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Within the new model of surface elasticity, the propagation of anti-plane surface waves is 
discussed. For the proposed model, the surface strain energy depends on surface stretching and 
on changing of curvature along a preferred direction. From the continuum mechanics point of 
view, the model describes finite deformations of an elastic solid with an elastic membrane 
attached on its boundary reinforced by a family of aligned elastic long flexible beams. Physically, 
the model was motivated by deformations of surface coatings consisting of aligned bar-like 
elements as in the case of hyperbolic metasurfaces. Using the least action variational principle, 
we derive the dynamic boundary conditions. The linearized boundary-value problem is also 
presented. In order to demonstrate the peculiarities of the problem, the dispersion relations for 
surface anti-plane waves are analysed. We have shown that the bending stiffness changes 
essentially the dispersion relation and conditions of anti-plane surface wave propagation.

This article is part of the theme issue ‘Modelling of dynamic phenomena and localization in 
structured media (part 2)’.

1. Introduction
Recent advances in design, modelling and manufacturing of light and sound-absorbing/reflecting, 
super-hydrophobic, superoleophobic and other microstructured coatings resulted in the 
appearance of a new class of metamaterials called metasurfaces, e.g. [1–7]. These

Postprint of: Eremeyev VA. 2019 Strongly anisotropic surface elasticity and antiplane surface waves. 
Phil. Trans. R. Soc. A 378: 20190100. DOI: 10.1098/rsta.2019.0100

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2019.0100&domain=pdf&date_stamp=2019-11-25
mailto:eremeyev.victor@gmail.com
http://orcid.org/0000-0002-8128-3262
http://dx.doi.org/10.1098/rsta.2019.0100


coatings have rather complex geometry as they may consist of periodic or disordered lattice-like
patterns formed on a surface. Continuum mechanics-based modelling of such surface-enhanced
materials requires an adequate effective surface medium theory.

Among the models of surface elasticity, it is worth to mention the ones by Gurtin–Murdoch
[8,9] and by Steigmann–Ogden [10,11], which are widely used at the micro- and nanoscale,
e.g. [12–16]. In order to capture more complex material behaviour, some further extensions of
surface/interfacial elasticity were proposed in [17–20].

The above-mentioned models of surface elasticity are based on the so-called direct approach,
where we introduce additional constitutive relations defined at the surface or interface
independently of the constitutive relations in the bulk. Another microstructural approach is based
on the consideration of the thin solid surface/interfacial layer of finite thickness, e.g. [18,21–23], or
of an interface consisting of various structural elements, such as point masses, springs, beams, etc.,
[24–31]. Within the microstructural approach, one has the possibility to analyse the microstructure
in detail and its influence on a wave propagation along and across the surface/interface. It
is worth also noting asymptotic methods for the analysis of boundary-layer type solutions in
dynamics. In particular, a sort of near-surface membrane naturally arises even in the context of
linear isotropic elasticity when dealing with the Rayleigh wave, e.g. [32] and references therein.
Also, similar asymptotic phenomena occur in non-local elasticity when considering near-surface
boundary layers, see [33], or for weakly non-local models such as strain-gradient media [34,35].
The comparison of the surface anti-plane wave propagation within the Gurtin–Murdoch surface
elasticity was performed with Toupin–Mindlin strain-gradient elasticity [36] and in the case of
lattice dynamics [37].

From the geometrical point of view, a metasurface can be described as a surface with a periodic
array of holes, dots, discs, shells or cylinders [3–5,38,39], with a system of aligned bars [30,40–43],
as a disordered foam-like coating [5,6,44], or as a lattice of complex resonating structural elements
[1,2]. Here we restrict ourselves to the hyperbolic metasurfaces consisting of aligned bars or ribs
[30,41–43]. Unlike material behaviour at the macrolevel, at the nanoscale there are interactions
between these bars, which can be described using various models [45]. Instead we introduce here
an averaged model where interfacial forces are described as membrane resultant stresses, but
the bending stiffness of the bars is also taken into account. In the paper, we combine both direct
and microstructural approaches. Considering coatings consisting of long thin ordered structured
elements modelled as interacting elastic beams, we propose an averaged two-dimensional model
of surface elasticity as in the direct approach. The proposed model describes finite deformations
of an elastic solid with attached on its boundary or part an elastic membrane reinforced by aligned
elastic beams.

