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PREFACE

The 15™ International Conference “Dynamical Systems - Theory and Applications”
(DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding
scientists and engineers who deal with widely understood problems of theoretical and
applied dynamics.

Organization of the conference would not have been possible without great effort of
the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz
University of Technology. The patronage over the conference has been taken by the
Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and
Higher Education of Poland.

It is a great pleasure that our event was attended by over 180 researchers from 35
countries all over the world, who decided to share the results of their research and
experience in different fields related to dynamical systems.

This year, the DSTA Conference Proceedings were split into two volumes entitled
“Theoretical Approaches in Non-Linear Dynamical Systems” and “Applicable Solutions in
Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of
Springer Proceedings in Mathematics and Statistics entitled “Control and Stability of
Dynamical Systems”, “Mathematical and Numerical Approaches in Dynamical Systems” and
“Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will
be recommended to special issues of renowned scientific journals.

The DSTA Conference Proceedings include papers covering the following topics:

— asymptotic methods in non-linear dynamics,

— bifurcation and chaos in dynamical systems,

— control in dynamical systems,

— dynamics in life sciences and bioengineering,

— engineering systems and differential equations,

— non-smooth systems

— mathematical approaches to dynamical systems

— original numerical methods of vibration analysis,

— stability of dynamical systems,

— vibrations of lumped and continuous systems,

— other problems.

Proceedings of the 15th Conference ,Dynamical Systems - Theory and Applications"
summarize 106 papers of university teachers and students, researchers and engineers from
all over the world. The papers were selected by the Scientific Committee of DSTA 2019 from
360 papers submitted to the conference. Therefore, the reader is provided with an overview
of recent developments in dynamical systems and can study the most progressive
tendencies in this field of science.



Our experience shows that a broad thematic scope comprising dynamical systems
encourages researchers to exchange their opinions on different branches of dynamics. We
think that the vivid discussion will influence positively creativity and will result in effective
solutions of many problems of dynamical systems in mechanics and physics, both in terms
of theory and applications.

We do hope that DSTA 2019 will contribute to establishing new and tightening the
already existing relations and scientific and technological cooperation between Polish and
foreign institutions.

On behalf of both
Scientific and Organizing Committees

pfimica—

rman

Professor Jan Awrejcewicz
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Multibody models for gait analysis

Wiktoria Wojnicz, Barttomiej Zagrodny, Michat Ludwicki,
Jerzy Mrozowski, Jan Awrejcewicz, Edmund Wittbrodt

Abstract: The aim of this study was to create multibody biomechanical models to
analyze a normal gait of the human. Proposed models can be used to identify joint
moments of the lower limbs during normal gait in the single and double support phases.
Applying Newton-Euler formulation, following planar models were developed: 1) a
mathematical 6DOF model describing a gait in the sagittal plane of the body for single
support phase and double support phase; 2) a mathematical 7DOF model describing a
gait in the sagittal plane of the body for single support phase and double support phase;
3) a mathematical 7DOF model describing a gait in the frontal plane of the body for
single support phase and double support phase. Proposed mathematical models can be
applied to solve a forward dynamic task or inverse dynamic task. A validation of these
models had been performed by comparing results measured over examination of normal
human gait and results calculated by solving an inverse dynamic task.

1. Introduction

From the mechanical point of view a gait of the human is considered as periodical movements of lower
limbs that alternately generate stable and unstable states. Over each phase of the gait a body weight is
propelled by maintaining a stable posture due to functioning of posture-stabilizing mechanisms
controlled by the human nervous system. A normal gait occurs when the right and left parts of the
human body perform similar motions with respect to the anatomical planes of the body. This gait can
be analyzed by deriving planar dynamic models describing motions occurring in a sagittal and frontal
plane of the body. A pathological gait occurs when the right and left parts of the human body perform
asymmetrical motions in space. To analyze this gait the spatial dynamic models should be derived.

A human body is treated as a musculoskeletal system composed of segments having defined
number of degrees of freedom (DOFs). Net joint moments, net joint intersegmental forces and net joint
powers generated in this system during gait can be estimated by using an inverse dynamics approach
[11]. To solve an inverse dynamic task, the following data should be assessed: 1) biomechanical data
of the subject (segment masses and dimensions; segment radii of gyration; segment moments of inertia);
2) kinematic data of human segments (joint centers, proximal and distal points of segments that are
used to calculate angular displacement, angular velocity and angular acceleration of body parts); 3)
kinetic data (reaction forces of interaction with the ground that can be measured by using a force plate);

4) EMG data (to estimate activity of muscles producing motion and muscle excitation timing).
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A gait is composed of single and double support phases. During each double support phase a
system becomes a closed system. This demands to solve an indeterminacy problem referring to
estimation of external force/moment distribution.

