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Efficient Finite Element Analysis of Axially
Symmetrical Waveguides and Waveguide
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Abstract—A combination of the body-of-revolution and finite
element methods is adopted for full-wave analysis of waveguides
and waveguide discontinuities involving angular field variation.
Such an approach is highly efficient and much more flexible than
analytical techniques. The method is performed in two different
cases: utilizing a generalized impedance matrix to determine
the scattering parameters of a single waveguide section, and
utilizing periodic boundary conditions without sources. In order
to confirm the validity and efficiency of both approaches a few
examples of axially symmetrical structures have been analyzed.
The obtained results are compared to those obtained from
commercial software and available in the literature.

Index Terms—Cylindrical waveguides, Dispersion diagrams,
Finite element method, Generalized impedance matrix, Meta-
materials, Periodic boundary conditions.

I. INTRODUCTION

AXIALLY symmetrical structures (see. Fig. 1) have been
widely used in microwave technology and optics for

many years. For instance, cylindrical waveguides containing
different types of discontinuities are commonly applied in pas-
sive filtering devices [1]–[4]. In the last few decades, periodic
structures known as electric or photonic band-gap materials
have also become very popular due to their wide practical
applications. Such structures can support left-handed waves
as well as backward and slow waves. The specific properties
of these systems can be utilized for miniaturization of waveg-
uides or modification of their operating band [5]–[9]. Special
attention should also be given to their application in electron
beam devices such as gyrotrons, magnetrons, travelling-wave
tubes, backward-wave oscillators, gyro-travelling-wave tubes
and accelerators, where the structure is composed of periodic
metal-dielectric layers [10], [11]. The interaction of an electron
beam with the fields supported in a slow-wave structure gives
these structures potential for THz devices.

For a structure with a simple geometry an analytical method
(e.g. mode matching) can be applied [7], [8], however in
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Fig. 1. Axial cross section of (a) Microwave filter (b) Slow-wave periodic
structure (c) Circular waveguide with electron beam.

many practical cases such an approach is not sufficiently
flexible. More sophisticated techniques, e.g. boundary integral-
resonant-mode expansion (BI-RME) [12], [13], can be used
for more complicated geometries, however their application is
less general than discrete numerical techniques, which have
recently become the most popular analysis methods. Usually,
commercial full-wave simulators based on the finite difference
(FD) or finite element method (FEM) require a discretization
of the whole three dimensional computational domain inside
the structure. For complex geometries, especially containing
thin metal-dielectric layers, the discretization must be fine,
which results in time and memory-consuming analysis. In such
cases the optimization of the structure (which requires many
simulations for different parameters) can be inefficient.

It is well known that the structures of axial symmetry can
be analyzed much more simply, taking advantage of the fixed
angular variation of the fields - Body-Of-Revolution (BOR).
This feature is widely described in the literature and applied
for many different issues involving radiation, propagation
and scattering problems [5], [14]–[20], and for FEM [21]–
[31]. However, to the authors’ best knowledge, the BOR
approach for periodic and quasi-periodic guiding structures
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has not been presented in combination with FEM. A recently
published paper [6] considers this problem only for the case
with no angular variation (suggesting that the generalization
to arbitrary variation is not possible) which is useless from a
practical point of view.

In this paper, a combination of BOR and FEM is adopted for
full-wave analysis of waveguides and waveguide discontinu-
ities (involving angular field variation, in opposite to [6]). Such
an approach is highly efficient and much more flexible than
analytical techniques. The proposed method is performed in
two different cases. The first involves a generalized impedance
matrix (GIM) to determine the scattering parameters of a
single waveguide section. Such results can be used to analyze
structures composed of the same or different sections (involv-
ing quasi-periodic or even periodic structures). The second
method, based on periodic boundary conditions and no sources
(modal analysis), can be applied to periodic structures, and
becomes more efficient than the first for short and complex
sections.

