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Abstract. In the paper we present an approach and results from application of
the modern power capping mechanism available for NVIDIA GPUs to the bench-
marks such as NAS Parallel Benchmarks BT, SP and LU as well as cublasgemm-
benchmark which are widely used for assessment of high performance computing
systems’ performance. Specifically, depending on the benchmarks, various power
cap configurations are best for desired trade-off of performance and energy con-
sumption. We present two: both energy savings and performance drops for same
power caps as well as a normalized performance-energy consumption product.
It is important that optimal configurations are often non-trivial i.e. are obtained
for power caps smaller than default and larger than minimal allowed limits. Tests
have been performed for two modern GPUs of Pascal and Turing generations i.e.
NVIDIA GTX 1070 and NVIDIA RTX 2080 respectively and thus results can be
useful for many applications with profiles similar to the benchmarks executed on
modern GPU based systems.

Keywords: performance/energy optimization, power capping, GPU, NAS Par-
allel Benchmarks

1 Introduction

In the paper, we present results of research on performance and energy aware optimiza-
tion of parallel applications run on modern GPUs under power capping. Power capping
has been introduced as a feature available for modern server, desktop and mobile CPUs
as well as GPUs through tools such as Intel’s RAPL, AMD’s APM, IBM’s Energyscale
for CPUs and NVIDIA’s NVML/nvidia-smi for NVIDIA GPUs [4,6].

We provide a follow up of our previous research [10,11] for CPU-based systems
aimed at finding interesting performance/energy configurations obtained by setting var-
ious power caps. Within this paper, we provide results of running selected and widely
considered benchmarks such as: NPB-CUDA which is an implementation of the NAS
Parallel Benchmarks (NPB) for Nvidia GPUs in CUDA [5] as well as cublasgemm-
benchmark [15]. We show that it is possible to obtain visible savings in energy con-
sumption at the cost of reasonable performance drop, in some cases the performance
drop being smaller than energy saving gains, percentage wise. Following work [3], we
could also observe gradual and reasonably slow drop of power consumption on a GPU
right after application has finished.



2 Related work

Our recent review [4] of energy-aware high performance computing surveys and re-
veals open areas that still need to be addressed in the field of energy-aware high per-
formance computing. While there have been several works addressing performance and
energy awareness of CPU-based systems, the number of papers related to finding op-
timal energy-aware configurations using GPUs is still relatively limited. For instance,
paper [8] looks into finding an optimal GPU configuration in terms of the number of
threads per block and the number of blocks. Paper [13] finds best GPU architectures in
terms of performance/energy usage.

In paper [12] authors have presented a power model for GPUs and showed aver-
aged absolute error of 9.9% for NVIDIA GTX 480 card as well as 13.4% for NVIDIA
Quadro FX5600, using RODINIA and ISPASS benchmarks. Furthermore, they pre-
sented that coarse-grained DVFS could achieve energy savings of 13.2% while fine-
grained DVFS 14.4% at only 3% loss of performance for workloads with phase be-
havior, exploiting period of memory operations. SM cluster-level DVFS allowed to de-
crease energy consumption by 7% for the HRTWL workload – some SMs become idle
at a certain point due to load imbalance.

Similarly, in [1] authors showed that by proper management of voltage and fre-
quency levels of GPUs they were able to reduce energy by up to 28% at the cost of
only 1% performance drop for the hotspot Rodinia benchmark, by a proper selection of
memory, GPU and CPU clocks, with varying performance-energy trade-offs for other
applications.

In [7], authors propose a GPU power model and show that they can save on aver-
age approximately 10% of runtime energy consumption of memory bandwidth limited
applications by using a smaller number of cores. Another model – MEMPower for de-
tailed empirical GPU power memory access modeling is presented in [14].

There are also some survey type works on GPU power-aware computations. Paper
[2] presents a survey of modeling and profiling methods for GPU power. Paper [16]
discusses techniques that can potentially improve energy efficiency of GPUs, including
DVFS, division of workloads among CPUs and GPUs, architectural components of
GPUs, exploiting workload variation and application level techniques.

Paper [17] explores trade-off between accuracy of computations and energy con-
sumption that was reduced up to 36% for MPDATA computations using GPU clusters.

There are relatively few works on power capping in CPU-GPU environments. Se-
lected works on load partitioning among CPUs and GPUs are discussed in [16]. Device
frequencies and task mapping are used for CPU-GPU environments in [9]. In paper
[18], desired frequencies for CPUs and GPUs are obtained with dynamic adjustment
for a GPU at application runtime are used for controlling power consumption.