The aim of this study was to create multibody biomechanical models to analyze a normal gait of
the human and to identify joint moments of the lower limbs during all gait phases. The scope of the
study was to derive dynamic models to analyze: 1) single support phase (open sagittal 6DOF model,
open sagittal 7DOF model and open frontal 7DOF model); 2) double support phase, which occurs due
to interaction between the sole of the swinging leg and a ground (closed sagittal 6DOF model, closed

sagittal 7DOF model and closed frontal 7DOF model)..

2. Materials and Methods

A human body was treated as a multibody system composed of two ankle joints, two knee joints and
one hip joint (sagittal models) or two hip joints (frontal models). An influence of the upper part of the
body (the pelvis, torso, head, neck and upper limbs) was modelled by using two approaches. The first
one implies that the upper part of the body is modelled as one concentrated force applied at the center
of gravity of the upper body part. An influence of this force is modelled as a load (force and its moment)
transmitted through the hip joint to the stance leg (single support phase) or both legs (double support
phase). This approach was adapted to create a sagittal 6DOF model and a frontal 7DOF model. The
second approach treats the upper part of the body as one additional segment, which is connected to the
hip joint. This approach was adapted to create a sagittal 7DOF model.

To simulate behavior over single and double support phases (Fig.1) there were proposed two
different type of models: open sagittal 6DOF model and closed sagittal 6DOF model; open sagittal
7DOF model and closed sagittal 7DOF model; open frontal 7DOF model and closed frontal 7DOF
model. It should be mentioned that the Fig.1 illustrates behavior of the 6DOF model (behavior of each
7DOF model is similar).

Biomechanical multibody models presented in this paper were derived by applying Newton-Euler
formulation [1,4]. Proposed biomechanical model can be applied to analyze forward or inverse
dynamics problems. It is worth noticing that proposed models are more complex ones with respect to
the models presented in [5-6, 12].

It should be mentioned that real biomechanical system is composed of joints that are linkung
neighboring segments through passive tissues (bursa, ligaments, tendons) and active tissues (muscles).
An influence of both tissues can be considered by inputting rheological models composed of
viscoelastic elements. These elements are also implemented in the joints of proposed biomechanical

models.
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An approach to solve a problem with interaction, which occurs when the heel of the swing leg
strikes the ground (initiation of the double support phase), is described in the below subsection referring
to the interaction modelling. Considering a homogeneous mass distribution, the segmentation (i.e. body
partitioning) was performed according to Zatsiorsky’s method [2-3]. Proposed biomechanical models

were implemented in MATLAB software by creating author programs.

A) Foot-flat of the right B) Midstance end of the right C) Midstance end of the right
leg, Two-off of the left leg | leg, Midswing end of the left leg | leg, Heel-strike of the left leg

Figure 1. Structural 6DOF model in the single support phase (A, B) and double support phase (C):
MGrounar — the ground moment during the single support phase (A), MGround2 — the ground moment
during the single support phase (B), MGrounas — the ground moment during the double support phase
(C); Ry; — the y-th component of the leg reaction force (anterior-posterior component) during the j-th
single support phase (j = 1,2); Rz — the z-th component of the leg reaction force (vertical component)
during the j-th single support phase (j = 1,2); R:3r and R:3. — the z-th components of the reaction force
of the right and left leg during the double support phase; Rysr and Ry3. — the y-th components of the
reaction force of the right and left leg during the double support phase; Mi. — i-th moment acts at the
i-th joint of the left leg; Mir — i-th moment acts at the i-th joint of the right leg

Sagittal 6DOF model

Considering the body as a structure composed of six segments serially linked through the hinge joints
in a sagittal plane, there were created two models (Fig. 2): 1) open sagittal 6DOF model, which can be
applied to model a single support phase (in this case both y-th (Fy) and z-th (F:) components of reaction
force of the swing leg are equal to zero); 2) closed sagittal 6DOF model, which can be used to describe
a double support phase. Both models can be applied to analyze kinematics and dynamics of normal gait
in a sagittal plane over specific phases. An influence of the upper part of the body was modelled as one
concentrate force G7 (it is a gravity force of upper part of the body) and the moment of this force Mq7.
It was assumed that this force and its moment influence the stance leg. The hinge joint O models the
metatarsophalangeal joint of the stance feet by assuming that it does not cause any dissipation
phenomenon. A complete mathematical models of the open sagittal 6DOF model and closed sagittal