In order to confirm the validity and efficiency of both
approaches, a few examples of axially symmetrical structures
have been analyzed. The obtained results have been compared
with those obtained from commercial software and available
in the literature.

It is worth noting that the proposed approach can be easily
combined with techniques which can significantly improve
the efficiency of the analysis and optimization process. One
example is the model order reduction [32], which is useful
when the analysis is performed in a wide frequency band.
Another example is based on a hybridization of the FEM with
modal expansion techniques and utilizing surface impedance.
If the structure involves homogeneous regions, then the field
inside these regions can be expressed in analytical terms,
which also improves the efficiency of the simulation [6], [33],
[34]. Moreover, in the optimization process mesh morphing
algorithms [35] can be applied to avoid step changes in the
results caused by slight modifications of the generated mesh
for different simulation parameters.

II. FORMULATION OF THE PROBLEM

Symmetric structures have some special features that can
be used to improve the efficiency of analysis. In this article,
a section of a cylindrical waveguide with a symmetry axis
is considered. In this case, the structure can be analyzed in
cylindrical coordinates in a two dimensional domain (ρ, ϕ)
which is ”rotated” around the mentioned axis (see Fig. 2).
The variation of the electric (and magnetic) field along ϕ can
be expressed as

~E(ρ, ϕ, z) = ~E(ρ, z)ejmϕ, (1)

where m is an arbitrary integer number (mode number). For
the investigated axially symmetrical structures the analysis can
be performed separately for each m.

In the first step, the fields must be separated into two com-
ponents ~Eϕ(ρ, z) = Eϕ(ρ, z)~iϕ and ~Et(ρ, z) = Eρ(ρ, z)~iρ +

Ez(ρ, z)~iz . Then, directly from the Maxwell equations one
obtains:

~∇t ×
(
µ−1r ~∇ϕ × ~Et

)
+ ~∇t ×

(
µ−1r ~∇t × ~Eϕ

)
−k20εr ~Eϕ = 0 (2)

and

~∇t ×
(
µ−1r ~∇t × ~Et

)
+ ~∇ϕ ×

(
µ−1r ~∇t × ~Eϕ

)
+~∇ϕ ×

(
µ−1r ~∇ϕ × ~Et

)
− k20εr ~Et = 0 (3)

where the operators ~∇t = ~iρ
∂
∂ρ + ~iz

∂
∂z and ~∇ϕ = ~iϕ

∂
∂ϕ .

The relative permittivity and permeability of the structure are
represented by εr and µr, respectively, and k0 is a vacuum
wavenumber. A weak form of the considered problem can
be obtained (similarly to [33], [34]), taking into account
assumption (1), for scalar component Eϕ(ρ, z)

−
∫∫
S

jm

ρ

[
~∇t(ρFϕ) · µ−1r ~Et

]
dρdz

−k20
∫∫
S

ρFϕεrEϕ dρdz

+

∫∫
S

1

ρ

[(
~∇t(ρFϕ)

)
·
(
µ−1r ~∇t(ρEϕ)

)]
dρdz

+jωµ0

2∑
p=1

∫
Lp

Fϕ(~iϕ × ~Hp
t ) ·~ipρdρ = 0 (4)

and for vector component ~Et(ρ, z)∫∫
S

ρ(~∇t × ~Ft) · (µ−1r ~∇t × ~Et) dρdz

−k20
∫∫
S

ρ ~Ft · εr ~Et dρdz

+

∫∫
S

jm

ρ
~Ft ·
[
µ−1r

~∇t(ρEϕ)
]
dρdz

+

∫∫
S

m2

ρ
~Ft · (µ−1r ~Et) dρdz

+jωµ0

2∑
p=1

∫
Lp

ρ(~Ft × ~Hϕ) ·~ipdρ = 0. (5)

where Fϕ and ~Ft are testing functions. The computational
domain S is bounded by L, which consists of two ports,
L1 and L2, the axis of the structure La and the waveguide
boundary Lb (see Fig.2). The unit vectors ~ip are normal
(outside) to the ports’ cross sections, and functions ~Hp

t and
~Hp
ϕ represent excitation in these ports.

