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In evolutionary multi-objective optimization (EMO) the aim is to find a set of Pareto-optimal solutions.
Such approach may be applied to multiple real-life problems, including weather routing (WR) of ships.
The route should be optimal in terms of passage time, fuel consumption and safety of crew and
cargo while taking into account dynamically changing weather conditions. Additionally it must not
violate any navigational constraints (neither static nor dynamic). Since the resulting non-dominated
solutions might be numerous, some user support must be provided to enable the decision maker
(DM) selecting a single “best” solution. Commonly, multi-criteria decision making methods (MCDM)
are utilized to achieve this goal with DM’s preferences defined a posteriori. Another approach is to
apply DM’s preferences into the very process of finding Pareto-optimal solutions, which is referred to
as preference-based EMO. Here the Pareto-set is limited to those solutions, which are compliant with
the pre-configured user preferences. The paper presents a new tradeoff-based EMO approach utilizing
configurable weight intervals assigned to all objectives. The proposed method has been applied to
ship WR problem and compared with a popular reference point method: r-dominance. Presented
results prove applicability and competitiveness of the proposed method to solving multi-objective

WR problem.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Multi-objective optimization methods are able to solve variety
of real-life optimization problems defined in various techno-
logical fields. Nowadays Pareto-optimization methods based on
meta-heuristic ~ approach  Multi-Objective ~ Meta-Heuristics
(MOMH) are especially often utilized [1-5]. This is mostly due
to their relatively short computation time and satisfactory level
of a true Pareto-front approximation. Among them evolutionary
multi-objective optimization (EMO) methods have been gaining
increasing attention for the last two decades. In a typical EMO
application one aims at optimizing up to three criteria (in case
of more than three criteria we talk about many-objective op-
timization instead) that may be additionally constrained. Since
the resulting non-dominated Pareto set is usually numerous,
some kind of support is required to select a single solution,
“the best” from the decision maker’s (DM’s) point of view. Com-
monly, multi-criteria decision making methods (MCDM), such as
e.g. ranking methods, are utilized to achieve this goal. When a
typical, basic EMO process is completed, the user defines his pref-
erences towards optimization criteria and the ranking method
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sorts the Pareto-set, thus presenting the best solution on the top
of the list.

The majority of real-life multi-objective problems suffer from
having large objective space, which results in time consuming
optimization process, even when the MOMH/EMO approach is
applied. This in turn encourages researchers to propose and de-
velop methods that incorporate DM’s preferences into the core
of the optimization process to reduce the objective space and
thus speed up the convergence of the optimization method. Un-
doubtedly, there is abundance of works available on preference-
based or trade-off approach to EMO, as presented in Section 2.2.
The authors of this paper propose here a new preference-based
method using configurable weight intervals. The method is then
applied to solve ship weather routing multi-objective optimiza-
tion problem. The problem belongs to a class of constrained
multi-objective problems with large objective space, and thus the
EMO can greatly benefit from the limitation of the objective space
based on DM'’s preferences.

To properly describe the optimization problem, first some as-
sumptions should be outlined. When a cross-ocean ship voyage is
planned, apart from obvious navigational obstacles as landmasses
or shallow waters, one also ought to take into account expected
wave and wind conditions en route [6]. A storm-tossed ship may
finish her voyage with a delay and/or economic loss (e.g. due
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to damaged commodities), but, what is even more important,
could put human life at risk. This is the reason why optimization
process in contemporary ship voyage planning systems involves
also predicted weather conditions. In literature such approach
is usually referred to as weather routing (WR). In WR there
is a pursuit to find a route representing a proper balance be-
tween economical and safety-related goals. However, one has to
bear in mind that WR usually does include ship-to-ship collision
avoidance handling, as addressed by a multitude of other papers
with [7-9] among others. This paper aims at portraying the appli-
cation of the hereby proposed preference-based EMO with weight
intervals to weather routing optimization problem. The approach
presented here could be beneficial to the end users interested in
obtaining the balance between various objectives.

The rest of the paper is organized as follows: Section 2 presents
a review of works related to the background and core of the prob-
lem (weather routing) as well as methods applicable to solve the
optimization problem being described (preference-based EMO).
Section 3 provides description of the hereby proposed preference-
based EMO method with weight intervals together with a detailed
description of the optimization problem and EMO framework
applied to solve the problem. Then in the following section two
example scenarios are presented, showing how application of the
proposed method can contribute to the problem being solved. In
Section 5 a comparison of the proposed method with a reference
point-based one (r-dominance) is presented. Finally, in Section 6
the research results are concluded and future plans are depicted.

2. Related works

The paper addresses problems belonging to two quite dis-
tinctive areas: maritime transportation (ship weather routing)
and preference-based evolutionary multi-objective optimization
(EMO). Thus, in the following subsections separate literature re-
views on these two topics have been provided.

2.1. Weather routing of ocean-going vessels

The first weather routing approach was the isochrone method
[10], proposed for manual use and based on geometrically de-
termined and recursively defined time fronts (isochrones). In the
next decades computer implementations of the method were
developed, as presented in [11], among others. The isochrone
method utilizes single-objective approach (usually for passage
time minimization) and has limited possibility of handling dy-
namic constraints. Direct application of the original isochrone
method to a computer algorithm may result in having so-called
“isochrone loops”. Despite its limitations the isochrones method
is still popular and there are some up-to-date commercial weather
routing systems that still utilize it, albeit in a highly modified
fashion.

There are also multiple other approaches to the weather rout-
ing problem. Basic use of dynamic programming for a grid of
points has been proposed in [12,13]. Also 3D dynamic program-
ming approaches to weather routing are applied [14,15]. As pre-
sented in [16], solving specified optimal control problem allows
for finding time-optimal path. Another approach using Dijkstra
algorithm was presented in [17,18] and in [19,20].

All the above-mentioned methods utilize single-objective op-
timization, usually focused on passage time or fuel consumption
minimization. A multiobjective approach to ship route planning
has been proposed in [21], however the objectives were aggre-
gated there to a single criterion. Purely mathematical approach
to such optimization with Pareto-optimal sets of solutions has
been initially proposed in [22-26]. The methods in [23,24] uti-
lize MOGA algorithms. In the works by [22,25,26] the more ro-
bust SPEA/SPEA2, multi-objective evolutionary approach has been
applied.

2.2. Preference-based Evolutionary Multi-objective Optimization
(EMO)

A popular trend in Multi-Objective Meta-Heuristics (MOMH)
is to take into account decision-maker’s (DM) preferences. This
allows the algorithm to focus on the part of the objective space,
which is most interesting to DM. Among others, limiting the
objective space makes it possible to reduce Pareto front and thus
speed up the convergence to the final representation of a Pareto-
optimal set. Making use of DM’s preferences can be done in a
number of ways [27]. The dominating one is that of a reference
point (RP) — a point in the objective space, which represents a
solution that is desired and seems possible to be reached [28-30].
An RP may be used for dominance relation [31,32], as well as for
crowding distances and sorting non-dominated Pareto sets [33,
34]. Similarly, a reference direction can be specified [35]. If the
DM is unable to specify a single RP, it is also possible to provide
a preference region. Reflecting DM’s satisfaction with solutions
in the preference region may be done by means of desirabil-
ity function [36,37], density function [38] or a combinations of
both [39]. Other approaches to applying DM’s preferences include
those of objective comparison [40], solution comparison [41],
outranking [42,43], knee points [27,44] and trade-offs [33,45-
47]. Of those, trade-off approach is the most natural for weather
routing purposes, where a DM is interested in a configurable
balance between economic and safety-related objectives.

