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Abstract—In the era of collecting large amounts of tissue
materials, assisting the work of histopathologists with various
electronic and information IT tools is an undeniable fact. The
traditional interaction between a human pathologist and the
glass slide is changing to interaction between an AI pathologist
with a whole slide images. One of the important tasks is the
segmentation of objects (e.g. cells) in such images. In this study,
we apply U-net and V-net convolutional neural network models to
perform image segmentation. In particular, we analyze the role of
the contour thickness in the reference (labels, masks) images on
the results of image segmentation, also for the degraded images.
We show the role of the proper mask definition and the results
obtained for the ensemble models that use the same architecture
but are trained using two sets of inverted masks.

Index Terms—histopathological images, convolutional neural
network, annotation, edge detection, color-to-grayscale

I. INTRODUCTION

The histopathological images are traditionally visually in-
vestigated by a trained pathologist using a microscope. The
human pathologist interacts with a microscope to change the
field of view, region-of-interest, etc. Recently, the introduction
of professional scanners has enabled the reliable digitalization
of the entire slide producing the whole-slide image (WSI). The
analysis of WSI can be supported by computer-aided methods
to improve image quality, to segment cells or detect contours
of cells, etc. The higher level procedures supported by a com-
puter can be focused on the detection of the clinically preferred
hot spots in the WSI or to perform cells counting, etc. The
artificial intelligence (AI) pathologist could perform the en-
tire analysis of the WSI (detection, classification/recognition)
producing the final description (WSI captioning using AI-
based natural language processing). The traditional interaction
between a human pathologist and a glass slide is changing
to interaction between AI pathologist with a WHI. Digital
whole-slide images are typically very large (GBs per image)
so the automated, computer-based analysis is potentially very

attractive. Therefore, many studies have been focused on
processing of digital slide images.

A review of computer-assisted diagnosis technology for
digitized histopathology was presented by Gurcan et al. in [1].
The paper describes issues related to histopatological images
preprocessing (e.g. color and illumination normalization), im-
age classification and segmentation. Another related survey
focused on comparison of various colon cancer detection
techniques categorized on the basis of adopted methodology
and underlying dataset was presente dby Rathore in [2].
Most of the presented techniques have been evaluated on
similar datasets showing that there are still many problems in
image segmentation that should be addressed. A comparison
of various segmentation techniques used for histopatological
images was presented by Haj-Hassan et al [3]. Four tech-
niques were compared: thresholding, edge-based segmenta-
tion, region-based segmentation and the snake-based (active-
contours) method. The last method produced best results in
detecting irregular shape as carcinoma cell type, achieving
the average Dice and Jaccard similarity coefficient equal to
0.83 and 0.76 accordingly. Detecting cells nuclei using edge
detection and multi-curvature cell nucleus contour model was
proposed by Pang [4]. His solution was tested on the dataset
containing 58 H&E stained images of breast cancer and
achieved better results than other cell nuclei detection algo-
rithms (for an exemplary image he achieved 10 correct detec-
tions using the proposed solution and only 5 correct detections
with comparative methods). Albayrak and Bilgin proposed the
application of the superpixel method for the pre-segmentation
phase and they used convolutional neural networks (CNNs) for
the final classification [5]. The proposed solution was tested
with 810 histopathological images representing ten kidney
renal cell carcinomas. The overall accuracy of the method
was observed to be 0.9876. Another application of CNNs for
pixel-wise region segmentation in histopatological images was
investigated by Su et al. [6]. Their proposition achieved higher
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average recall and precision values than using method based
on texton histograms with logistic boosting and the application
of the support vector machine method as texture classifier. Ma
investigated semantic segmentation of histopatological images
using U-net and fully convolutional neural network (FCN) [7].
He used 802 images of H&E stained slides of colon biopsy to
define the training and test datasets. The obtained results of bi-
nary classificiation showed that FCN achieved higher F1-score
and accuracy values. Segmentation of colon histopathology
images with combination of support vector machine (SVM)
and convolutional neural network was proposed by Li el at [8].
They used a subset of a dataset available from the Warwick
Department of Computer Science. This dataset consists of
85 annotated images of H&E stained slides of glands [9],
[10]. Their results showed that fusing GoogLeNet, AlexNet
and hand-crafted features together with the SVM cassifier
allowed to improve final segmentation results. The obtained
values of Jaccard and Dice index were equal to 0.77 and
0.87 accordingly. Application of U-net for biomedical images
segmentation with a few training images and emphasis on data
augmentation was proposed by Ronnenberger et al. [14]. The
proposed solution was tested on two datasets with partially
annotated images. An average intersection over union (IoU) of
92% was achieved for 35 images of Glioblastoma-astrocytoma
U373 cells recorded by phase contrast microscopy. The second
dataset consisted of 20 images of HeLa cells, recorded by
differential interference contrast microscopy. The obtained
results for these images were characterized by an average IoU
of 77.5%. So far, many different studies have been proposed
to improve the segmentation method during the analysis of
microscopic images. However, the role of reference image
masks specification was not often addressed. In this study
we focused on: a) the analysis of the role of the contour
thickness in the reference (labels, masks) images on the
results of image segmentation using CNN-based U-Net and
V-Net models, b) the analysis of the negative vs. positive
(binary) masks definition on image segmentation results, c)
the influence of merging the segmentation results using two
models trained with negative and positive masks on final seg-
mentation accuracy, and d) the analysis of image degradation
on segmentation results using pre-trained models. The rest of
the paper is structured as follows. In Section II we describe
the methodology used in our study. Results are presented in
Section III and are discussed in Section IV. Conclusions are
presented in Section V.