3 Proposed approach

In our previous works [10,11] we investigated the impact on performance and energy
consumption while using power capping in modern Intel CPUs. We have used an Intel
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Running Average Power Limit (RAPL) driver which allows for monitoring CPU en-
ergy consumption and controlling CPU power limits through Model-Specific Registers
(MSR). Based on RAPL we have implemented an automatic tool called EnergyPro-
filer that allows for finding the energy characteristic of a device-application pair in a
function of power limit. We evaluated our prototype tool on several Intel CPUs and
presented that when we consider some performance impact and accept its drops power
capping might result in significant (up to 35% of) energy savings. We were also able to
determine such configurations of power caps that energy consumption is minimal for a
particular workload and also configurations where energy consumption and execution
time product is minimal. The latter metrics allow to find such power limits for which
the energy savings are greater than performance loss.

In this paper we adapt our approach to Nvidia GPUs. We use power limiting and
power monitoring features available in modern Nvidia graphic cards and extend En-
ergyProfiler to work on a new device type. Using the extended EnergyProfiler we can
investigate the impact of limiting the power on performance and energy consumption
on GPUs running HPC workloads.

3.1 Power capping API

The power management API available on Nvidia GPUs is included in Nvidia Manage-
ment Library (NVML). It is a C-based programmatic interface for monitoring and con-
trolling various states within NVIDIA GPUs. Nvidia also shared a command line utility
nvidia-smi which is a user friendly wrapper for the features available in NVML.

We based our prototype extension of EnergyProfiler on nvidia-smi. For con-
trolling the power limit there is command nvidia-smi -pl <limit> available.
The limit that we can set must fit into the range between minimal and maximal power
limit which are specific for the GPU model. Monitoring and reporting the total energy
consumption had to use quite a different approach than in our previous work as the
NVML allows for reading the current power consumption while Intel RAPL lets the
user to read the counters representing energy consumed. That caused that for evaluating
the energy consumption of GPU running our testbed workload we needed to integrate
the current power readings gathered while test run. Therefore, we estimated the total
energy consumption as a sum of current power readings and sampling period products.

To monitor the power the nvidia-smi dmon -s p -o T -f <filename>
was used. The parameter -s p specifies that we observe power and temperature, the
parameter -o T adds the time point to each entry reported and the parameter -f
<filename> stores the output of dmon to a file specified by <filename>.

The prototype extension of the EnergyProfiler tool runs a given application in par-
allel with the dmon, when the testbed application finishes, the tool analyses the log file
and reports the energy consumption and the average power. Unfortunately, the minimal
value of a sampling period in nvidia-smi dmon is 1 second, which means that the
measurements might be inaccurate for the last sample which is taken always after the
testbed application has finished.

For the testbed workloads with a really short execution time such an error would
be unacceptable. In our experiments we have used workloads for which execution time
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varies from 20 to 200 seconds which means that the maximal error of energy con-
sumption readings is less than 5% and the minimal error for the longest test runs is
less than 0.5%. The execution time reported is based on precise measurements using
std::chrono::high_resolution_clock C++11 library.

3.2 Methodology of tests

The methodology of our research is similar as in [11]. We run the testbed application
automatically for different values of power limit and read the execution time, the total
energy consumption and the average power for the run. For each power limit we execute
a series of five test runs and average the result. We observed that when Nvidia GPU
temperature raises the energy consumption and average power for the same power limit
settings is higher. To eliminate the impact of that phenomenon on our test runs firstly
we execute a series of dummy tests which warm the GPU up. This ensures the same
conditions for all test runs regardless of the position in a sequence.

In contrast to CPU, where the default settings is no power cap, on the GPU the
default power limit is lower than the maximal available power limit. Another difference
is that on Intel CPUs it is possible to force the power cap which is lower than the idle
processor power request while on Nvidia GPU has the minimal power limit defined
relatively high. Therefore, we run a series of tests starting from the maximum power
limit with a 5W step until we reach the minimal possible power limit. We refer the
results of energy consumption for each result to the values obtained for the power limit
set to the default value. For instance, for the Nvidia GeForce RTX 2080 the maximal
power limit is 240W, the minimal power limit is 125W and the default power limit is
215W.