Trade-off can be classified as objective (based on the structure
of the problem) or subjective (reflecting DM’s arbitrary pref-
erences). Subjective trade-off may take as input data linguistic
terms [48] (which can then be converted to weight intervals) or
coefficients. Subjective trade-off approach utilizing DM-specified
trade-off coefficients has been introduced in [45] where it has
been applied in a guided multi-objective evolutionary algorithm.
The subjective trade-off proposed there reflects how much the
DM is ready to sacrifice the value of some objectives in order to
improve other. Trade-off can be given in units:. DM may state
that a single unit improvement in one objective is worth at most
n units degradation in another objective.

Such approach works very well for bi-objective optimization
but, as has been observed in [27] the authors of [45] have not
extended their approach to more than two objectives. This tran-
sition to a larger number of objectives is done in the current
paper.

For any given number of objectives subjective trade-off can
be implemented as a matrix of trade-off coefficients, where each
coefficient ¢; j reflects the degradation in jth objective, that a DM
is willing to accept in order to gain a 1 unit improvement in the
ith objective. However, such matrix of coefficients is impractical
in direct use for two reasons:

- it is inconvenient to apply it in dominance rules for more
than two objectives,

- DM can enter inconsistent values, so a consistency check has
to made afterwards and DM should correct coefficient values
if necessary.

Fortunately, both problems can be eliminated if instead of coeffi-
cients we decide to operate on weight intervals assigned to each
objective.

3. Proposed preference-based evolutionary multi-objective
optimization

The method proposed here, despite nominal similarity to
weight-based approaches [38,46] can actually be classified as
a modified subjective trade-off approach, which extends the
concept of [45] from bi-objective to multi-objective. If needed, it
can also be extended so as to take DM'’s input parameters in the
form of linguistic terms, which can later be converted to weight
intervals (as shown in [48]).
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3.1. Trade-off by means of weight intervals

Let us denote a DM-given interval of weights assigned to the
ith objective as:

min, ), (1)

w; € (w
where w™" € (0, 1), w™™* € (0, 1) and wM" < WM,

Based on (1), throughout the paper a generalized weighted
average objective function will be used:

n
FX) =" wifi(x), (2)
i=1

where n is the number of objectives and each f;(x) is a normalized
objective function which returns values from (0, 1) range. It must
be noted here, that each w; remains an unspecified value from the
(wimi“, w{"ax) range. Therefore ZL] w; is not always equal to one.
Instead, it can be any number between zero and n. As for objective
functions fi(x), it is assumed that their values are condensed
down to (0, 1) range prior to evolutionary operations (including
dominance check). It is essential to use normalized objective
functions because otherwise the weight intervals would not truly
reflect DM’s preferences: the objective function of the largest
range would have the largest impact on the dominance rules and
on the multi-criteria decision making phase. Therefore, in practice
it is recommended to normalize objective functions values “on
the way” — during each generation of the evolutionary algorithm.
It is also important to minimize the loss of information caused by
the normalization (Min-Max Feature Scaling may be undesired
as it always covers the full (0, 1) range, even if pre-normalized
values are close to each other).

For the generalized weighted average function from (2), the
following always holds:

D W) < fx) < D wlfi). (3)
i=1 i=1

In Pareto multi-objective minimization x dominates y if and
only if:

3 (filx) < fiy)) and V; (fi(x) < fi(y)) . (4)

For the proposed generalized weighted average objective func-
tion the above rule still holds in the sense that it implies dom-
inance. However, if the rule (4) is not satisfied and x does not
dominate y, the extended relation of weight interval-based dom-
inance might be used instead of Pareto dominance by checking a
condition:

f) < f). (3)

where f() is the generalized weighted average function given by
(2).

Checking whether (5) holds true cannot be done directly,
because each w; remains an unspecified value from <wim”‘, w;mx)
range. However, it can be shown that (5) is always true if the

following holds true:

> &ixy) >0, (©)
i=1
where:
| _[wM (fi(y) — fix)), for fi(y) — fix) >0
gilx.y) = :wimax (iy) = fix)), for fi(y)—filx) <0, 7

The above described preference-based method is summarized
in Fig. 1.

3.2. Optimization problem in weather routing

When predicted weather conditions are considered in ship
routing, the optimization problem should be defined as multi-
objective weather routing. In general, there are two groups of
goals to be satisfied in the routing, namely economical and safety-
related ones. Thus, following the past research by one of the
authors [49], a route is defined as a vector of controlpoints from
the point of departure to the destination. Two route’s consecutive
controlpoints define a leg. Each controlpoint stores information
of its location (latitude and longitude), time of arrival (based
mainly on past legs, forecasted weather conditions in its vicinity
and ship’s speed characteristics) and a number of additional leg-
related parameters (e.g. engine settings, ship course, etc.). Route’s
optimization criteria set includes minimization of passage time
and fuel consumption while assuring the highest possible voyage
safety, as presented by (8)-(10), respectively:

fpassage,time() — min, (8)
ffuel_consumption() — min, 9)
fsafety_index() — max. (10)

Values of the goal functions (8)-(10) are computed for consid-
ered routes for the assumed ship model: a double decker general
dry cargo vessel, described in detail in [50]. Route’s passage time
is computed based on the ship model's speed characteristics
(which usually take form of plots with predicted ship speed for
wave and/or wind encounter angles, loading conditions, etc.) and
forecasted weather data (including speed loss on waves) for each
consecutive route’s controlpoint. Thus, a total route’s passage
time given by (8) in hours is a sum of all passage times required
to go through all route’s legs. The computed passage time for
a route depends strongly on weather conditions forecasted for
its controlpoints. Thus, locations (lat; lon) of the controlpoints
are the key variables contributing to passage time computation.
However, weather conditions are not static (in time domain), so
reaching a given location at different moments in time can lead
to completely different weather conditions encountered and thus
further affect passage time. Indeed, dynamic nature of weather
conditions (which affect both WR criteria and constraints) is
what makes the optimization problem in weather routing quite
challenging.

As for fuel consumption, it is computed based on the ship
model engine settings (leg-related), engine power on still water
(assumed constant for given ship model and loading conditions)
and power loss due to waves (based on ship model and fore-
casted weather conditions). Again, a total route’s fuel consump-
tion given by (9) in tons is a sum of fuel consumed at each route’s
leg. As in the previous case, this criterion depends on dynamic
nature of forecasted wave conditions (significant wave height
and wave direction are taken into account) and location of the
controlpoints.