II. METHOD

Machine learning has now become a tool that quickly
analyzes large sets of medical images, achieving compa-
rable efficacy (sometimes even greater) than a specialized
histopathologist. However, to recognize pathological states
well, the CNN model needs a large collection of images in
the learning phase with correct markings of hot spots, cells
and other characteristic regions (e.g. pathologies). Therefore,
in this work we would like to present the analysis of image
segmentation as an important step allowing the description of

important image regions. As a result a AI system can interact
with a virtual slide to deliver important pre-processing results
that could be further investigated by a trained histopathologist
or a dedicated AI process.

A. Datasets

The database for our research consisted of 131 H&E
histological images of colorectal adenocarcinomas, each
775x522px large, together with annotation images (masks).
It is a part of the collection made available by the Warwick
Department of Computer Science [9], [10]. The images were
divided into two sets - a training set with 79 images and a test
set containing remaining 52 images.

B. Data preparation

1) Training datasets: In the first step, H&E color images
were converted to grayscale using the standard Matlab function
rgb2gray, which uses specific weights for every channel in
RGB image (0.2989 ·R+ 0.5870 ·G+ 0.1140 ·B). Then the
images were cropped out into four 512x512px large images.
This is the size of an image typically used for CNN-based
segmentation algorithms. As a result of this pre-processing
step the training dataset was increased from 79 to 316 (Fig.
1). The original ”label” images were processed to investigate

Fig. 1. The original image and the results of cropping in grayscale

Fig. 2. The original ”label” image with green lines representing borders of
segments and generated four label images with the contour thickness of 7px

the role of masks definitions on final segmentation results. Two
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main datasets of binary annotations were prepared - positive
and negative (e.g. black contours on white background vs.
white contours on black background). Each dataset consisted
of the same number of images. The original masks were
processed using binarization, followed by the Canny detector
generating contours of the segmented objects. Afterwards
the annotations images were also cut to 512x512px. (Fig.2).
We generated five versions of positive and negative datasets,
specifying different contour widths: 1px, 7px, 20px, 30px, and
filled segments. The contour width was modified towards the
center of the object being marked.

2) Test datasets: Base testing dataset was generated with
the same Matlab function rgb2gray which was used for the
training dataset. To test ability of neural network to segment
noised images, different transformations were applied to the
base test images. Blurred test dataset was generated using
Matlab function fspecial and imfilter. The test datasets with
applied Gaussian white noise were prepared using Matlab
function imnoise - three different values of variance we used:
0.1, 0.05 and 0.025. The test dataset with impaired white
balance was generated by reversing gray world algorithm (Fig.
3) [15]. Additionally, the different methods of conversion of
a color image to a grayscale image were evaluated. First,
the minimum and maximum decomposition algorithm was
used, which correspondingly selects minimum and maximum
values from RGB channels. Second, the mean algorithm was
used, which depends of average values of RGB channels
((R +G+ B)/3). Finally, a method that generates grayscale
images using the lightness component from the CIE L*a*b*
color space was used. Each test dataset originally consisted of
52 samples, but after the same division that was made to the
training set, number of samples increased to 208. The ground
truth images were prepared the same way as for the training
dataset.