A. Calculation of Scattering Parameters with the Use of GIM

The main idea of the GIM is based on finding the relation
between the electric and magnetic fields at the ports of the
structure. Let us assume that the fields at the ports are
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Fig. 2. Example of a two-dimensional computational domain for BOR
combined with FEM.

expressed by the modal basis obtained for the regular circular
waveguide

~Epξ =

Q∑
q=1

(V TE,pq ~eTE,pξ,q + V TM,p
q ~eTM,p

ξ,q ), (6)

~Hp
ξ =

Q∑
q=1

(ITE,pq
~hTE,pξ,q + ITM,p

q
~hTM,p
ξ,q ), (7)

where Q is the number of modes considered in the ports,
p = {1, 2} is a port number, and ~e (·),p

ξ,q and ~h(·),pξ,q are defined
in Appendix A for ξ = {t, ϕ}. In such a case any electric field
at the ports is unambiguously defined by the set of coefficients
V = [V1,V2]T , where

Vp = [V TE,p1 , . . . , V TE,pQ , V TM,p
1 , . . . , V TM,p

Q ]T (8)

and similarly a magnetic field by set I = [I1, I2]T , where

Ip = [ITE,p1 , . . . , ITE,pQ , ITM,p
1 , . . . , ITM,p

Q ]T . (9)

Hence, the GIM represented by matrix Z is the relation
between these coefficients:

V = ZI. (10)

In order to obtain this matrix the FEM can be utilized, as has
been widely described in the literature [33], [36].

Let us assume that the electric field in the discretized region
can be expressed utilizing standard hierarchical (scalar and
vector) basis functions [37] α[n]

(·) and ~W
[n]
(·) of the second order:

Eϕ =

N∑
n=1

6∑
i=1

Ψ
[n]
(i)α

[n]
(i) ,

~Et =

N∑
n=1

8∑
i=1

Φ
[n]
(i)
~W

[n]
(i) , (11)

where n = 1, . . . , N is the element number with N being the
total number of elements, i represents the local node/edge,
and Ψ

[n]
(i) and Φ

[n]
(i) are unknown coefficients for the scalar and

vector components, respectively. Starting from the weak form
of the problem (4) and (5) a simple system of equations can
be obtained (in analogy to [33]):

G

[
Φ
Ψ

]
= jωµ0BI, (12)

where global matrices G and B can be obtained from the
aggregation of proper local matrices [33]:

G[n] =

[
G

[n]
t,t G

[n]
t,ϕ

G
[n]
ϕ,t G

[n]
ϕ,ϕ

]
(13)

and

B[n] =

[
B

[n],1
t,TE B

[n],1
t,TM B

[n],2
t,TE B

[n],2
t,TM

B
[n],1
ϕ,TE B

[n],1
ϕ,TM B

[n],2
ϕ,TE B

[n],2
ϕ,TM

]
, (14)

where the submatrices are described in Appendix B.
From the projection of the electric field at the ports on the

basis (7), another simple system of equations can be obtained

BH

[
Φ
Ψ

]
= ∆V, (15)

where

∆ = diag{∆TE
1 ,∆TE

2 , . . . ,∆TM
1 ,∆TM

2 , . . . } (16)

and

∆(·)
q =

∫
L

(
~e

(·)
t,q + ~e (·)

ϕ,q

)
·
(
~h
(·)
t,q + ~h(·)ϕ,q

)∗
ρdρ. (17)

Finally, the relations (12) and (15) can be combined into a
single formula:

jωµ0B
HG−1BI = ∆V, (18)

which determines the GIM as follows:

Z = jωµ0∆
−1BHG−1B. (19)