Safety index for a route’s leg is a normalized value (in <0.0;
1.0> range) computed based on ship model stability calculus.
Minimal fractional index (computed for each controlpoint) with
value 0.0 depicts fully unsafe situation, whereas maximal value
1.0 depicts that the ship is hypothetically absolutely safe. The
index is computed by taking forecasted weather conditions valid
for the leg as inputs. Unlike the previous goal functions, total
safety index (dimensionless) for a route given by (10) is computed
as an average of the fractional safety indices over all route’s legs.
To handle rare but extreme weather conditions (increasing the
average only slightly) additional optimization constraints have
been added.

The optimization constraint set in WR includes:
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Determining objectives’ values

Y

Normalization of objectives

Y

DM'’s specification of
weight intervals <w™;w™>

assigned to each objective

Y

Checking dominance as a logical alternative of equations (4) & (6)

Fig. 1. Proposed preference-based method.

1. landmasses and shallow waters (for given ship model’s
draught), which is a compulsory constraint in any ship
routing problem — a static constraint, whose data can be
read from Electronic Navigational Chart (ENC),

2. wind fields en route with wind speed above given thresh-
old value (here the value is set as 40kn, which reflects sea
state between 8 and 9 in Beaufort scale) — a dynamic
(varying with time) constraint,

3. areas with stability-related phenomena according to IMO
Circ. #1228 as described in [51] — a dynamic constraint.

Checking if the first two constraints are met is relatively sim-
ple. The third one, however, is more complex. Three types of
stability-related phenomena are handled here:

- resonance — (including synchronous and parametric rolling
motions) occurs when natural ship rolling is equal to en-
counter wave period or its doubled value, may result with
high amplitude heavy ship oscillations,

- successive high wave attack — occurs when wave length
and significant wave height are in certain relation with
ship size, may result with large roll angles or capsizing in
extreme cases,

- surf-riding and broaching-to — occurs when wave speed
is in certain relation with ship size, may result with ship
course deviation or capsizing in extreme cases.

Of these, resonance is the most frequent. For every control-
point each of the stability-related phenomena have to be checked
whether a particular combination of a vessel’s course and speed
with forecasted weather conditions is safe. The constraint can
easily make many routes unacceptable and thus it affects the final
Pareto set in large degree.

In terms of variable space, the objectives of each route depend
on the geographical coordinates (longitude and latitude) of all
its controlpoints. The number of controlpoints varies depending
on a particular route. Transatlantic routes have the average of
about 100 controlpoints, which gives 200 variables. Therefore it
can be assumed, that each objective is a function of about 200
variables. Each variable is a real number representing the latitude
or longitude from a given range (depending on the predefined
start and destination points). As a result, the search space of the
optimization problem is large so it is desired to come up with any
methods that can speed up the convergence of the optimization
process.

When the EMO approach with trade-offs by means of weight
intervals (see Section 3.1) is applied to the optimization problem
described here, the w™" and w™* values are assigned to each of
the optimization criteria given by the goal functions (8)-(10).

3.3. The motivation behind applying the proposed weight interval-
based trade-off approach

As mentioned in Section 2.2, the most popular thread in in-
corporating DM'’s preferences is the one utilizing reference points

(RP). RPs are convenient and effective technique supplementing
MOMH in many branches of technical sciences and industry. Their
only limitation is that Decision Maker (DM) has to know the RP
coordinates. E.g. in optimizing design of mechanical, electrical or
electronic devices DM usually knows or suspects that a certain
combination of objective values is possible. DM may know this
because particular devices are available and the information on
their performance can be accessed. However, in case of weather
routing little is known about possible objective values until exact
solutions are obtained. Some combination of fuel consumption,
safety and passage time could have been possible for certain
start-destination parameters in the past, but they may no longer
be possible in future. Seasonal weather changes (in extreme cases
including cyclones, which have to be avoided at all costs), cli-
mate changes, particular ship performance parameters (especially
speed characteristics), loading etc. all greatly affect navigation
conditions. Otherwise, ship-owners and navigators could sim-
ply re-use old routes or route patterns, as it used to be a few
decades ago, without the up-to-date data-driven weather routing
optimization process.

Furthermore, it must be emphasized here, that both ship-
owners and navigators may have to run weather routing op-
timization multiple times for a single journey, especially for a
cross-ocean one. Although weather forecast services have ad-
vanced in terms of data collection and modelling, the weather
changes are now more dynamic than ever, which makes weather
predictions harder. The accuracy of those predictions decreases
for more distant time horizons and the forecasts for a week
ahead are of limited reliability. Therefore, apart from performing
weather routing before the journey, it is recommended to repeat
this process on the way. In practice, every time a new weather
forecast is available, the system should re-run weather routing
algorithm starting from the ship’s current position. In case of
using RP it would involve specifying new RP coordinates at least
every 24 h for the remaining part of a route. Apart from being
simply inconvenient, it would also be hard feasible. While fuel
consumptions and passage times may be archived for whole
routes (from departure till arrival) such past data is usually not
available for incomplete route parts. Consequently, a navigator
would have to enter new RP coordinates periodically without
unsupported by any reliable data.

Another important issue is that a ship-owner may be inter-
ested in specifying one policy for a whole fleet of various vessels
navigating between various start and destination points. The pro-
posed approach to DM'’s preferences is context-free. It reduces
ship-owner’s involvement to providing six numbers (assumed
having three criteria) only once. If necessary, ship-owner may
even input linguistic terms, which can then be automatically
converted to weight intervals, as shown in [48]. As opposed to
this, any RP-based method would require setting RP coordinates
separately for each combination of route endpoints, particular
vessel (including its speed characteristics and loading conditions)
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and time of the year (because of seasonal weather changes). Even
if technically possible, it would be extremely troublesome. The
proposed approach greatly saves DM’s time while being com-
petitive in terms of approximating Pareto front and supporting
multi-criteria decision-making phase of weather routing process.

34. MEWRA as a tool for solving the optimization problem in
weather routing

Multi-objective Evolutionary Weather Routing Algorithm
(MEWRA) is a tool for ship route optimization utilizing Strength
Pareto Evolutionary Algorithm 2 as proposed in [52]. MEWRA has
been developed by one of the authors to support ship routing
decisions. In its current form, it is integrated as a research tool
with an ENC-class software NaviWeather by NavSim Poland.

In [22] the first draft of a Multi-objective Evolutionary Weather
Routing Algorithm (MEWRA) with continuous-space optimization
has been proposed, designed initially for a ship model with hybrid
propulsion. A new engine-based MEWRA [51] has been presented
in [49] together with customizable criteria and constraints sets.
The approach has been further extended towards exclusion of
areas with resonance phenomena (surf-riding and broaching to,
successive high wave attack and resonance) according to IMO
Circ. #1228 [51] and reliable synchronous roll prediction [50].

An evolutionary individual in the algorithm is a route, repre-
sented by a vector of controlpoints with associated geographical
coordinates (lon & lat) and additional ship-related settings. In
general MEWRA comprises of the following elements, depicted
in Fig. 2:

- initial population generation,

- core evolutionary optimization (SPEA2), including standard
mutation & crossover operators,

- deterministic algorithms extending the evolutionary algo-
rithm (including A* used for pre-optimization route finding
in narrow passages),

- multiple problem-dedicated operators,

- multi-criteria ranking method to limit the resulting non-
dominated solution set to the element the most suitable
from the decision maker’s point of view.