Fig. 3. Examples of test images: a) an original image, b) applied Gaussian
noise with variance of 0.1, c) the image generated using minimal RGB values,
d) the image generated using mean RGB values e) the image generated using
maximal RGB values f) the image generated using lightness values g) the
image with impaired white balance, h) the blurred image

C. The CNN models and training procedure
Three models of CNN [11], [12] were used in our study.

The first model was based on U-net [13], which architecture

was inspired by publication [14]. This model (UNET1) con-
sisted of 24 convolution layers, 4 max-pooling, up-scaling and
concatenate layers along with 2 dropout layers. The number of
filters in convolution layers started from 64 in the 1st layer to
1024 in 9th and 10th layers and then dropped to 1 filter in 24th
layer. The depth of UNET1 model was equal to 4. The ReLU
activation function was used in most layers, except the last
one were sigmoidal function was used. The Adam algorithm
was used as an optimizer with learning rate lr = 1e− 4. The
loss function was defined as binary cross entropy. The second
model was another implementation of U-net (UNET2). It con-
sisted of 23 convolution layers for which the number of filters
increased from 64 filters in first two layers to of maximum
1024 filters in 9th and 10th layers and then decreased to 1
filter in the last convolutional layer. After every convolutional
layer there was batch normalization layer with exception of
11th, 14th, 17th and 20th convolution layers, after which there
were concatenate layers. Model contained also 4 max-pooling
and up-sampling layers as well as 1 dropout layer. The learning
rate was equal to 0.1. Other training parameters were the same
as for the first U-net model. Each model was described by
about 31 millions of trainable parameters. The last model used
in experiments was an application of two dimensional V-net
- the fully convolutional neural network, developed by [16].
Similarly to the second model it consists of 23 convolution
layers, 4 max-pooling layers and 4 up-scaling layers. The
number of filters in the convolution layers increased from
6 to 256, and then decreased to 1. Model was divided into
five stages, PReLu was used as an activation function in
the first four stages. In the last stage activation took place
using the sigmoidal function. This model used the Nadam
algorithm with learning rate lr = 2e − 4. The V-net model
was described by about 24 million of trainable parameters.
It is also important to underline, that for the UNET2 and V-
net models we used the loss function defined based on the
Dice coefficient. All three models were trained using two
configurations. In the first configuration, the number of epoch
was set to 120 and each epoch consisted of 300 steps with
a batch size equals to 16. In the second settings, there were
60 epochs, and 2000 steps with a batch size of 2. For each
configuration two annotations sets with reversed colors (named
positive and negative) were evaluated. In total, 60 experiments
were performed: 3 (models) * 5 (masks types) * 2 (positive
vs. negative) * 2 (training configurations). All experiments
were performed on the NVIDIA DGX Station platform using
Keras (v. 2.2) with TensorFlow (v. 1.11) backend. The models
trained for positive and negative versions of masks were used
to generate the predicted segments for test images. For a
given test image and for each configuration of experiments
two images with predicted segments were obtained: segments
for a model trained with ”positive” masks and segments
for a model trained with ”negative” masks. The colors of
an image with ”negative” masks were inverted and merged
with an image with positive masks. As a result an image
with ”merged” segments was produced. We analyzed if an
image with ”merged” segments represents better or similar
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segmentation results in reference to segments produces using
a model trained either with ”positive” or ”negative” masks.
Finally, the trained models were tested using the modified
(degraded) versions of test images to analyze how the models
are sensitive to different changes in images.

III. RESULTS

To analyze and evaluate data generated by convolutional
neural network we computed the accuracy, recall, specificity,
and F1-score parameters using a generated confusion matrix
[17], [18]. Additionally, we used DICE and IoU metrics to
compare the results. For all models, results obtained for the
label images with a contour size of 1px were very poor quality
(specificity or recall equal to 0 for a test dataset). Results
obtained for other types of label images depend on the model
type and the particular type of the label used in training.
However, some models (16 out of 60) obtained for both U-
net architectures were very poor (i.e., sensitivity or specificity
was < 0.3). In particular, for UNET1 poor models were
obtained for the following configurations: 1) for the negative
set: a) for contour thickness 7px, b) for fully filled contours /
masks (both settings configurations), 2) for the positive set: a)
for contour thickness 7px, b) for contour thickness 20px, c)
for masks (both configurations); for UNET2, for all models
obtained using the second configuration (60 epochs, 2000
series, 2 images in an epoch) were poor with exception of label
thickness 30 for ”negative” set. Additionally, poor models
were generated using the positive set and settings configuration
1 (120 epochs, 300 series, 16 images in batch): a) for contour
thickness 7px, b) 20px. The most stable model was V-net with
acceptable results for all experiments.