From the above GIM Z, a multi-mode scattering matrix
S of the waveguide section can be obtained [38]. Both Z
and S are of dimensions 4Q × 4Q (Q modes for TE and
TM for each port). Next, such a matrix can be utilized to
construct more complicated structures composed of the same
or different sections (eg. periodic/quasi-periodic structures or
waveguide filters). In the case of periodic structures, the simple
rule described in [39] can be applied to find the structure
propagation coefficients from the scattering matrix of a unit
cell, which boils down to solving a matrix eigenvalue problem
with respect to the propagation coefficient. In the case of other
filtering structures, a cascading formula of multimode scatter-
ing matrices [40] can be utilized to calculate the structure
responses.

B. Periodic Boundary Conditions with No Sources

In some cases, especially for periodic structures with short
unit cell sections with complex geometry, the approach pre-
sented in the previous paragraph can be inefficient or even
ineffective due to the huge number of modes required to
properly describe a waveguide section. In such a case, the
scattering matrix can be numerically ill-conditioned and it is
better to introduce periodic boundary condition (PBC), which
does not involve modal expression of the fields in the ports.

The implementation of PBC is based on the elimination of
the sources in (12)

G

[
Φ
Ψ

]
= 0 (20)
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and requires a rearrangement of the unknown variables in
vectors Φ and Ψ (similarly to the approach proposed in [21]).
The fields at the left port (L1) are denoted by ΦL and ΨL,
whereas at the right port (L2) by ΦR and ΨR. Moreover, they
are linked by the following relation[

ΦR

ΨR

]
=

[
ΦL

ΨL

]
e−γp, (21)

where γ = α+ jβ represents the propagation coefficient and
p the length of the unit cell (the period). The other elements of
the vectors Φ and Ψ must also be segregated into two groups.
The first one contains fields inside the numerical domain ΦI

and ΨI , the second one fields at the boundary described by
Dirichlet conditions ΦD and ΨD (which eventually can be
neglected). Finally, the system (20) can be reformulated to a
more convenient matrix equation:


GII GIL GIR GID

GLI GLL GLR GLD

GRI GRL GRR GRD

GDI GDL GDR GDD





ΦI

ΨI

ΦL

ΨL

ΦR

ΨR

ΦD

ΨD


= 0. (22)

After some algebra, involving relation (21), the above system
can be reduced to a simple generalized matrix eigenvalue
problem

[
GII GIL

GRI 0

]
ΦI

ΨI

ΦL

ΨL

 = −e−γp
[

0 GIR

GLI GLL + GRR

]
ΦI

ΨI

ΦL

ΨL

 .
(23)

A solution of this problem provides the characteristic dis-
persion of the considered mode and the corresponding field
distribution inside the structure.

III. NUMERICAL RESULTS

In order to confirm the validity of the proposed approach
three structures of different geometries were examined (see
Fig. 3). The algorithm was implemented in the Matlab envi-
ronment, and all of the tests were performed using an Intel(R)
Core i7-2600K CPU 3.40 GHz, 16 GB RAM computer. The
results were validated by comparison with those obtained from
commercial software and the literature.

The first considered structure was a periodic waveguide
whose axial cross sections are presented in Fig. 3(a), and the
dimensions are p = 13.1125 mm, a = 50 mm, p1 = 2.6225
mm, p2 = 7.8675 mm, h1 = 2.025 mm and h2 = 6.075 mm.
The structure is presented in [6], however only for m = 0
since the authors claim that a two-dimensional analysis is
not sufficient for m 6= 0 and it requires three dimensional
discretization. As is shown here, this requirement is unnec-
essary and the dispersion characteristics (for different values
of m) obtained from the proposed approach are presented in
Fig. 4. The simulation was performed for a 2D mesh composed
of N = 2416 triangular elements involving PBC and GIM
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Fig. 3. Axial cross sections of single cells in the considered structures.
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Fig. 4. Dispersion characteristics of periodic structure composed of cells
presented in Fig. 3(a) (GIM - red line, PBC - red circles, HFSS - green
diamonds, [6] - blue triangles).