Selected elements listed above are briefly described below. As for
generating initial population, the population comprises of initial
feasible routes (i.e. not violating any of the defined optimization
constraint). Generation process is random, but driven by a set of
pre-defined routes (between given origin and destination points),
such as:

- rhumb line (on map with Mercator projection it is a straight
line between origin and destination),

- Great Circle (shortest distance between origin and desti-
nation points on the globe, without taking into account
weather conditions, ship modelling, bathymetry, etc.),

- areflected Great Circle (along the rhumb line),

- direct route generated by A* algorithm.

Problem dedicated operators include among others:

- operators responsible for loop removal (unintended loops
formed by the subsequent controlpoints),

- operators ensuring that bathymetry-related constraints are
met.

The latter assure that the ship’s route does not cross land or other
obstacles and that ship retains sufficient clearance under keel
along the whole route. If a violation of a bathymetric constraint
is detected, one of the route-modifying operator may be selected.

Table 1

Evolutionary settings common for Scenario 1 & 2.
Parameter name Value
Max. number of generations 100

Population size 100 individuals (routes)
Non-dominated set size 100 individuals (routes)
Crossover probability 0.6
Mutation probability 0.4
Optimization criteria 1. passage time — min
2. fuel consumption — min
3. safety of passage — max

The choice of an operator is random, but particular operator
may be favoured depending on the length of a route’s segment,
which violates the constraint and the coordinates of the violating
segment’s endpoints. The bathymetry-related operators include:

a) inserting a new segment of a route,

b) inserting a new controlpoint,

c) shifting a whole segment of a route ,

d) shifting a controlpoint of a problematic segment.

~—~— —~

All of those operators are shown in Fig. 3. It is worth noting that
although random, they are parametrized by the size of constraint
violation and violation’s relative location within the route’s seg-
ment. While none of those operators guarantees eliminating a
violation, they work very well in the sense that they greatly speed
up obtaining acceptable solutions.

4. Validation and verification of the approach — example sce-
narios

The proposed preference-based EMO, described in details in
Section 3.1, has been validated and verified in a series of com-
puter simulations conducted by MEWRA. Two scenarios have
been selected with different passages (voyage departure & des-
tination points) and different weather conditions (having direct
impact on the optimization process):

- Scenario 1: voyage from Miami to Lisbon in February 2017,
- Scenario 2: voyage from Plymouth to Miami in September
2013.

The first scenario accentuates narrowing down the weight inter-
vals (assumed weight intervals are equal for all criteria) subject
to investigating how the interval’s width limits the size of Pareto
front. Scenario 2 focuses on presenting how the weight intervals
could model decision maker’s preferences during the core multi-
objective optimization. Settings common to both scenarios are
presented in Table 1. Probability values for crossover and mu-
tation have been determined in the course of study on weather
routing problem [49], thus they differ from standard crossover
and mutation probability values as strictly problem-oriented.

NOAA Wave Watch Il model has been utilized as a source of
weather forecasts for both scenarios. Wind direction and speed
parameters are directly forecasted by NOAA Wave Watch III
model, while wave conditions (significant wave height, wave
period and wave direction) are estimated based on the forecasted
wind conditions.

4.1. Scenario 1: voyage from Miami to Lisbon in February 2017

In this scenario a voyage from Miami coastal waters with
departure on 25th February 2017 at 00:00 UTC with destination
Lisbon has been simulated in MEWRA. A set of three optimiza-
tion criteria has been considered, namely: passage time (min),
fuel consumption (min) and safety of passage (max). Assumed
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ship motion
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Models of own ship’s behaviour:
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riding and broaching to,
successive high wave attack)
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¢ landmasses
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waterway

method, including:

Forecasted
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Evolutionary Multi-objective Optimization (EMO)

initial population generation and pre-processing
geographical smoothing and loop elimination
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specialized operators (removing bathymetric violations) min max
evaluation update (modified individuals only)
selection using Pareto dominance rules
crossover and mutation operators

Decision maker’s (DM’s)
preferences concerning
objectives

« general policy towards
DM's preferences defined
by w™ & w™ values per

criterion

« wind
« waves

a set of non-dominated
Pareto-optimal solutions

(MCDM) method

Multi-Criteria Decision Making

a single route,
optimized according to objectives,
constraints and DM'’s preferences

Fig. 2. Overview of the MEWRA optimization tool with proposed preference-based approach.

a) route segment insertion

b) controlpoint insertion

¢) route segment shift

Fig. 3. Examples of problem-dedicated operators, which modify a route.

constraints in the optimization process, apart from obvious land-
masses and shallow waters (static), are: wind fields above 40kn
‘dynamic) and areas with resonance phenomena according to
MO Circ. #1228.

During the planned voyage some strong wind, and conse-
quently wave, fields was forecasted, thus limiting northern
Miami-Lisbon passages. Also unfavourable conditions in terms of
possible resonance phenomena were predicted in the area of the
crossing of 30°N and 50°W through the first 100h after departure.
Detailed overview of weather conditions during the voyage (in
terms of wind speed and direction) are presented by set of figures
provided in Appendix A.

In this scenario three sets (cases) of weight intervals (Table 2)
have been simulated for the assumed voyage in order to verify
if, and to which extent, narrowing down the weights’ width
limits the resulting Pareto set. For each case the weight intervals
are equal for all the three optimization criteria. Fig. 4 presents
resulting Pareto front obtained by utilization of “regular Pareto
dominance”, here regarded as a reference. Then Figs. 5-7 present
Pareto fronts obtained for the same voyage and case no. 1-3,
accordingly. In Figs. 8-10 the Pareto fronts (red dots) from Figs. 5-
7 are presented in 3D objective function space together with a
reference Pareto front from Fig. 4 (blue dots). It is worth noting
that the shapes of Pareto fronts are closer to 3D curves than
surfaces because two of the optimization objectives (passage time
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Table 2

Values of preference-based Pareto dominance weight intervals (w™", w™¥) assigned in cases 1-3 of Scenario 1.

Case no. Passage time Fuel consumption Safety of passage
wmin wmax wrnin max wmin wmax
1 0.1 0.9 0.1 0.9 0.1 0.9
Scenario 1 2 0.25 0.75 0.25 0.75 0.25 0.75
3 0.33 0.66 0.33 0.66 0.33 0.66

Table 3
Average Pareto size of repeated “regular domination” and cases 1-3 of Scenario 1.

Average Pareto

size
Case 0 (“regular dominance”) 62,60
Scenario 1 Case 1 (w™" = 0.1 and w™* = 0.9) 4,90
Case 2 (w‘“f“ =0.25 and w™* = 0.75) 2,60
Case 3 (w™" = 0.33 and w™* = 0.66) 1,60

and fuel consumption) are related in case of the selected vessel
model.