The paper is organized as follows. In §2, we introduce the surface strain energy and derive the
motion equations and the corresponding natural boundary conditions. To this end, we apply the
least action principle. In §3, we present the linearized boundary-value problem for infinitesimal
deformations. Finally, in §4, we consider surface anti-plane waves in an elastic half-space with the
introduced surface strain energy.

2. Strongly anisotropic surface elasticity
Following the surface elasticity approach, we introduce independently constitutive relations in
the bulk and on a surface. Then, using the Hamilton (the least action) variational principle we
derive the complete set of governing equations.

(a) Equations in the bulk
Let us consider an elastic solid which occupies in a reference placement volume V with the
boundary A = ∂V. A deformation of the solid is described as a mapping from reference placement
into the current one

x = x(X, t), (2.1)
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where x and X are the position vectors in the current and reference placements, respectively, and
t is time. In what follows we use the direct (coordinate-free) tensor calculus as presented in [46,
47]. For hyperelastic solids, there exists a strain energy density W as a function of deformation
gradient F

W = W(F) and F = ∇x, (2.2)

where ∇ is the three-dimensional nabla-operator. For example, with Cartesian coordinates Xk,
k = 1, 2, 3, and corresponding unit orthogonal base vectors ik, we have

∇ = ik ⊗ ∂k, F = ik ⊗ ∂kx and ∂k = ∂

∂Xk
,

where ⊗ denotes the dyadic product and Einstein’s summation rule is used. Using the principle
of material frame indifference [48], we came to the following form of W:

W = W(C),

where C = F · FT is the Cauchy–Green strain tensor and the dot stands for the scalar product.
In addition to W, we introduce the kinetic energy density as follows:

K = 1
2
ρu̇ · u̇,

where ρ is a referential mass density, u = x − X is the displacement vector, and the overdot denotes
the derivative with respect to t. Without mass forces, the Lagrangian equation of motion is given
by

∇ · P = ρü, (2.3)

where P = (∂W/∂F) = 2(∂W/∂C) · F is the first Piola–Kirchhoff stress tensor.

(b) Finite deformations of an elastic beam
Neglecting twisting and transverse shear deformations, we restrict ourselves by a simplest model
of a beam undergoing finite motions. We model the beam as an elastic curve with the line strain
energy density Ub which depends on the stretch λ and the change of curvature �:

Ub = Ub(λ, �). (2.4)

The latter are defined as follows. Let R = R(s) and r = r(s) be position vectors of the curve in
reference and current placements, respectively, where s is the referential arc-length of the curve.
Then we have the formulae

λ(s) = |r′(s)| and �(s) = |r′(s) × r′′(s)|
λ3(s)

− |R′′(s)|, (2.5)

where the prime denotes the derivative with respect to s, × stands for the cross product and the
formulae for the curvature of a curve were applied, e.g. [47, p. 115].

As an example of the strain energy function, one can consider the following dependence

Ub = 1
2

Ks(λ − 1)2 + 1
2

Kb�
2, (2.6)

where Ks and Kb are elastic moduli related to tensional and bending stiffness, respectively.
Equation (2.6) corresponds to a geometrically nonlinear model of a thin beam of symmetric
cross-section such as a circular one.

(c) Surface strain energy density
From the point of view of structural mechanics, the Gurtin–Murdoch surface elasticity [8]
describes an elastic membrane perfectly attached to a solid boundary or its part. So the surface
stresses can be interpreted as a membrane force (stress resultants) in the membrane. Here we
consider an elastic membrane reinforced by elastic beams aligned along a preferred direction. In
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order to introduce the model, let us recall some preliminary notations from differential geometry
[46,47]. Treating a deformation of the membrane as a mapping from reference placement into a
current one, we consider two surfaces Ω and ω with the corresponding position vectors R and r.
So the vectorial parameterizations of Ω and ω are given by

R = R(s1, s2) and r = r(s1, s2).