approaches, with the use of Q = 10 modes for GIM, which
was sufficient to obtain accurate results. The increase of mesh
density and number of modes does not significantly reduce
the convergence error but increases the analysis time. The
results are compared with those obtained from the HFSS 3D
commercial software and with those from [6] for m = 0.
All of the results are in excellent agreement, however the
computational time of 2D analysis was shorter by about two
orders of magnitude than the full 3D simulation.

As the second example, a dielectric and metal-loaded pe-
riodic circular waveguide [8] was considered (see Fig. 3(b))
for two different unit cell lengths p. The dimensions of this
structure are as follows a = 9 mm, h = 3 mm, p = 0.5
mm or p = 10 mm, p1 = 0.1p and the relative permittivity
of the dielectric is εr = 15. In the cases of p = 0.5
mm, due to the short length of the unit cell, the approach
involving GIM is ineffective. The high complexity of the
fields at the ports requires a huge number of modes and the
computation of the scattering matrix can be numerically ill-
conditioned so it is better to introduce PBC, which does not
involve modal expressions of the fields in the ports. The results
presented in Fig. 5 obtained in the analysis involving PBC
(with N = 1060 for p = 0.5 mm triangular elements - see
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Fig. 5. Dispersion characteristics of periodic structure composed of cells
presented in Fig. 3(b) for different unit cell lengths: p = 0.5 mm (PBC -
crosses, [8] - downward pointing triangles), p = 10 mm (GIM - solid line,
PBC - circles, [8] - upward pointing triangles).

Fig. 6. Meshes for the structure presented in Fig. 3(b) for different unit cell
lengths: p = 10 mm and p = 0.5 mm.

Fig. 6) are in excellent agreement with those obtained with
the mode matching technique and verified experimentally in
[8]. For longer cells (p = 10 mm) in the periodic structures
it was sufficient to utilize Q = 10 modes for GIM analysis to
obtain consistent results (with N = 4799 triangular elements).

The last structure was a corrugated empty waveguide with
rounded edges, as is shown in Fig. 3(c). Such common guides
are usually considered only for sharp edges [4] even though the
roundings are very important from a practical point of view
(for example, due to the manufacturing technology or high
power transmission). The analysis was performed for a = 25
mm, h = 11 mm, d = 5 mm, p = 15 mm and different values
of radii: r = 0 mm (with N = 1561 triangular elements)
and r = 2.38 mm (with N = 1850 triangular elements).
The scattering matrix for (Q = 6 modes) obtained using
the GIM approach agrees very well with the one from the
3D InventSim analysis - scattering parameters for TE11 are

Fig. 7. Scattering parameters of TE11 mode for a single cell from Fig. 3(c)
and different rounding radii: r = 0 mm (GIM - solid line, InventSim -
squares), r = 2.38 mm (GIM - dashed line, InventSim - diamonds).

Fig. 8. Normalized propagation coefficients versus frequency for the periodic
structure from Fig. 3(c) and different rounding radii: r = 0 mm (GIM - solid
line, PBC - circles), r = 2.38 mm (GIM - dashed line, PBC - crosses).

presented in Fig. 7. Also, the results obtained in the analysis
of the periodic structure involving both GIM and PBC methods
are in excellent agreement (see Fig. 8). As can be seen, the
roundings can significantly affect the dispersion characteristics
of this simple structure (e.g. modifying its bands). Similarly
to the previous examples the computation time in the case of
2D analysis was about two orders of magnitude shorter than
in commercial software.