As presented in Figs. 5-10 the resulting Pareto set of routes, as
expected, gets significantly reduced when the preference-based
Pareto-dominance is applied. The “regular Pareto dominance”
example provided in Fig. 4 has been taken as a reference here.
The smaller width of weight interval (w™ - w™") the easier it is
for one solution to dominate the other, which results in largely re-
duced non-dominated Pareto set. In the example provided above
Pareto size is reduced from 63 routes (“regular domination”), to
6 routes for case 1 (w™" = 0.1 and w™* = 0.9), further to 2
routes for case 2 (w™" = 0.25 and w™* = 0.75) and finally to
just a single route for case 3 (w™" = 0.33 and w™* = 0.66).

Obviously, the optimization process may finalize with differ-
ent result (Pareto size) each time since the evolutionary meta-
heuristic is able to find only a discrete approximation of the
Pareto-optimal set, not the true Pareto-optimal set. Thus, in this
scenario the optimization process for each case of weight interval
has been repeated (10 repetitions) to verify if the Pareto set
reduction level is kept. Table 3 presents average values of the
Pareto set size for the “regular domination” and preference-based
dominance case 1-3. Tendency of narrowing the Pareto set is
clearly indicated by average Pareto size as presented in Table 3
as the size shrinks drastically with decreasing value of weight
interval (w™* - w™"). Obviously, the minimal possible Pareto
front size is 1 element (a single route), since always at least one
individual would have to remain non-dominated by all the other
individuals.

4.2. Scenario 2: voyage Plymouth-Miami in September 2013

In this scenario a voyage from Plymouth coastal waters with
departure on 27th September 2013 at 00:00 UTC with desti-
nation Miami has been simulated in MEWRA. Similarly to the
previous scenario, the following optimization criteria have been
considered, namely: passage time (min), fuel consumption (min)
and safety of passage (max). As before, the last criterion is rep-
resented by safety index mainly based on stability of the ship.
Due to forecasted weather conditions for Atlantic Ocean in the
considered time-frame (see Fig. A.2) the constraint of resonance
phenomena has been excluded in this scenario. Thus, the opti-
mization constraint set consists here of just two elements, namely
landmasses and shallow waters (static) and wind fields above
40kn (dynamic).

This scenario aims at discovering to what extent the weight
intervals can model decision maker’s preferences when weight
intervals are applied to the core multi-objective optimization.
Thus, apart from the case 0 (“regular Pareto dominance”), the

following two cases have been considered here, as presented in
Table 4. Case 1 presents situation of strongly preferred time & fuel
to safety, whereas case 2 presents the opposite situation.

Fig. 11 presents resulting Pareto front obtained by utilizing
“regular Pareto dominance”, here regarded also as a reference.
Then Figs. 12-13 present Pareto fronts obtained for the same
voyage and case no. 1-2, accordingly. In Figs. 14-15 the Pareto
fronts (red dots) from Figs. 12-13 are presented in 3D objective
function space together with a reference Pareto front from Fig. 11
(blue dots).

Similarly to the previous scenario, simulations for cases 1 and
2 of Scenario 2 have been repeated to validate if the results
are reproducible. Based on the sets of results two aggregated
3D Pareto front figures have been prepared: Fig. 16 presenting
aggregated case 1 results and Fig. 17 with aggregated case 2
results. In both Figs. 16 and 17 red dots depict aggregated Pareto
front elements (obtained by repeated application of MEWRA with
weight interval) and blue dots depict the reference Pareto front
in Scenario 2 (obtained by application of MEWRA with “regular
domination”, thus without weight intervals).

In Scenario 2 case 1 weight intervals have been set the way to
underline strong decision maker’s preferences towards passage
time (min) and fuel consumption (min) criteria and opposite to
safety of passage (max) criterion. The aggregated Pareto front plot
(Fig. 16) reveals that all the resulting non-dominated solutions
(red dots) are gathered near left-most elements of the reference
Pareto front (blue dots) where routes have small values of both
passage time and fuel consumption.

In Scenario 2, case 2 there is an opposite case described.
This time the weight intervals reflect strong decision maker’s
preferences towards maximized safety of passage while paying
less attention to economic performance route indices (time &
fuel). In Fig. 17 the aggregated non-dominated solutions (red
dots) are gathered near the part of the reference Pareto front
(blue dots) with the highest safety index value. What is worth
noticing is that here some of the red dots are above the blue to
with the highest safety index which shows that the preference-
based Pareto dominance holds a possibility of the Pareto front
extrapolation (obtained simply by a faster convergence) towards
given user preferences.

4.3. Conclusions

As presented in Scenario 1 the preference-based Pareto opti-
mization is able to reduce the resulting non-dominated set. The
reduction level may be adjusted by narrowing or widening width
of weight intervals (w™", w™) associated with given optimiza-
tion criteria. What is more, the solution presented here is also
able to map decision maker’s preferences onto the resulting non-
dominated set of solutions. This may be achieved by assigning
weight intervals of greater (closer to 1.0) values of w™" and w™
to these criteria that are considered more important and smaller
w™n and w™ values (closer to 0.0) to those that are considered
less important according to the DM.
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Fig. 4. Miami-Lisbon, departure on 25th February 2017 at 00:00 UTC, Pareto front (63 routes) obtained by MEWRA utilizing “regular Pareto dominance” (Case 0) in
Scenario 1.

Fig. 5. Miami-Lisbon, departure on 25th February 2017 at 00:00 UTC, Pareto front (6 routes) obtained by MEWRA with weight intervals w™" = 0.1 and w™* = 0.9
for each criterion (Case 1) in Scenario 1.
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Fig. 6. Miami-Lisbon, departure on 25th February 2017 at 00:00 UTC, Pareto front (2 routes) obtained by MEWRA with weight intervals w™" = 0.25 and w™* = 0.75
for each criterion (Case 2) in Scenario 1.
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Fig. 7. Miami-Lisbon, departure on 25th February 2017 at 00:00 UTC, Pareto front (1 route) obtained by MEWRA with weight intervals w™" = 0.33 and w™* = 0.66
for each criterion (Case 3) in Scenario 1.

/\/\ MOST WIEDZY Downloaded from mostwiedzy.pl

J—


http://mostwiedzy.pl

A\ MOST

J. Szlapczynska and R. Szlapczynski / Applied Soft Computing Journal 84 (2019) 105742

0.95 /
§

x 09 /
e
< 085 é
5 {
© 08 ]
wn

075 f

07
190
ol
180 310
o T
170 200
. \// 280
_ 270
Fuel consumption 150 Passage time

Fig. 8. Miami-Lisbon, departure on 25th February 2017 at 00:00 UTC, Pareto front (6 routes, red dots) in objective function space obtained by MEWRA with weight
intervals w™" = 0.1 and w™* = 0.9 for each criterion (Case 1) with a reference Pareto front obtained by “regular domination” (blue dots) in Scenario 1.
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Fig. 9. Miami-Lisbon, departure on 25th February 2017 at 00:00 UTC, Pareto front (2 routes, red dots) in objective function space obtained by MEWRA with weight
intervals w™" = 0.25 and w™® = 0.75 for each criterion (Case 2) with a reference Pareto front obtained by “regular domination” (blue dots) in Scenario 1.