Here s1 and s2 are surface coordinates on Ω , which are also used for the parametrization of ω. We
introduce the surface nabla-operator ∇s by the relations

∇s = Rα ⊗ ∂α , Rα · Rβ = δα
β , Rβ = ∂βR, N = R1 × R2

|R1 × R2|
, Rα · N = 0, ∂α = ∂

∂sα
,

where δα
β is the Kronecker symbol, α, β = 1, 2, and N is the unit vector of normal to Ω . There is

a simple relation between ∇s and ∇ given by the formula ∇s = A · ∇, where A = I − N ⊗ N is the
metric tensor and I is the three-dimensional unit tensor. So the surface deformation gradient is
defined as Fs = ∇sr.

Let us consider a family of N aligned thin long elastic beams attached to a part of the boundary
S ⊂ A = ∂V. We introduce surface coordinates s1 and s2 such that s1 = s is the referential arc-length
parameter along the beam axis, while s2 is chosen to be orthogonal to s1-curves. For s1 and s2, we
also introduce correspondent unit tangent vectors τττ and ννν. Note that τττ = ∂1R. So we have the
following vectorial parameterizations of the family

R = R(s1, s2), r = r(s1, s2), s2 = s(i)
2 , i = 1 . . . N,

related to the reference and current placements, respectively. Note that here s2 takes a finite set of
values and plays a role of a parameter which distinguishes beams in the family.

Instead of studying the discrete system of beams in the following, we consider an averaged
coating. In other words, we replace a finite set of beams by infinite one, so at any point (s1, s2),
there is a beam directed along s1-curve. With this description λ and � introduced above through
(2.5) take the form

λ = λ(s1, s2) = |∂1r(s1, s2)| = |τ · ∇sr(s1, s2)| = |τττ · Fs|
= (τττ · Cs · τττ )1/2, (2.7)

and

� = �(s1, s2) = |∂1r(s1, s2) × ∂2
1 r(s1, s2)|

λ3(s1, s2)
− |∂1τττ (s1, s2)|

=
∣∣(τττ · Fs) × (

�0ννν · Fs + τττ · (τττ · ∇sFs)
)∣∣

(τττ · Cs · τττ )3/2 − �0, (2.8)

where Cs = Fs · FT
s is the surface Cauchy–Green strain tensor, the Frenet–Serret formulae are used,

τττ = ∂1R and ∂1τττ = �0ννν

and �0 ≡ |∂1τττ | is the referential curvature of a beam. So the stretching/elongation along beams
can be described with Cs. Let us recall that for a nonlinear elastic membrane, a surface strain
energy density is a function of Cs only, e.g. [8]. Unlike λ, � cannot be expressed through Cs and
the curvature tensors of Ω and ω, in general. It can be expressed through Fs and its first gradients.
So the general constitutive dependence can be called the surface strain-gradient elasticity with

Ws = Ws(Fs, ∇sFs). (2.9)

According to (2.8), here the third-order tensor ∇sFs is present through a scalar only. This
additional parameter � can be treated as a surface bending strain measure. As a result, the surface
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strain energy is assumed as

Ws = Ws(Cs, �;τττ ⊗ τττ ), (2.10)

where τττ ⊗ τττ plays a role of a structural tensor as in the case of fibre-reinforced composites [49,50].
With the theory of invariants, Ws can be represented as a function of joint invariants

Ws = Ws(trCs, trC2
s ,τττ · Cs · τττ , �), (2.11)

where tr is the trace operator, see [49–51] for more detail. As an example, the following quadratic
function can be used as a geometrically nonlinear two-dimensional medium

Ws = K1tr(E2) + 1
2

K2(trE)2 + 1
2

K3(τττ · E · τττ )2 + 1
2

K4(τττ · E · τττ )(trE) + 1
2

Kb�
2, (2.12)

E = 1
2

(Cs − A),

where K1, K2, K3, K4 and Kb are surface elastic moduli. Equation (2.12) can be called the Saint
Venant–Kirchhoff anisotropic membrane model.

For simplicity, we neglect here the rotatory inertia of the beams, so the surface kinetic energy
density becomes defined as in [9]

Ks = 1
2

mu̇ · u̇, (2.13)

where m is the referential surface mass density. Let us note (2.13) one of the main assumptions
as it results in the appearance of the surface anti-plane waves. Including the rotatory inertia may
lead to gradient terms in the kinetic energy as in the Toupin–Mindlin strain-gradient elasticity
and may change the dispersion relations, e.g. [36].