6DOF model are described in [8-9].
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Figure 2. The sagittal 6DOF model (O — the point between the support foot and the ground (the
metatarsophalangeal joint); 4; — the ankle joint of stance leg; 4> — the knee joint of stance leg; 43 —
the hip joint; 44— the knee joint of swing leg; 45 — the ankle joint of swing leg; a:— the angle of the i-
th segment (each angle is measured as an absolute coordinate); G; — the gravity force of the i-th
segment that acts at its center of gravity C;: ; Mj; — the net joint moment between the i-th segment and
Jj-th segment (Mj; = M;ji); Mexi — the external moment loading the i-th segment; Ry1 — the y-th
component of stance leg reaction force (anterior-posterior component); R.; — the z-th component of
the stance leg reaction force (vertical component); Fy and F: — the y-th and z-th component of reaction
force of the swing leg during double supporting phase; y — the sagittal axis; z — the vertical axis) [9]

Sagittal 7DOF model

Considering the body as a dendritic structure composed of seven segments in a sagittal plane, there
were created (Fig. 3): 1) the open sagittal 7DOF model, which can be applied to model a single support
phase (in this case both the y-th (F)) and z-th (F:) components of reaction force of the swing leg are
equal to zero); 2) the closed sagittal 7DOF model, which can be applied to model a double support
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phase. These models can be applied to model kinematics and dynamics of normal gait in a sagittal plane
over specific phases. An influence of the upper part of the body was modelled as the seventh segment,
which gravity force acts at the center of mass placed at the point C7. Mathematical models of the open

sagittal 7DOF model and closed sagittal 7DOF model are described in detail in [9]

Fiure 3. The sagittal 7DOF model (symbols are described in the Figure 2) [9]

Frontal 7DOF model

Considering a frontal plane and treating a body as a structure composed of seven segments serially
linked through the hinge joints, there were created (Fig. 4): 1) the open frontal 7DOF model, which can
be applied to model a single support phase (in this case both the x-th component of reaction force (R x2)
and the z-th component of reaction force (R:2) are equal to zero); 2) the closed frontal 7DOF model,
which can be used to describe a double support phase. Both models can be applied to analyze kinematics

and dynamics of normal gait in a frontal plane during specific phases. An influence of the upper part of
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the body was modelled as one concentrate force G7 (it is a gravity force of upper part of the body) and
its moment M(b).

Figure 4. The frontal 7DOF model: (O” — the point between the support foot and the ground; 47
— the ankle joint of stance leg; 4> — the knee joint of stance leg; 475 — the stance leg hip joint; 474 —
the swing leg hip joint; A”5 — the knee joint of swing leg; A”s — the ankle joint of swing leg; f3i — the
angle of the i-th segment in the frontal plane (each angle is measured as an absolute coordinate); G —
gravity force of the upper part of the body; M exi — the external moment influenced the i-th segment
in the frontal space; Rfx1 — the x-th component of stance leg reaction force (medio-lateral component);
RP:; — the z-th component of the stance leg reaction force (vertical component); R — the x-th
component of reaction force during double support phase; R'.2 — the z-th component of reaction force
during double support phase; x — the transverse axis; y — the sagittal axis; z — the vertical axis)
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A general mathematical description of the open frontal 7DOF model is a non-linear system of
seven differential equations:

Byy* By + Bi2(Br, B2) * Bz + Bis(Bu, Bs)  Bs + B14(31'ﬁ42 B+ Bls(ﬁpﬁs'). B+
. . . +B16(B1, Bs) - /'3.5 + By7(B1, B7) /?.7 =M
321(/31',32) "P1+ By Bt 323(,32'53) B3+ 324(53'54) “But st(ﬁg' ﬁs) “Bs+
) } +BZ§.(:82'B6) Be t+ Bzz(ﬁz'ﬁﬂ By = MZ"F
331(/31',53) Bt 332(,32',33) B2+ Bz Bz + 334(53',34) “But B35(B3'F5) “Bs+
. . +B3s(.83'ﬁ“5) sdg + 5.’.37(33'/37) By = M3F
B1(B1, Ba) * By + Bz (B2, Ba) B2 + Baz (B3, Ba) * B3 + Baa* Ba + Bas(Ba, Bs) - Bs +
) } +B46(Bs B6) 'ﬁe + Bi7 (B B7) ﬁ7 = Myp ) > @
Bm(ﬁvﬁs) Bt Bsz(ﬁz'ﬁs) “Ba + 353(.83rﬁs) B3 + 354(.34'55) “Ba 'tBss “Bs +
. +B§6(BS'B6) Be + B§7(ﬁ5,ﬂ7) "By = A’{SF
Be1(B1,Bs) * By + Be2 (B, Bs) - B2 + Bi63(ﬁa'ﬁ6): B3 + Bsa (B, Bs) Bu+
. +BBS(.BS"/?6) *Bs + Bes " Bs + Be7(Bs B7) .37= M
B71(Bvﬁ7) B+ 372(/?2“‘ .37) "B+ B73(,B3:., ﬁ7) B3 + B74(,B4,ﬂ7) “Bat
+B75(Bs, 87) - Bs + B76(Bs, 87) - Bs + By7* B7 = Myp