Table 4

Values of preference-based Pareto dominance weight intervals (w™", w™) assigned in cases 1-2 of Scenario 2.

Case no. Passage time Fuel consumption Safety of passage
wmin wmax wrnin wmax wmin wmax
Scenario 2 1 0.5 1.0 0.5 1.0 0.1 0.5
2 0.1 0.5 0.1 0.5 0.5 1.0

by DM, it would be nearly impossible for to come up with a
truly reliable reference vector. Therefore, r-dominance is used
throughout the comparison shown in this section.

The key issue in utilization of any reference point-alike method
is to properly choose the RP point. Ideally, the RP point should be
close to hypothetically the best possible solution, usually located
in the Pareto front or in its close vicinity. However, in weather
routing it is extremely hard to provide any reasonable RP point
in advance, before any optimization starts. It is simply due to

5. Comparison of the proposed preference-based approach
with r-dominance

Below we are presenting a comparison of the proposed ap-
proach with a selected RP method, emphasizing the sensitivity of
the RP method to the choice of particular RP coordinates. Two
possible RP methods have been taken into account initially: r-
dominance [31,32] and reference vector. However, it has been
decided that while a single RP can be in some cases provided
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Fig. 10. Miami-Lisbon, departure on 25th February 2017 at 00:00 UTC, Pareto front (1 route, red dot) in objective function space obtained by MEWRA with weight
intervals w™" = 0.33 and w™® = 0.66 for each criterion (Case 3) with a reference Pareto front obtained by “regular domination” (blue dots) in Scenario 1.

Fig. 11. Plymouth-Miami, departure on 27th September 2013 at 00:00 UTC, Pareto front (75 routes) obtained by MEWRA utilizing “regular Pareto dominance” (Case
0) in Scenario 2.
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Fig. 12. Plymouth-Miami, departure on 27th September 2013 at 00:00 UTC, Pareto front (3 routes) obtained by MEWRA with weight intervals: passage time & fuel
consumption: w™" = 0.5 and w™* = 1.0, safety of passage: w™" = 0.1 and w™* = 0.5 (Case 1) in Scenario 2.
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Fig. 13. Plymouth-Miami, departure on 27th September 2013 at 00:00 UTC, Pareto front (2 routes) obtained by MEWRA with weight intervals: passage time & fuel
consumption: w™" = 0.1 and w™* = 0.5, safety of passage: w™" = 0.5 and w™*

1.0 (Case 2) in Scenario 2.
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Fig. 14. Plymouth-Miami, departure on 27th September 2013 at 00:00 UTC, Pareto front (3 routes, red dots) in objective function space obtained by MEWRA with

weight intervals: passage time & fuel consumption: w™" = 0.5 and w™* = 1.0, safety of passage: w™" = 0.1 and W™ =

obtained by “regular domination” (blue dots) in Scenario 2.

fact that no proper estimations on route performance parameters
such as passage time or fuel consumption can be made prior
to obtaining exact solutions. Even though, a comparison test
has been performed with assumption that DM is able to choose
location of the RP based on Pareto front plot that is already
available (as a result of “regular domination” applied to WR).

5.1. Configuration of r-dominance method

The authors of r-dominance [31] use the weighted Euclidean
distance between a solution x and reference point g:

M 2 M
Dist(x, g) = Zwi (ﬁ(X)—ﬁ(g)) , wiG(O,l),Zwi=1,
i=1

— fimax _ fimm

(11)

where w; are weights assigned to each objective and f;™**, fimi“ are
upper and lower boundary of ith objective. As the method pro-
posed in the current paper uses weight intervals (w{“i“, w{"ax)also
assigned to each objective, it has been decided that it would be

= 0.5 (Case 1) with a reference Pareto front

best to set w; in r-dominance method as middle points of those
weight intervals and then re-scale w; so that Zf\il w; = 1.

u;
Wi=—y (12)
D izt Ui
where
wmm _"_ wmax
uy = ! 5 (13)

Owing to this, both methods would reflect the same DM’s pref-
erences concerning objective’s weights.

Another thing is that in r-dominance x dominates y if:

(1) x dominates y in the Pareto sense;

(2) x and y are Pareto-equivalent and D(x, y, g) < —§, where
8 €(0,1) and

Dist(x, g) — Dist(y, g)
D(x,y.8) = — ,

Distimax — DiStmin

where Distyax, Distnin are maximal and minimal values of

Dist(z, g) over all solutions z within a generation and § is the
non-r-dominance threshold.

(14)
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Fig. 15. Plymouth-Miami, departure on 27th September 2013 at 00:00 UTC, Pareto front (2 routes, red dots) in objective function space obtained by MEWRA with
weight intervals: passage time & fuel consumption: w™" = 0.1 and w™* = 0.5, safety of passage: w™" = 0.5 and w™* = 1.0 (Case 2) with a reference Pareto front

obtained by “regular domination” (blue dots) in Scenario 2.
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Fig. 16. Plymouth-Miami, departure on 27th September 2013 at 00:00 UTC, aggregated Pareto front (red dots) in objective function space obtained by MEWRA with

weight intervals: passage time & fuel consumption: w™" = 0.5 and W™ =
obtained by “regular domination” (blue dots) in Scenario 2.

While in [31] § can be any value from the (0, 1) range, it is easy
to observe that for § = 0 the dominance will nearly always occur
either one direction or the other: a solution closer to reference
point g will r-dominate the other. Analogically, for § = 1 the r-
dominance will be reduced to regular Pareto dominance, because
the second condition will never be satisfied (D(x,y,g) < —1 is
never true).

It is important to note that exactly the same tendency occurs
for widths of the weight intervals proposed in the current paper:

- the dominance always occurs for w™" = w™™* (interval’s
width equal to 0)

- the dominance is reduced to regular Pareto for wl.mirl =
0, w™* =1 (interval's width equal to 1).

[n practice, in [31] it is recommended to decrease § values lin-
early throughout the evolutionary process from 1 (for the first
generation) to §_user (for the last generation), where §_user is

= 1.0, safety of passage: w™" = 0.1 and w™>* = 0.5 (Case 1) with a reference Pareto front

specified by DM. Because of the above described tendencies of
§ and interval widths, it was decided here to set §_user as the
weighted average of the intervals’ widths:

M
S_user = Z wi (W™ — w™").
i=1

As a result, §_user will be affected most by the widths of
intervals assigned to those objectives, which were given largest
weights by DM. Owing to this, despite completely different ap-
proaches used in both methods, they should apply roughly the
same DM'’s preferences and the comparison results should be
representative.

However, in the course of simulations it turned out that when
S_user were equal to average interval’s width, relatively few r-
dominance occurrences were registered. In practice, it had to
be set to less than 0.5 to observe a significant reduction in the
number of returned solutions. E.g. for 8,,; = 0.33the average

(15)
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Fig. 17. Plymouth-Miami, departure on 27th September 2013 at 00:00 UTC, aggregated Pareto front (red dots) in objective function space obtained by MEWRA with
weight intervals: passage time & fuel consumption: w™" = 0.1 and w™* = 0.5, safety of passage: w™" = 0.5 and w™* = 1.0 (Case 2) with a reference Pareto front

obtained by “regular domination” (blue dots) in Scenario 2.