Finally, to complete a model, we assume the kinematic compatibility condition relating
position vectors r of the surface and x in the bulk

r = x
∣∣
S. (2.14)

Some possible extensions of (2.14) for microstructural coatings were discussed in [14].

(d) Generalized Laplace–Young equation
In order to derive natural boundary conditions, we apply the least action principle [52] modified
for surface elasticity as in [53]. The least action functional takes the form

H[x] =
∫ t2

t1

∫∫∫
V

(K − W) dV dt +
∫ t2

t1

∫∫
S
(Ks − Ws) dA dt, (2.15)

where t1 and t2 are two time instants, where the variations of x are assumed to be zero: δx|t=t1 =
δx|t=t2 = 0. Considering the variational equation

δH= 0, (2.16)

we can derive the motion equation in the bulk and the natural boundary condition on S. Using
the standard technique of calculus of variations from (2.16), we get the motion equation (2.3) and
the dynamic boundary conditions on S and along 
 = ∂S. Indeed, after integration by part, we get

δ

∫ t2

t1

∫∫∫
V

(K − W) dV dt =
∫ t2

t1

∫∫∫
V

(−ρü + ∇ · P) · δx dV dt −
∫ t2

t1

∫∫
A

N · P · δx dA dt. (2.17)

Considering δx = 0 on A from (2.16) and (2.17) we have that
∫ t2

t1

∫∫∫
V

(−ρü + ∇ · P) · δx dV dt = 0
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which is a weak form of (2.3). For the beginning we consider Ws in form (2.9). Now δH take the
form

δH= −
∫ t2

t1

∫∫
A

N · P · δx dA dt −
∫ t2

t1

∫∫
S

mü · δx dA dt

−
∫ t2

t1

∫∫
S

(
∂Ws

∂Fs
: δFs + ∂Ws

∂∇sFs
∵ δ∇sFs

)
dA dt,

where the double-dot and the triple-dot products stand for inner (scalar) in the space of second-
and third-order tensors, respectively. We introduce surface first Piola–Kirchhoff-type stress S and
hyperstress M tensors by the formulae

S = ∂Ws

∂Fs
= 2

∂Ws

∂Cs
· Fs and M = ∂Ws

∂∇sFs
.

As � depends on both Fs and ∇sFs here both tensors S and M depend also on Fs and ∇sFs. In
other words, there is a coupling between strains and strain gradient, and between stresses and
hyperstresses. Note that they have the following properties: N · S = 0, N · M = 0 and N · (a · M) =
0, for any vector a, which are important for integration by part. For example, M takes rather
awkward form

M = τττ ⊗ τττ ⊗ [
τττ · Fs × (τττ ⊗ τττ : ∇sFs) × FT

s · τττ ]∣∣(τττ · Fs) × (
�0ννν · Fs + τττ · (τττ · ∇sFs)

)∣∣ (τττ · Cs · τττ )3/2
∂Ws

∂�
,

which also demonstrates a strong anisotropy of surface properties.
In what follows we assume that the contour 
 = ∂S is closed and smooth enough that is without

corners. In order to perform the further integration by part, we use the surface divergence theorem
[8,47], which states that ∫∫

S
(∇s · X + 2HN · X) dA =

∫



m · X ds, (2.18)

where X is a continuously differentiable tensor-valued field given on S with the smooth contour

 = ∂S, m is the unit normal to 
 such that m · τττ = m · N = 0, and H = − 1

2 ∇s · N is the mean
curvature of S. Using (2.18), we get the following formula of integration by parts

∫∫
S

X : ∇sy dA =
∫



m · X · y ds −
∫

S

[
(∇s · X) · y + 2HN · X · y

]
dA (2.19)

for any fields X and y defined on S. With (2.19), we have the identities

δ

∫∫
S

Ws dA =
∫∫

S
(S : δFs + M ∵ δ∇sFs) dA

=
∫∫

S
[−(∇s · S) · δx − (∇s · M) : ∇sδx] dA +

∫



(m · S · δx + m · M : ∇sδx) ds

=
∫∫

S
[−∇s · S + ∇s · (∇s · M) + 2HN · (∇s · M)] · δx dA

+
∫



(m · S · δx + m · M : ∇sδx − m · (∇s · M) · δx) ds

=
∫∫

S
[−∇s · S + ∇s · (∇s · M) + 2HN · (∇s · M)] · δx dA

+
∫



(m · S · δx + m · M : ∇sδx − m · (∇s · M) · δx) ds.