IV. CONCLUSION

A two-dimensional FEM has been utilized to investigate
axially symmetrical guiding structures. The utilization of BOR
significantly improves the efficiency of the discrete analysis
reducing the computational time by up to two orders of
magnitude. This attribute makes this technique comparable
to the analytical approaches while maintaining great flexi-
bility of the algorithm with respect to structure geometry.
The proposed approaches allow the study of periodic/quasi-
periodic structures as well as whole devices composed of
different waveguide sections. The validity and efficiency of
the presented technique have been verified, which confirms its
usefulness for the design and optimization process.
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APPENDIX A
THE ELECTRIC AND MAGNETIC FIELDS IN A

HOMOGENEOUS CIRCULAR WAVEGUIDE

In order to create a proper basis (7) for GIM definition
the following field distributions in a homogeneous circular
waveguide are required. For TE modes:

~eTE,pt,q =
ωµm

κ′2qρ
Jm(κ′qρ)~iρ,

~eTE,pϕ,q =
jωµ

κ′q
Jm(κ′qρ)~iϕ,

~hTE,pt,q = −
γ′q
κ′q
J ′m(κ′qρ)~iρ + Jm(κ′qρ)~iz,

~hTE,pϕ,q = −
jmγ′q

κ′2qρ
J ′m(κ′qρ)~iϕ

and for TM modes:

~eTM,p
t,q = −γq

κq
J ′m(κqρ)~iρ + Jm(κqρ)~iz,

~eTM,p
ϕ,q = −jmγq

κ2qρ
Jm(κqρ)~iϕ,

~hTM,p
ϕ,q = −jωε

κq
J ′m(κqρ)~iϕ,

~hTM,p
t,q = −mωε

κ2qρ
Jm(κqρ)~iρ.

Parameters κq and κ′q represent the sequential roots of the
Bessel function of order m and the roots of its derivative,
respectively, divided by the waveguide radius.

APPENDIX B
DETAILED FORM OF THE LOCAL FEM MATRICES

The local matrices in equation (13) have the following form:[
G

[n]
t,t

]
k,i
=

∫∫
S[n]

(
~∇t × ~W

[n]
(k)

)
·
(
µ−1r

~∇t × ~W
[n]
(i)

)
ρdρdz

−k20
∫∫

S[n]

~W
[n]
(k) · ε̄r ~W

[n]
(i) ρdρdz

+

∫∫
S[n]

m2

ρ
~W

[n]
(k) ·

(
µ−1r ~W

[n]
(i)

)
dρdz,[

G
[n]
t,ϕ

]
k,i
=

∫∫
S[n]

jm

ρ
~W

[n]
(k) ·

(
µ−1r

~∇t(ρα[n]
(i))
)
dρdz,[

G[n]
ϕ,ϕ

]
k,i
=

∫∫
S[n]

1

ρ
~∇t(ρα[n]

(k)) ·
(
µ−1r ~∇t(ρα[n]

(i))
)
dρdz

−k20
∫∫

S[n]

α
[n]
(k)εrα

[n]
(i)ρdρdz,[

G
[n]
ϕ,t

]
k,i
= −

∫∫
S[n]

jm

ρ
~∇t(ρα[n]

(k)) · µ
−1
r
~W

[n]
(i) dρdz,

whereas local matrices in (14) are defined by[
B

[n],p
t,TE

]
k,q

=

∫
L∩L[n]

~W
[n]
(k) · (~ip × ~h

TE,p
ϕ,q )ρdρ,[

B
[n],p
t,TM

]
k,q

=

∫
L∩L[n]

~W
[n]
(k) · (~ip × ~h

TM,p
ϕ,q )ρdρ,[

B
[n],p
ϕ,TE

]
k,q

=

∫
L∩L[n]

α
[n]
(k)
~iϕ · (~ip × ~hTE,pt,q )ρdρ,[

B
[n],p
ϕ,TM

]
k,q

=

∫
L∩L[n]

α
[n]
(k)
~iϕ · (~ip × ~hTM,p

t,q )ρdρ.
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