4 Experiments

4.1 Testbed GPUs and systems

The experiments have been performed on two testbed systems with modern Nvidia
GPUs based on Pascal and Turing architecture. The first tested GPU is Nvidia GeForce
GTX 1070 (Pascal architecture) with 1920 Nvidia CUDA cores with 1506 MHz base
Core frequency, 8 GB of GDDR5 memory and Power Limit range between 95W and
200W. The other system is equipped with Nvidia GeForce RTX 2080 (Turing) with
2944 Nvidia CUDA cores with 1515 MHz base Core frequency, 8 GB of GDDR6
memory and Power Limit Range between 125W and 240W. Table 1 collects all details
including CPU models and CUDA version used in both testbed systems.

4.2 Testbed applications and benchmarks

For the experiments we have selected four representative computational workloads with
different computation intensity. Three of the testbed applications were selected from
the well known NAS Parallel Benchmark (NPB) collection implemented in CUDA to
be used on GPU [5].
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Table 1: Testbed environments used in the experiments
System CPU model GPU model RAM CUDA

version
GPU Default
Power Limit

GPU Power
Limit range

GTX Intel R© Core R©

i7-7700 (Kaby
Lake)

Nvidia GeForce
GTX 1070 (Pascal)

16 GB 10.0 190W 95W - 200W

RTX Intel R© Xeon R©

Gold 6130
(Skylake-X)

Nvidia GeForce
RTX 2080 (Turing)

32 GB 10.1 215W 125W - 240W

The kernels that were used for the tests included: Block Tri-diagonal solver (BT),
Scalar Penta-diagonal solver (SP) and Lower-Upper Gauss-Seidel solver (LU). Simi-
larly as in the CPU version, GPU NPB may also be run for various input data sizes
represented by classes A, B, C, D, E, S and W. Classes A, B, W and S were not pre-
ferred in our experiments as the execution times of the kernels with such input data size
were too short and - as it was mentioned in the previous section, we could not accept
the measurement error caused by minimal sampling resolution equal to 1s. On the other
hand classed D and E were not able to allocate enough data space due to GPU mem-
ory limitations. We decided to use all of three kernels with the same input data size –
class C.

The fourth application used in the experiments was cublasgemm-benchmark [15]
implementing General Matrix Multiplication (GEMM) kernel. We have modified the
benchmark application to execute a series of 10 matrix multiplication (MM) operations
with given square matrix size. To fulfill our requirement regarding long enough testbed
application execution times we decided to use the input square matrix sizes of at least
16384x16384. Due to GPU memory limitations for the system with the GTX card the
maximal matrix size we were able to run was only 24576x24576. For the RTX system
we could run 32768x32768.

The total execution times (t) as well as total energy (E) and average power (P) con-
sumed by each of aforementioned applications run on both testbed systems (GTX and
RTX) in the default configuration of Power Limit were collected in Table 2. These val-
ues were our baseline for the relative energy savings and performance drop calculations.

4.3 Tests results

The test results presented in the figures are organized in columns which represent the
testbed workload type (GEMM for various matrix size on the left and NPB kernels
on the right) and in rows which represent the observed physical magnitudes in the or-
der as follows: relative Energy savings evaluated in percent, relative performance drop
evaluated in percent, normalized energy-time product and the total average power con-
sumption. Each figure in one column has the same horizontal axis which is the Power
Limit level evaluated in Watts. All relative results are compared to the results obtained
for the default Power Limit which is 190W for GTX and 215W for RTX system. It is
important to note that GEMM and NPB kernels present different power usage profiles.
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Table 2: Baseline values of total execution time, total energy and average power con-
sumption for the default Power Limit settings.

System GTX RTX
App t [s] E [J] P [W] t [s] E [J] P [W]
BT 150,1 13493 87,6 73,9 14851 198,0
LU 44,4 3756 87,4 27,35 4972 184,2
SP 24,2 2518 109,5 17,24 3345 196,8

16k 34,3 3030 91,8 26,3 3213 123,6
GEMM 24k 94,9 8696 89,7 69,2 8767 125,2

32k - - - 194,7 27295 135,8

While NPB kernels begin the computation right after the application started, GEMM
execution has two clear phases differing in power consumption level. The initial phase
is a data preparation phase and the latter is actual MM computation phase. Both phases
significantly differ in power consumption which is illustrated in Figure 1 where sam-
ple series of test runs with different Power Limit have been presented. The sample we
present was collected on the RTX system for GEMM size 16384 and NPB BT kernel.

Fig. 1: Sample series of test runs with different Power Limit on RTX system.