Fig. 4. Comparison of some quality metrics obtained for the V-net and U-net
(UNET2) models for full (filled) segments using the positive (a) and negative
(b) versions of masks.

The results obtained for the V-net model using two different
training settings (i.e., configuration 1: 120 epochs, 300 series,
16 images in batch vs. configuration 2: 60 epochs, 2000 series,
2 images in an epoch) shown that differences in results were
relatively small (up to 3.5%). Because of that we decided to
further describe only the V-net model trained using parameters
from the first configuration. We also used this model to
investigate the behaviour of image segmentation performed
on modified (degraded) test images.

The average values of recall (sensitivity) and specificity
were calculated for segmentation results obtained using each

test dataset with modified (degraded) images. The obtained
results are presented in Table I, II (positive annotation set) and
III, IV (negative annotation set). Values of standard deviation
for obtained results were varied from 0.08 for masks (fully-
filled contours) to 0.14 for contour size of 7px.

Due to the fact that we used corresponding ”negative”
and ”positive” binary images with reversed colors, we could
directly compare specificity calculated from models trained us-
ing ”positive” binary images with recall (sensitivity) calculated
from models trained using ”negative” binary images.

Additionally, results for images with ”merged” segments
(Fig.5) are presented in Table V and Table VI.

Fig. 5. Examples of images with segments obtained for: (from top) the
model trained with ”negative” masks, the model trained with ”positive” masks,
”merged” segments, merged segments superimposed on the original image

TABLE I
AVERAGE VALUES OF SPECIFICITY FOR DIFFERENT TEST SETS USING THE

”POSITIVE” SET

Added thickness 7px 20px 30px mask
base images 0.43 0.65 0.63 0.83
Gaussian noise σ2 = 0.025 0.43 0.64 0.62 0.84
Gaussian noise σ2 = 0.05 0.41 0.62 0.61 0.84
Gaussian noise σ2 = 0.1 0.36 0.55 0.57 0.83
blurred images 0.41 0.62 0.64 0.82
impaired white balance 0.34 0.53 0.56 0.82
maximum RGB values 0.22 0.37 0.40 0.66
minimum RGB values 0.35 0.56 0.54 0.83
mean RGB values 0.39 0.59 0.58 0.80
lightness values 0.44 0.65 0.63 0.83
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TABLE II
AVERAGE VALUES OF RECALL FOR DIFFERENT TEST SETS USING THE

”POSITIVE” SET

Added thickness 7px 20px 30px mask
base images 0.98 0.96 0.97 0.94
Gaussian noise σ2 = 0.025 0.98 0.96 0.97 0.94
Gaussian noise σ2 = 0.05 0.98 0.96 0.97 0.93
Gaussian noise σ2 = 0.1 0.98 0.96 0.97 0.91
blurred images 0.98 0.95 0.96 0.92
impaired white balance 0.98 0.96 0.96 0.87
maximum RGB values 0.99 0.97 0.98 0.96
minimum RGB values 0.98 0.96 0.97 0.89
mean RGB values 0.98 0.96 0.97 0.94
lightness values 0.98 0.96 0.97 0.95

TABLE III
AVERAGE VALUES OF SPECIFICITY FOR DIFFERENT TEST SETS USING THE

”NEGATIVE” SET

Added thickness 7px 20px 30px mask
base images 0.98 0.97 0.97 0.93
Gaussian noise σ2 = 0.025 0.98 0.97 0.96 0.90
Gaussian noise σ2 = 0.05 0.98 0.97 0.96 0.89
Gaussian noise σ2 = 0.1 0.98 0.97 0.96 0.86
blurred images 0.98 0.97 0.95 0.91
impaired white balance 0.98 0.96 0.95 0.83
maximum RGB values 0.98 0.98 0.98 0.95
minimum RGB values 0.98 0.97 0.96 0.84
mean RGB values 0.98 0.97 0.97 0.91
lightness values 0.98 0.97 0.97 0.93