where i — the i-th angular displacement of the i-th segment (the i-th joint angle) in the frontal
plane; B; — the i-th angular velocity of the i-th segment in the frontal plane; f; — the i-th angular
acceleration of the i-th segment in the frontal plane, B;; (ﬁi, ,8}-) — the jj-th coefficient depending on the
mechanical characteristics.

A general mathematical description of the closed sagittal 7DOF model, which is an overactuated

system, is a non-linear system of seven differential equations:

By - ﬁl + BIZ(BI'BZ) ) Ez + 313([31'.83) - ﬁa + B14(ﬁ1'ﬁ4) - 54 + Bls(ﬁvﬁs) ) ﬁs +
+Bls(ﬂv€s) ' ﬁe + ?17([31'[;7) : /-;7 = MlF =Ly Sin(ﬁl)ﬂ' RFyp+ 1Ly CUS(FJ "R,
Bz1(ﬁ1:ﬁ2) B+ ?22 "B+ 323([;2'./?3) B3+ 324(52'34) “Bat st(ﬁzﬂﬁs) “Bs+
+st(ﬁ2rﬁ.§) B + Bz7(ﬁpﬁﬂ7) By = IYIZF —L,- Sin(ﬁz)." Rsz +L,- COS(Fz) b RFzz
B31(ﬁ1:ﬁ3) B+ B32(ﬁ2fﬁ3) "Bz + B3z B3+ B34(ﬁ3'ﬁ4) “But B35(ﬁ3ﬂﬁs) “Bs+
+B36(Bs, Bs) - its + Bs; (B3, B7) - B7 = Map — Ly - sin(Bs) - RF 4 + Ly - cos(B3) - RF 1
341([31'34) . E1 + 342([32',84) . Bz + B43(ﬁ3'ﬁ4) ) E3 + Byt 54 + 345(,84'/35) ) Bs +
+B46(ﬁ4'€6) . Es + B47(ﬁ4'€7) ' B.7 =My — L:; - sin(B,) - Rsz + Ly- COS(“B‘L) ' RFzz ’ @
Bs1(By, Bs) * By + Bsz (B2, Bs) * B2 + Bs3 (B3, Bs) - B3 + Bsa(Ba, Bs) - fa + Bss Bs +
+Bs6(Bs, Bs) o + Bs7(Bs, B7) - B; = Msp — Ls - sin(Bs) - Ry, + Ls - cos(Bs) - R,
legﬁlrﬂﬁ) . ﬁ1 + Bsz(ﬂz:ﬁs) - ﬁz + B63(:83'B6) ) 5'3 + Bs4(ﬁ4'ﬁs) ) B4 +
+Bgs(Bs, Bs) * Bs + Bss 'Fe + Bg;(Bs, 87) 57 = Mer —Lg - 5{:"(36) "R+ Lsﬂ' cos(Bs)  R" 5,
371(/31'[37) ,31 + B72(32',B7) /32 + 373(/.?3',37) “ps+ 374(,34,[37) “Bat
+B75(B5'ﬁ7) ‘Bs + B76(B5'B7) *Be + By7* 7 = Myp — M(Rpxz) + M(RFzz)
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where M(RF ;) and M(RF ,,) — moments originating from the components of interaction reaction
that influence the seventh segment 4764”7 (Fig. 4); L;— length of the i-th segment that is placed under
the i-th angle ;.

Approaches for interaction modelling

In order to study an influence of interaction one could apply two approaches: the first one for inverse
dynamic problem solution; the second one for forward dynamic task solution. According to the first
approach, measured ground force values (the y-th component () and z-th component (F%) in each
sagittal model; the x-th component (R¥,,) and z-th component (R ,,) in the frontal model) influenced
by an interaction with the ground can be inputted into the chosen model. These values can be measured
by using a second force plate. According to the second approach, an interaction with a ground can be
modelled by applying an additional analytical model that estimates the value of external load needed to

stay a strike foot in the narrow range of the ground level [9].