As a result, from (2.16), we have the natural boundary condition on A

N · P = 0, x ∈ A�S (2.20)

and
N · P = ∇s · S − ∇s · (∇s · M) − 2HN · (∇s · M) − mẍ, x ∈ S, (2.21)
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and along 


m · (m · M) = 0 and m · S = m · (∇s · M) + ∂

∂s
(m · M · τττ ). (2.22)

Here (2.21) plays a role of the Laplace–Young equation in the theory of capillarity, so it can
be called the generalized Laplace–Young equation. For statics, equations (2.21) and (2.22) have
the form similar to the boundary conditions within the linear Steigmann–Ogden model [15] but
with different constitutive equations for the surface stress measures. For M = 0, equation (2.21)
coincides with the boundary condition within the Gurtin–Murdoch model [8].

3. Small deformations for a flat boundary with straight beams
For some applications such as an acoustic wave propagation, we can restrict ourselves by
infinitesimal deformations. In this case, we have

C ≈ I + 2e, e = 1
2

(
∇u + (∇u)T

)
,

Cs ≈ A + 2εεε, E = εεε, εεε = 1
2

(
∇su · A + A · (∇su)T

)
, λ ≈ 1 + τττ · εεε · τττ = 1 + τττ · ∇su · τττ .

For an isotropic in the bulk solid, we get the Hooke Law

W = 1
2
λ̃(tre)2 + μ tr(e · e) and P = λ̃I tre + 2μe, (3.1)

where λ̃ and μ are the Lamé moduli.
For simplicity, let us consider flat surface S and straight beams. So we have �0 = 0, τττ = i1 =

const, and
� = |τττ × (τττ · ∇s)(τττ · ∇s)u|. (3.2)

With these approximations, the surface strain energy density became similar to (2.12)

Ws = K1tr(εεε2) + 1
2

K2(trεεε)2 + 1
2

K3(τττ · εεε · τττ )2 + 1
2

K4(τττ · εεε · τττ )(trεεε)

+ 1
2

Kb [τττ × (τττ · ∇s)(τττ · ∇s)u] · [τττ × (τττ · ∇s)(τττ · ∇s)u] , (3.3)

whereas the surface stress and hyperstress tensors take the form

S = ∂Ws

∂εεε
= 2K1εεε + (K2trεεε + K4τττ · εεε · τττ) A + (K3τττ · εεε · τττ + K4trεεε)τττ ⊗ τττ (3.4)

and

M = ∂Ws

∂∇s∇su
= Kbτττ ⊗ τττ ⊗ {τττ × [(τττ ⊗ τττ ) : ∇s∇su]} × τττ . (3.5)

Unlike the nonlinear case, here S depends on the first gradient of displacements only, whereas M
is a linear function of the second gradient. Obviously, for any vector m orthogonal to τττ , we have
that m · M = 0. So for an edge with the normal m that is an edge parallel to the beams, the edge
condition (2.22)1 is fulfilled, whereas (2.22)2 transforms into m · S = 0.

4. Anti-plane surface waves
Obviously, the presented model relates to strong anisotropy in surface properties. In order to
demonstrate its influence, let us analyse a surface anti-plane wave propagation. Recently, the
analysis of cloaking with respect to anti-plane waves was studied in [54] for non-homogeneous
prestressed solids. Within the linear isotropic Gurtin–Murdoch surface elasticity, such analysis
was performed in [53]. Following this technique let us consider anti-plane motions in an elastic
half-space taking into account surface strain energy. Let us introduce the Cartesian coordinates
Xk such that the half-space occupies the region X3 ≤ 0, equation X3 = 0 describes its boundary,
whereas X1 corresponds to fibres’ direction, see figure 1.
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X2

X1

X3

i1

i2
i3

u1

u2

Figure 1. An elastic half-space with surface beam-lattice enhancement.