TABLE IV
AVERAGE VALUES OF RECALL FOR DIFFERENT TEST SETS USING THE

”NEGATIVE” SET

Added thickness 7px 20px 30px mask
base images 0.48 0.61 0.65 0.87
Gaussian noise σ2 = 0.025 0.48 0.61 0.66 0.88
Gaussian noise σ2 = 0.05 0.46 0.59 0.65 0.88
Gaussian noise σ2 = 0.1 0.43 0.56 0.65 0.88
blurred images 0.45 0.61 0.65 0.85
impaired white balance 0.40 0.54 0.59 0.85
maximum RGB values 0.34 0.42 0.42 0.74
minimum RGB values 0.41 0.54 0.58 0.88
mean RGB values 0.46 0.58 0.60 0.85
lightness values 0.49 0.62 0.65 0.87

TABLE V
AVERAGE VALUES OF SPECIFICITY FOR DIFFERENT TEST SETS USING

MERGED RESULTS

Added thickness 7px 20px 30px masks
base images 0.55 0.72 0.72 0.90
Gaussian noise σ2 = 0.025 0.55 0.72 0.73 0.90
Gaussian noise σ2 = 0.05 0.53 0.70 0.72 0.90
Gaussian noise σ2 = 0.1 0.49 0.65 0.69 0.90
blurred images 0.52 0.71 0.73 0.88
impaired white balance 0.46 0.63 0.66 0.88
maximum RGB values 0.38 0.49 0.50 0.77
minimum RGB values 0.47 0.65 0.65 0.90
mean RGB values 0.51 0.67 0.68 0.87
lightness values 0.55 0.72 0.72 0.89

TABLE VI
AVERAGE VALUES OF RECALL FOR DIFFERENT TEST SETS USING MERGED

RESULTS

Added thickness 7px 20px 30px masks
base images 0.97 0.95 0.95 0.91
Gaussian noise σ2 = 0.025 0.97 0.95 0.95 0.89
Gaussian noise σ2 = 0.05 0.97 0.95 0.95 0.87
Gaussian noise σ2 = 0.1 0.97 0.95 0.95 0.83
blurred images 0.97 0.93 0.94 0.80
impaired white balance 0.97 0.94 0.93 0.89
maximum RGB values 0.98 0.96 0.97 0.94
minimum RGB values 0.97 0.95 0.94 0.82
mean RGB values 0.97 0.95 0.95 0.90
lightness values 0.97 0.95 0.95 0.92

A. Analysis of influence of contour thickness

Increasing the thickness of contours in reference images
from 7px to 20px produced the significant improvement of
recall and specificity in all cases - up to 0.22 difference in the
average specificity for base images in ”positive” set. Similar
advance can be noticed for increasing thickness from 30px
to fully-filled contour (masks). The thickness difference be-
tween 20px and 30px did not improve results vastly. Actually
decrease in a few cases can be observed, mostly for images
generated with the ”positive” set.

B. Analysis of the influence of the added noise

Adding Gaussian noise to test images caused minor changes
in the observed recall and specificity values. These changes
were rising alongside with the increase of noise variance, with
a few exceptions (Fig. 6). The above-mentioned exceptions
include all results obtained for fully-filled contours (masks)
and for contour thickness of 30px in the ”negative” set. For
these cases the average value of recall and specificity remains
mostly the same (0.01 difference). The highest decrease for the
average specificity value equals 0.1. It was caused by the Gaus-
sian noise with 0.1 variance, for a contour thickness of 20px in
the ”positive” set. Image degradation with blurring produced
similar effect as for the Gaussian noise. The minor decreases
was observed in average values of recall and specificity for
most cases. The high decrease of the average specificity (0.11)
was observed for the contour thickness of 20px in merged
results (Table III). Applying reversed gray world algorithm to
test set caused higher (up to 0.12 for 20px contour thickness
in the ”positive” set) decrease of segmentation quality metrics.
Mean decrease after impairing white balance, for all test sets,
is equal to 0.07 ± 0.03 (Fig. 7).