Figure 2 presents results obtained for the first testbed system with the GTX 1070
GPU. For GEMM we observed the impact of limiting for the values below 150W. Above
150W the limit is neutral for the computations as the maximum spike power consumed
by GEMM on GTX was around 148W. For the lower Power Limit levels we can ob-
serve a linear falloff in power consumption. The energy consumption is also decreasing
and the maximal energy saving that we could reach for that application-device pair
was 15%. That value corresponded with less than 10% of performance drop and was
obtained for the power limit value of 110W. Below that value the energy savings are
also observable but the benefits of limiting the power consumption are worse as the
performance drops even more (up to 20%) while only 10% of energy can be saved.

While the clear energy consumption minimum seem to be found at 110W, the other
target metric suggests that a better configuration would be to set the limit between
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115W and 120W. With such a scenario we are able to save almost 13% of energy while
sacrificing only 5-6% of performance.

The results for NPB kernels obtained on GTX system are less impressive mostly
because the power consumption values while executing these testbed workloads were
close or even below the minimum Power Limit level possible to be set on GTX 1070.
Only for the SP kernel we can observe some interesting level of energy savings up to
17% for the lowest value of limit. What is more interesting is that the energy was saved
with no cost as the performance has not dropped. This might mean that the Base Core
frequency which is lowered while limiting the power has no meaningful impact on the
SP execution time so the boundary in that case was memory speed.

Fig. 2: Results of tests for GTX 1070 for three different problem sizes of GEMM kernel
(left charts) and for three NAS Parallel Benchmarks applications run with problem size
class C (right charts).

Figure 3 presents results obtained for the testbed system with RTX 2080 GPU. With
the same testbed workload RTX system present different energy characteristics than
GTX system. Firstly what we observed is that none of the testbed workloads’ average
power consumption with default settings is below the minimal Power Limit available
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Fig. 3: Results of tests for RTX 2080 for four different problem sizes of GEMM kernel
(left charts) and for three NAS Parallel Benchmarks applications run with problem size
class C (right charts).

one RTX system (125W). This implies having more abilities to adjust the power and
energy consumption level.

For GEMM we observe a linear falloff in power consumption in the whole available
power limit range. For the same matrix sizes as was used in GTX system we observe
similar energy characteristics with clear energy minimum (up to 15% of energy saved)
for the limits in range 140W - 160W and corresponding performance drop less than
10%. On the other hand, the other target metric which is energy-time product suggests
its minimum for the Power Limit in range 160W - 170W where we save up to 10% of
energy loosing only 5% of performance. More interesting results were observed for the
matrix size that was possible to run only on the RTX system which is 32786x32786.
When the input data size was increased the energy savings are reaching 25% while the
corresponding performance drop is only 10%. We see that the performance characteris-
tics slope is less than for the smaller matrices so the energy savings are more profitable.
This may suggest that for big input data when the memory is a bottleneck lowering the
power using Power Limits available on the Nvidia GPUs is a really good way to lower
the costs of computations.
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For all three NPB kernels we observed similar energy characteristics which shows
that below the 200W Power Limit we obtain stable reduction of energy consumption
with the maximum 30% of energy savings. The performance drop for that type of
testbed workloads seem to encourage for limiting the power as its maximal value is
only 12% and was observed only for the BT kernel. We see that for SP and LU kernels
the performance drops are much smaller, even close to 0%. This confirms the observa-
tions from the GTX system which may suggest that the NPB kernels are more memory
than computation bound.

5 Conclusions and future work

Our research presented in this paper showed that it is possible and even worth to lower
the energy consumption by using software power caps in modern HPC systems. After
our first research focused on Intel CPUs [10,11] we tested another popular in HPC man-
ufacturer and devices: Nvidia’s GPUs. Using various testbed workloads with different
input data size, different computation intensity and also non trivial power consumption
profile we tested two modern Nvidia’s GPUs.

Our research showed that:

1. depending on the workload type it is possible to reach up to 30% of energy savings
using Power Limits available on Nvidia’s GPUs while corresponding performance
drop evaluated in percent is usually smaller than benefits of lowering the costs,

2. power limiting in order to minimize the costs is a non-trivial task as the Power
Limits for which we observed the maximum of energy savings was specific to the
application-device pair and was not the minimal possible Power Limit value what
could suggest the intuition,

3. the second target metric we used – energy-time product, allows for finding even
more profitable configurations of Power Limits as the energy savings are close to
maximal possible but the performance drop is significantly lower.

In the future we plan to extend out research with more tests with other types of
workloads specific to GPU Deep Learning benchmarks or training. We also aim at a
hybrid power capping approach (RAPL + NVML) for hybrid applications run on hybrid
(Intel CPU + Nvidia GPU) systems.
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