The anti-plane motions are assumed to be one of the following forms [55]

u1 = u1(X2, X3, t)i1, and u2 = u2(X1, X3, t)i2, (4.1)

which corresponds to two different directions of a wave propagation. For (4.1), we have the
formulae

∇u1 = (∂2u1i2 + ∂3u1i3) ⊗ i1, ∇su1 = ∂2u1i2 ⊗ i1, ∇s∇su1 = ∂2
2 u1i2 ⊗ i2 ⊗ i1,

∇u2 = (∂1u2i1 + ∂3u2i3) ⊗ i2, ∇su2 = ∂1u2i1 ⊗ i2, ∇s∇su2 = ∂2
1 u2i1 ⊗ i1 ⊗ i2,

P(u1) = μ [∂2u1(i1 ⊗ i2 + i2 ⊗ i1) + ∂3u1(i1 ⊗ i3 + i3 ⊗ i1)] ,

P(u2) = μ [∂1u2(i1 ⊗ i2 + i2 ⊗ i1) + ∂3u2(i2 ⊗ i3 + i3 ⊗ i2)] ,

S(u1) = K1∂2u1(i1 ⊗ i2 + i2 ⊗ i1), S(u2) = K1∂1u2(i1 ⊗ i2 + i2 ⊗ i1)

and M(u1) = 0, M(u2) = Kb∂
2
1 u2i1 ⊗ i1 ⊗ i2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

As M(u1) = 0 while M(u2) 
= 0, u1 describes shear motions without beam bending, whereas u2
includes bending deformations of the beams, see figure 1.

With (4.1) and (4.2), the general equations of motion reduce into two wave equations with
respect to u1 and u2, respectively,

μ(∂2
2 + ∂2

3 )u1 = ρü1 (4.3)

and

μ(∂2
1 + ∂2

3 )u2 = ρü2. (4.4)

Corresponding to (4.3) and (4.4) natural boundary conditions have the form

μ∂3u1 = −mü1 + K1∂
2
2 u1 (4.5)

and

μ∂3u2 = −mü2 + K1∂
2
1 u2 − Kb∂

4
1 u2, (4.6)

respectively. Equation (4.5) corresponds to the boundary condition within the Gurtin–Murdoch
model in the case of anti-plane deformations [53], whereas equation (4.6) includes additional
term describing the bending energy as in [56]. So we call this anti-plane motion the bending
resistant mode. Note that we have different boundary conditions depending on the reinforcement
direction.

Assuming a steady state and looking for the solution of (4.3) and (4.4) in the form

u1 = U1(X2, X3) exp(iωt) and u2 = U2(X1, X3) exp(iωt), (4.7)

where ω is a circular frequency, i is the imaginary unit and Uα is an amplitude, α = 1, 2. With (4.7)
equations (4.3) and (4.4) transform into

μ(∂2
2 + ∂2

3 )U1 = −ρω2U1 and μ(∂2
1 + ∂2

3 )U2 = −ρω2U2. (4.8)
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Decaying at X3 → −∞ solutions of (4.8) are given by

U1 = U01 exp(�X3) exp(ikX2) and U2 = U02 exp(�X3) exp(ikX1), (4.9)

where

� = �(k, ω) ≡
√

k2 − ω2

c2
T

and cT =
√

μ

ρ
,

k is a wavenumber, cT is the phase velocity of transverse waves in the bulk, and U0α are constants.
Substituting (4.7) with (4.9) into (4.5) and (4.6), we get the dispersion relations

μ�(k, ω) = mω2 − K1k2 (4.10)

and
μ�(k, ω) = mω2 − K1k2 + Kbk4. (4.11)

These equations can be transformed into

c2 = c2
s + μ

m
1
|k|

√
1 − c2

c2
T

(4.12)

and

c2 = c2
s + Kb

m
k2 + μ

m
1
|k|

√
1 − c2

c2
T

, (4.13)

where cs = √
K1/m is the surface shear wave velocity within the Gurtin–Murdoch model [53]

and c = ω/k the phase velocity. Dispersion relations (4.12) and (4.11) were analysed in [53,56],
respectively. Here (4.10) or (4.12) describes the dispersion of the surface anti-plane wave
propagating along surface fibres whereas (4.11) or (4.13) relates to the surface anti-plane wave
propagating across surface fibres. The dispersion curve for (4.12) is shown in figure 2, see the
dashed red curve GM. Here k̄ and K̄ are normalized (dimensionless) wavenumber and the
bending stiffness, respectively, introduced by the formulae

k̄ = c2
Tm
μ

k and K̄ = μ2

m3c6
T

Kb.