Average number of returned Pareto-optimal
individuals in Scenario 1

62,6

15,7
/
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Fig. 18. Average number of returned Pareto-optimal individuals by various
dominance approaches: regular, r- dominance and proposed preference-based
dominance. DM’s preferences are given by parameters: w{"i“ = 0.33, w™ =
0.66 for all objectives, 8y5r = 0.33.

number of returned solutions was reduced from 63.5 (for regular
Pareto dominance) to 15.67 (for r-dominance). At the same time
the proposed preference-based method resulted in reduction to
1-2 returned solutions (1.6 on the average). Those differences are
visualized in Fig. 18. Consequently, §,s; values of 0.33 and 0.2
have been chosen for the simulations presented in Section 5.2
because of their good performance, regardless of the fact that the
weight intervals boundaries of the proposed approach were all
set to wM" = 0.1 and w™> = 0.9.

5.2. Selecting reference points in r-dominance

The r-dominance method has been applied to MEWRA and
tested on the input data from Scenario 1: voyage from Miami to
Lisbon in February 2017. Results of our approach to dominance
for the Scenario 1 have been presented earlier in the text in Sec-
tion 4.1. Scenario 1 routes were sought by means of r-dominance
applied to MEWRA for different locations of the reference point,
based on Pareto front (from Fig. 8) obtained by “regular domi-
nance” (without the modifications in Pareto-dominance proposed

in this paper). The assumed six locations of RP point are presented
in Fig. 19. Points #1 and #2 were chosen as end points (upper and
lower) of the front, points #3 and #6 were located in the middle
of the front, close by to the region of the red points found by our
approach. In the contrary, points #4 and #5 were chosen in some
distance from the front the way that point #4 is a dominated
solution and point #5 is above the front level. Thus, the solution
represented by point #5 is surely not attainable in practice.

5.3. Comparison results

In Figs. 20-25 Pareto fronts for Scenario 1 found by MEWRA
are compared with r-dominance for § = 0.2 and reference points
#1 - #6 (see Fig. 19 for the RP locations).

Fig. 20 presents results for the RP located in the lower end
of Pareto front, which favours short passages with low fuel
consumption at the cost of decreased safety index (routes more
prone to ship stability-related issues). All the resulting
r-dominance solutions (green dots) are inferior comparing to both
the Pareto front found by regular domination (blue dots) and
results obtained by the proposed preference-based approach (red
dots). Namely, their passage time and fuel consumption values
are higher for the same safety index values. The opposite situation
is presented in Fig. 21, when the RP is located in the upper
end of the front. This time routes assuring highest safety for the
cost of a bit longer passage and higher fuel consumption are
favoured. Here r-dominance results outperform elements of the
(approximated) Pareto front with slightly higher safety indices for
the same time and fuel values.

Two idealized cases (unlikely in practical WR applications) are
presented in Figs. 22 and 25 (RP # 3 & #6), in which the RP is
located centrally in the Pareto front. In both of these cases r-
dominance results are very close to Pareto front and similar to
the results returned by the proposed method.

In Figs. 23 and 24 RPs are located far outside the Pareto front.
RP is underestimated for Fig. 23 and overestimated for Fig. 24. In
both these cases r-dominance results are located away from the
Pareto front. In case of the overestimated RP two individuals has
been found by r-dominance that are slightly above the (approxi-
mated) Pareto front. However, all of the r-dominance results are
highly inferior for underestimated RP (Fig. 23).
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Fig. 19. Locations of six reference points (depicted by diamonds) in Scenario 1,
together with (data taken from Fig. 8, with different viewing angle) reference
Pareto front obtained by “regular domination” (blue dots) and MERWA solutions
(6 routes, red dots) obtained with weight intervals w™" = 0.1 and w™* = 0.9

for each criterion (Case 1), Scenario 1, Miami-Lisbon, departure on 25th February
2017 at 00:00 UTC.
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Fig. 20. Solutions (green dots) obtained by r-dominance with RP #1, § = 0.2

together with reference Pareto front (blue dots) and solutions by proposed
preference-based dominance (red dots).
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Fig. 21. Solutions (green dots) obtained by r-dominance with RP #2, § = 0.2
together with reference Pareto front (blue dots) and solutions by proposed
preference-based dominance (red dots).
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Fig. 22. Solutions (green dots) obtained by r-dominance with RP #3, § = 0.2

together with reference Pareto front (blue dots) and solutions by proposed
preference-based dominance (red dots).
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Fig. 23. Solutions (green dots) obtained by r-dominance with RP #4, § = 0.2
together with reference Pareto front (blue dots) and solutions by proposed
preference-based dominance (red dots).

Figs. 26-31 present Pareto fronts for Scenario 1 found by
MEWRA with r-dominance for the same reference points (RPs
#1 - #6 as in Fig. 19) and § = 0.33. Similarly to the previous
case (with § = 0.2) the RP has been set as following: to the
lower end of Pareto front (Fig. 26), to the upper end of the front
(Fig. 27), in the centre of the front (Figs. 28 and 31) and away
from the front (Fig. 29 for underestimated point and Fig. 30 for
overestimated one). As can be seen, similar tendencies of results
can be observed. When compared to the Pareto fronts found
by regular dominance, the r-dominance solutions are strongly
inferior in case of an RP located in the upper end of a front
(Fig. 26) or a heavily underestimated RP (Fig. 29). R-dominance
scored much better for an RP in the upper end (Fig. 27) and an
overestimated RP (Fig. 30). For both middle-located RPs (Figs. 28
and 31) r-dominance returns a set containing both superior and
inferior solutions when compared to regular Pareto dominance.
The inferior ones were usually far away from the approximated
front, indicating that R-dominance is indeed prone to errors in
case of unfortunate RP settings. In comparison, the proposed
dominance method was always able to approximate with reason-
able accuracy the part of the Pareto front, which DM specified by
means of given weight intervals.
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Fig. 24. Solutions (green dots) obtained by r-dominance with RP #5, § = 0.2

together with reference Pareto front (blue dots) and solutions by proposed
preference-based dominance (red dots).
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Fig. 25. Solutions (green dots) obtained by r-dominance with RP #6, § = 0.2

together with reference Pareto front (blue dots) and solutions by proposed
preference-based dominance (red dots).
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Fig. 26. Solutions (green dots) obtained by r-dominance with RP #1, § = 0.33
together with reference Pareto front (blue dots) and solutions by proposed
preference-based dominance (red dots).
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R-dominance, Scenario 1, ref. point #2 delta=0.33
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Fig. 27. Solutions (green dots) obtained by r-dominance with RP #2, § = 0.33

together with reference Pareto front (blue dots) and solutions by proposed
preference-based dominance (red dots).
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Fig. 28. Solutions (green dots) obtained by r-dominance with RP #3, § = 0.33

together with reference Pareto front (blue dots) and solutions by proposed
preference-based dominance (red dots).
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Fig. 29. Solutions (green dots) obtained by r-dominance with RP #4, § = 0.33
together with reference Pareto front (blue dots) and solutions by proposed
preference-based dominance (red dots).
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R-dominance, Scenario 1, ref. point #5 delta=0.33
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Fig. 30. Solutions (green dots) obtained by r-dominance with RP #5, § = 0.33

together with reference Pareto front (blue dots) and solutions by proposed
preference-based dominance (red dots).
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Fig. 31. Solutions (green dots) obtained by r-dominance with RP #6, § = 0.33

together with reference Pareto front (blue dots) and solutions by proposed
preference-based dominance (red dots).
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Fig. 32. Comparison of average MEWRA execution time (in seconds) in Sce-
nario 1 with regular dominance, r-dominance and proposed preference-based
Jominance.