C. Analysis of impact of different grayscale algorithms on
contour detection

For most cases test images generated using the Matlab func-
tion rgb2gray and using the lightness value from the L*a*b*
color space gave similar outcomes. The observed differences
in average specificity and recall values were equal to 0.01.
Results obtained using other grayscale conversion algorithms
were worse, especially for maximum decomposition algorithm
(up to 0.22 difference in the average specificity) (Fig. 8).
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Fig. 6. Average values of recall and specificity for images degraded by a Gaussian noise: a) the ”negative” set, b) the ”positive” set, c) the merged segments

Fig. 7. Average values of recall and specificity for images degraded by impaired white balance and blurring: a) the ”negative” set, b) the ”positive” set, c)
the merged segments

Fig. 8. Average values of recall and specificity obtained for images generated using different grayscale conversion algorithms: a) the ”negative” set, b) the
”positive” set, c) the merged segments

D. Analysis of impact of binary masks colors

Comparison of recall and specificity values obtained using
different types of binary masks (”positive” vs. ”negative”)
shows that training with the ”negative” masks (black back-
ground vs. white objects) allowed to achieve slightly better
results. The best results were obtained for images with merged
segments (up to 0.12 difference).

IV. DISCUSSION

It was shown that the contour thickness used in mask
(reference) images in training of U-net or V-net models plays

a very important role. In general, if pixels of the label
image (masks) are more equally distributed between classes
(segments vs. background) then better segmentation results
are obtained (recall/sensitivity vs. specificity). For examples,
if contour thickness was 1px the trained models were unable
to distinguish between 2 classes (all pixels were assigned
to either class 0 or 1). Increasing contour thickness from
7px to 20px and from 30px to fully-filled masks led to
higher values of recall and specificity. For a best case the
average value of specificity increased by 0.48. The performed
(repeated) experiments showed another important result. There
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is a small, but observable difference between models trained
using the ”positive” and ”negative” masks. Maybe, another
model architecture should be proposed that allows obtaining
identical results for such corresponding masks. In this work,
we proposed to use two models trained separately using
the ”positive” and ”negative” masks and to merge segments
generated by two models. It was shown that images with
merged segments improved the results for every test set.
The highest specificity value for merged images was equal
0.90. Taking into account the quality and the content of
analyzed images the obtained results are quite acceptable, but
further improvement are still possible. The obtained results
are comparable with other applications of convolutional neural
network in segmentation of histopatological images [6], [7],
including studies that used images from the same collection
[8]. Another interesting observation from this study is the
influence of image degradation on final segmentation results.
In general, models trained for reference images with narrow
contour thickness are more sensitive to image degradation.
This is understandable since the percentage of pixels in such
contours is relatively small in reference to background pixels
so a small degradation in contour pixels lead to higher relative
error. The models generated for masks and combined to pro-
duce the images with merged segments were not very sensitive
to introduced image degradation. Adding Gaussian noise to the
test images cause little deterioration of the results. For merged
images, application of Gaussian noise did not influence the
quality of results. The introduction of Gaussian noise with
higher variance (e.g. 0.1) decreased the obtained values of
quality metrics for models trained with label images that used
narrow contours but did not change the results obtained for
for models trained with full masks. Blurring produced only
slightly worse results. Higher decrease of the segmentation
quality metrics was obtained when images were degraded
by color (gray) modifications. It was especially observed
for the maximum decomposition procedure used to convert
RGB images to grayscale images. The observed decrease of
specificity for images with merged segments was about 0.13,
which is much higher than for the second worst case (0.03).

V. CONCLUSIONS

It was shown that the contour thickness in the reference
images (labels) plays an important role on the quality of
segmentation using U-net/V-net models. Another interesting
findings is a small, but observable difference between results
obtained for models trained using the ”positive” and ”nega-
tive” masks. Theoretically, we could expect the corresponding
results: the segments generated by the model trained with
”positive” masks should be the inverted version of segments
generated by the model trained with ”negative” masks. The
difference could be partially related to the fact that training
is always a different task (e.g., randomly generated batches,
initial model parameters, etc.). In this study, we shown that
ensemble models (the same architecture but trained with in-
verse data labels) can produce better segmentation results. We
also shown that limited image degradation due to the additive

Gaussian noise or blurring practically did not decreased the
segmentation accuracy obtained for ensemble models. Future
research should be focused on expanding the database for
both training and testing cases, e.g. use other methods of data
augmentation and combining transformed images into one set.
Other segmentation models (including instance segmentation)
should be investigated especially to provide more balanced
results for the ”positive” and ”negative” label datasets. Espe-
cially, U-net architectures need more precise analysis since
there were very unstable, but in some experiments these
models produced better results than for the V-net architecture.
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