Note that the ratio p = ρ/m ≡ c2
Tm/μ constitutes the characteristic wavenumber within the Gurtin–

Murdoch model, so k̄ = k/p. This surface wave exists in the range

cs < c(k) ≤ cT ∀ k.

We have the relations c(0) = cT and c → cs as k → ∞. So for long waves (k ≈ 0) there is no influence
of surface elasticity, it becomes definitive at short waves as it should be.

The term Kbk2, which is responsible for bending stiffness of beams, changes dramatically the
behaviour of dispersion curves related to (4.13), see figure 2, where curves 1–4 correspond to the
following values of K̄: K̄ = 10−1; 10−2; 10−3; 10−4, respectively. For relatively small values of k,
the dispersion curves almost coincide with the GM curve, then c grows until cT. In other words,
within a fixed range 0 ≤ k ≤ k1, the dispersion curves of the bending resistant mode for K̄ → 0
will come arbitrarily close to the dispersion curve of the Gurtin–Murdoch model. For K̄ fixed the
curves approach the line c = cT at k = kmax, where kmax takes the value

kmax =
√

c2
T − c2

s

Kb
,

while the Gurtin–Murdoch dispersion curve tends to the velocity cs as k → ∞. At k = kmax, phase
velocity is equal cT, see the vertical dashed line for K̄ = 10−3 in figure 2. So for the bending
resistant mode, the anti-plane surface wave exists if 0 ≤ k ≤ kmax. Thus, the bending stiffness
changes the condition of the existence of anti-plane surface waves. For long waves (small k),
there is no influence of bending stiffness, whereas for short waves, we get completely different
behaviour than observed for the Gurtin–Murdoch model.
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c

cT

cS

0

GM

1 2 3 4

kmax(K = 10−3)
– – k

–

Figure 2. Dispersion curves. The red dashed curve corresponds to the Gurtin–Murdoch model, whereas the numbered blue
solid curves relate to the considered bending resistant model. Here Nth curve corresponds to K = 10−N , N = 1, 2, 3, 4. The
vertical dashed line relates to the maximal wavenumber kmax forK = 10−3. (Online version in colour.)

5. Conclusion
The new strongly anisotropic model of surface elasticity was introduced, which was motivated
by consideration of coatings made of interacting long flexible fibres attached to a boundary. The
developed model constitutes a class of surface elasticity which is in between Gurtin–Murdoch
and Steigmann–Ogden models [8–11]. Indeed, the introduced surface strain energy is similar to
one-dimensional version of the Steigmann–Ogden model [10] but applied to two-dimensional
surfaces. From the mechanical point of view, the surface constitutive equations correspond to an
elastic membrane reinforced in a preferred direction by elastic beams. Note that here we restricted
ourselves to the simplest model of a nonlinear beam. In the forthcoming papers, more complex
models based on the directed curve model can be also applied considering rotatory inertia, shear
and torsional deformations. Obviously, it results in strongly anisotropic constitutive equations
for surface stresses and couples as in the case of fibre-reinforced materials [49,50]. So the model
describes finite deformations of an elastic solid with perfectly attached reinforced membrane.
Let us note that the model of strongly anisotropic surface elasticity developed here has some
similarities with the models of lattice shells made of two families of elastic fibres [57–59].

Using the Hamilton variational principle, we derive the dynamic boundary conditions at
boundary as well as at edges. Considering anti-plane motions within the linearized model,
we analysed a surface anti-plane wave propagation along and across the fibre directions. The
corresponding dispersion relations are derived. In particular, it was shown that the dispersion
relation significantly depends on the direction of the wave propagation. The presented results
demonstrated a significant influence of a surface microstructure on surface waves. Let us note that
the propagating waves in microstructured solids is one of the favourite subjects of Prof. Leonid I.
Slepyan, to whom this paper is devoted, see the seminal works [26,60,61].
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