5.4. Comparison of MEWRA execution time with regular dominance,
r-dominance and proposed preference-based dominance

Fig. 32 presents a comparison between execution time of the
weather routing tool (MEWRA) with three possible approaches to
Pareto dominance:

- regular dominance,
- r-dominance,
- the proposed dominance.

For all of them Scenario 1 has been run on a typical PC machine
(Intel i7-6700 2.6 GHz, 16 GB RAM, Windows 10 x64). It is worth
noting here that the majority of the computational time is spent
on determining objective values, especially on checking vessel
stability-related phenomena and bathymetric constraints. Those
processes will not be shortened by including DM preferences, as
long as the number of generations is constant (as it is in this
section).

As can be seen in Fig. 32, application of the proposed domi-
nance results in reduction of execution time by about 18% when
compared to regular Pareto dominance. On the average (com-
puted for the 6 RPs) r-dominance performs worse than the
regular domination, however, as presented in Fig. 33, execution
times for r-dominance differ significantly for various RP locations
(RP#1-RP#6). Execution time depends greatly on safety index
values of given RP: probably because safer routes are usually
longer and their constraint check takes more time. The shortest
execution time (even shorter than the average execution time
for the proposed method) was achieved for RP#1 and RP#4,
for which the assigned safety level is the lowest. However, in
these cases obtained objective values were quite poor (infe-
rior compared to the strict Pareto dominance and the proposed
preference-based dominance: Figs. 20, 23, 26 and 29).

The most conclusive are results obtained by the proposed
dominance and r-dominance for RP# 3 and RP#6. Both of these
RPs are located in the central region of the Pareto front and
their location corresponds well with the weight settings for the
proposed method. When comparing RP#3 and RP #6 r-dominance
time results with the proposed method, the latter is considerably
faster.

5.5. Conclusions from the comparison with r-dominance

When comparing the proposed preference-based dominance
with r-dominance, it might be concluded that the former is more
stable in terms of both the quality of results (objective values)
and execution times. R-dominance was occasionally able to out-
perform the proposed dominance (it achieved considerably better
objective values), but it happened at the cost of significantly or
even unacceptably worse results for some other cases. What is
interesting, the poor r-dominance results occurred not only for
unfortunate RP settings (which is understandable) but sometimes
even for very reasonably located RPs (in the middle or bottom
part of the Pareto front approximated by regular dominance).
While it does not disqualify r-dominance as a preference-based
method in EMO weather routing, it indicates that it requires
either very careful and knowledge-based RP selection or repeated
EMO runs with different RP settings. Finally, if both methods
target the same part of the Pareto front, the proposed one returns
results in a considerably shorter time.
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Average MEWRA execution time for r-dominance
(in seconds) in Scenario 1
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Fig. 33. Comparison of average MEWRA execution time (in seconds) in Scenario 1 with r-dominance and six different locations of the reference points (RP#1-RP#6)

as defined previously in Fig. 19.

6. Summary

Finding a balance between economy and safety in ship weather
routing (WR) obviously is one of the key ideas driving the IT
supported maritime industry. When the ship routing problem is
solved from the multi-objective Pareto perspective one gets as
a result a set of numerous non-dominated routes. Commonly, a
MCDM ranking method can be applied in the post-optimization
phase to select a single route that may be recommended to the
navigator. However, a well-grounded preference-based limitation
of the problem’s objective space may result in obtaining the
proper economy & safety balance much easier and consider-
ably faster. This is exactly what the paper offers: it introduces
weight intervals to the preference-based EMO and applies it to
the weather routing optimization problem. As a result the EMO
weather routing method is able to target a selected part of the
true Pareto front and approximate it with reasonable accuracy
in a shorter time. From the navigator’s or a ship-owner’s point
of view this is a significant advantage as they can enter their
preferences and simplify the final choice by limiting the returned
set routes. The paper makes an effort to meet user's needs
towards obtaining the balance determined by DM’s preferences.
As it is shown in the provided examples the solution is both easily
configurable and robust.

The proposed method has been compared with one of the
most successful reference point (RP) approaches to incorporating
DM'’s preferences — r-dominance. As it turned out, the proposed
approach can score better than r-dominance, because the lat-
ter method’s performance is heavily affected by the choice of
RP coordinates, which may be hard to specify in case of WR.
The above applies to the quality of results as well as execution
times of the compared approaches. It must be emphasized here
that the authors do not claim that the proposed approach is
in general competitive to other preference-based methods. But
it certainly has significant advantages in case of WR problem
and might also be an interesting choice in similar applications,
where environment dynamics make it impossible to rely on past
data and provide reasonable RPs. Moreover, typically for trade-
off approach, the proposed method is context-free as the input
weight intervals reflect only DM’s actual preferences without
involving DM’s assessment of what is feasible in a particular case.

Future plans to develop the research on preference-based EMO
with weight intervals applied to WR problem include changes
in the main optimization algorithm as well as the weather data
sources and handling those data by the method. As for the EMO
algorithm, SPEA 2 will be replaced with MOEA/D, due to the

latter’s better coverage of a Pareto front. In terms of weather data,
the current model will be replaced by GFS (for wind and waves),
RTOES (for ocean currents) and GWES (for ensemble forecasts of
significant wave height) models. Following this, further work will
aim at developing a prototype of an on-board decision support
system for route planning. It is expected that it should be possible
within the scope of the ROUTING project within next 18 months.
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Appendix A. Wind conditions forecasted for the voyages in
scenario 1 & scenario 2

This appendix presents wind forecast (speed and direction)
from NOAA Wave Watch IIIl model obtained for departure time
for the considered scenarios, namely:

1. Scenario 1: voyage Miami-Lisbon on 25th February 2017
at 00:00 UTC (see Fig. A.1).

2. Scenario 2: voyage Plymouth-Miami on 27th September
2013 at 00:00 UTC (see Fig. A.2).

The following subsections cover each of the scenario sepa-

rately. Apart from figures presenting wind forecasts there are also
available animation files in supplementary data.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.as0c.2019.105742.
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Fig. A.1. Wind conditions (speed & direction) forecasted for the voyage in Scenario 1: Miami-Lisbon, departure on 25th February 2017 at 00:00 UTC.
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Fig. A.2. Wind conditions (speed & direction) forecasted for the voyage in Scenario 2: Plymouth-Miami, departure on 27th September 2013 at 00:00 UTC.
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