2 𝑛, 𝑀, 𝑛1000, 𝑀1000 4 

ANN 3 𝑛, 𝑀, ∆𝑛1000, ∆𝑀1000 4 

ANN 4 
𝑛, 𝑀, 𝑛500, 𝑛1000, 𝑛1500, 

𝑀500, 𝑀1000, 𝑀1500 
8 

ANN 5 
𝑛, 𝑀, ∆𝑛500, ∆𝑛1000, ∆𝑛1500, 

∆𝑀500, ∆𝑀1000, ∆𝑀1500 
8 

TABLE III.  RMSETEST SCORES FOR 25 NEURAL NETWORK MODELS 

𝑁ℎ𝑖𝑑𝑑𝑒𝑛 
RMSECV (sd) 

ANN 1 ANN 2 ANN 3 ANN 4 ANN 5 

5 
0.306 

(0.026) 

0.116 

(0.023) 

0.118 

(0.031) 

0.108 

(0.09) 
0.097 

(0.024) 

10 
0.307 

(0.028) 

0.112 

(0.023) 

0.111 

(0.024) 

0.099 

(0.045) 

0.092 

(0.026) 

15 
0.306 

(0.032) 

0.111 

(0.022) 

0.109 

(0.028) 

0.095 

(0.043) 

0.091 

(0.025) 

20 
0.307 

(0.03) 

0.111 

(0.022) 

0.107 

(0.028) 

0.096 

(0.06) 

0.087 

(0.021) 

30 
0.307 

(0.031) 

0.109 

(0.024) 

0.106 

(0.027) 

0.087 

(0.029) 

0.087 

(0.022) 

 

 

Figure 5.  Real fuel rate Ge (black) and predicted (red) in validation test 

for n=750, 850, 1000 and 1150  rpm using TSM and ANN  

TABLE IV.  MODEL SCORES COMPARISON 

 RMSECV 

Validation load score 

RMSE 

(sd) 

R
2 

(sd) 
relative  

(sd)
absrel  

(sd) 

Max 

(abs,rel) 

TSM 1.33 
0.98 

(0.14) 
0.83 

(0.04) 
-1.5 % 
(4.3) 

3.6 % 
(2.8) 

10.2 % 

ANN 0.39 
0.32 

(0.12) 
0.99 

(0.01) 
-0.6 % 
(2.3) 

2.4 % 
(1.3) 

4.4 % 

IX. DISCUSSION  

The proposed ANN method should be validated in 
other diesel engines to confirm its level of generalisation. 
No more tests have been done so far on the test bench, 
however using CAN data registered during real operation 
of two MAN trucks, some conclusions can be drawn. In 
both trucks, equipped with diesel engines (12.4 dm

3
 (309 

kW) and 10.5 dm
3
 of disp. (235 kW) respectively) the 

delay Δt does not exceed 1.5 s. Thus, it can be concluded 
that the model ANN 5 (including 8 predictors) should 
perform similarly to the Scania engine, examined in 
previous sections. The neural network should adjust its 
parameters properly to the magnitude of Δt for a particular 
engine. 

The ANN model allows for good fit in transient states 
without need for a deep understanding of dependencies 
between n, T, Δn, ΔT and Ge for a particular engine. 
Expanding the conventional model, by formulating 
additional equations manually appears to be ineffective 
and it is unlikely that such model will result in a better fit. 
ANN model with 8 predictors and 5 neurons in hidden 
layer consist of much larger set of equations. Its weights 
and biases are automatically optimized by means of large 
number of iterations in backpropagation. It allows for the 
detection of the nonlinear dependencies more efficiently. 
Thus, it can be concluded that exploiting modern Machine 
Learning methods in order to obtain GEC for fuel 
prediction purposes has at least two main benefits: 

 results in a better fit than conventional models 

 does not require analytical/formulated explanation 
of analyzed objects as long as the model formulates 
optimal equations automatically by means of the 
learning process 

The neural network model was trained using only 510 
observations off 6000 total observations. Even with this 
reduced data set, the model performed better than the 
equivalent polynomial regression model. This means that 
the theoretically 60 s (including 15% for the test data set) 
transient state test is sufficient to obtain good a ANN 
model. However, in reality in such short time it may be 
difficult to examine the engine in the whole desired range 
due to its inertia. Nonetheless, the results shows the 
potential of using ANN to solve real world problems. Data 
collected during regular operation of the vehicle usually 
has a non-uniform distribution in the n-T domain. As a 
uniform distribution is desired for building both an ANN 
and a polynomial regression models, a manual observation 
selection or clustering algorithm can be applied. Obtaining 
uniform distribution leads to the reduction of sample size. 
However, as shown in this paper even a relatively small 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


dataset can result in an ANN model with sufficient 
accuracy in fuel consumption prediction, which performs 
better than a polynomial regression. Further research 
needs to be done to investigate the quantitative influence 
of non-uniform distribution in sample.  

X. CONCLUSIONS 

A neural network model used to predict fuel 
consumption of combustion engine presented in this paper 
resulted in higher accuracy and better fit compared to a 
conventional polynomial regression model. The model 
was trained  based on transient state data and validated on 
real load cycles, scoring mean RMSE= 0.32 and mean 

abs,rel = 2.4 %. The presented method can be applied to 
fuel prediction in trucks, where the engine parameters can 
be logged using a CAN bus during daily operation. An 
engine performance model then can be used to calibrate a 
power receiver mounted via PTO, e.g. by choosing 
optimal engine speeds. The PTO can be used throughout a 
large part of the work day of the vehicle. In [28] it was 
shown, that 15% of the time the PTO was engaged and the 
engine speed was set to constant 900 rpm. 50% of the time 
the engine was idling with PTO engaged. As a result, the 
power receiver mounted via PTO was active during 65% 
of the daily operation time, consuming approximately 
30% of the total fuel used. Thus, an application of the 
method presented in this paper may lead to reduction of 
the fuel consumption and exhaust gases emission during 
significant part of daily operation time.    

The same duties can be performed by using similar 
vehicles, but equipped with various engines. Along with 
the simplicity of the applied method , it is possible to 
obtain engine models from different chassis in an easy and 
cost effective manner in order to compare their efficiency 
in terms of operation in low torque range. This is an 
important and useful information for truck users, fleet 
management and utility truck body manufacturers.  
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