3. Results

A validation of proposed biomechanical models had been performed by solving an inverse dynamic
task without using any optimization approach. To compare measured data with calculated ones the
experimental researches had conducted on the group of health males. In this paper there are presented
results of validation for one random chosen male person (body mass 72.2 kg and body height 177.5 cm)
(Fig.5A). To obtain kinematic data there was used a marker setting (Rizzoli protocol) of OPTITRACK
system composed of six cameras working with 120 Hz frequency and dedicated software (Fig.5B-5C).
To measure kinetic data (interaction forces) the Steinbichler force plate was applied. A subject was
given an oral instruction. This subject did five successful trials (each trial contained three full steps) by
walking barefoot in preferred speed with open eyes. Specific gait phases were defined on the base of
the analysis of the posture reproduced by the motion capture system (Fig. 6).

Applying Zatsiorsky’s segmentation method and principles of mechanics, centers of gravity of all
segments (right and left foot, right and left calf, right and left thigh, upper body part) were calculated
for each frame recorded by the motion capture system. It was also assumed that the subject examined
was in a homogenous gravity field (gravity acceleration equals to g = 9.8 m/s?).

On the base of markers’ displacements there were calculated angular displacements of all segments
of the body: a) in a sagittal plane (in Fig. 7 relative angular displacements are given as Hip = a3 — a5,
Knee = a3 — a, and Ankle = a; — a, — /2 [7]); b) in a frontal plane (Fig. 8). To estimate segment
angular velocities and segment angular acceleration, the kinematic data were processed by applying: 1)
filtering (the Butterworth filter of the fourth order with SHz cut-off frequency was applied); 2) cubic
spline interpolation; 3) differentiation by applying three-point difference method.
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Figure 5. A) a subject examined; B) marker setting (anterior); C) marker setting (posterior)

A validation was performed by comparing a vertical component of interaction measured during
single phase with a vertical component of interaction calculated by applying a sagittal 6DOF model
(Fig. 9), sagittal 7DOF model (Fig. 10) and frontal 7DOF model (Fig. 11). Moreover, there were also
compared data referring to a horizontal component of interaction measured during this phase and a
horizontal component of interaction calculated by applying a sagittal 6DOF model (Fig. 12), sagittal
7DOF model (Fig. 13) and frontal 7DOF model (Fig. 14). Due to the fact that only one force plate was

available in practice, we limited a validation of our models only to the single phase of the gait.

A) B) 0 D) E) F) G) H)

Figure 6. Posture setting during the one full step of the gait: A) Double support phase; B) Single
support phase (foot-flat of right leg and toe-off of left leg); C) Single support phase (stance of right
leg and deceleration of swing left leg); D) Double support phase; E) Single support phase (foot-flat of
left leg and toe-off of right leg); F) Single support phase (stance of left leg and swing right leg); G)
Single support phase (stance of left leg and deceleration of swing right leg); H) Double support phase
[8-9]
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Figure 7. Kinematic data (sagittal plane)
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Figure 10. Vertical component of interaction: measured component and calculated component for
sagittal 7DOF model
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Figure 11. Vertical component of interaction: measured component and calculated component
for frontal 7DOF model
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Figure 12. Horizontal component of interaction: measured component (towards sagittal axis) and
calculated component for sagittal 6DOF model
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Figure 13. Horizontal component of interaction: measured component (towards sagittal axis) and
calculated component for sagittal 7DOF model
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Figure 14. Horizontal component of interaction: measured component (towards transverse axis)

and calculated component for frontal 7DOF model

4. Discussion

On the base of the obtained data (measured and calculated) given in the section 3, we concluded that

over single support phase:

o all three vertical components of interaction calculated by using a sagittal 6DOF model (Fig. 9),
sagittal 7DOF model (Fig. 10) and frontal 7DOF model (Fig. 11) have very similar shapes and values
that are approximate to the measured one. Values of absolute relative error of calculated component
with respect to the measured one are following: 26.7% (sagittal 6DOF model (Fig. 9)), 22.2%
(sagittal 7DOF model (Fig. 10)) and 31.4% (frontal 7DOF model (Fig. 11));

o the horizontal component calculated by the sagittal 6DOF model (Fig. 12) and sagittal 7DOF model

(Fig. 13) is closely approximated to the measured horizontal one;
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o the horizontal component calculated by the frontal 7DOF model (Fig. 14) has only slightly similar
shape with respect to the measured horizontal one. This discrepancy is observed in the small range

of force value.

It is worth emphasizing that calculated components were obtained without applying any
optimization approach that could be used to fit the calculated data with the calculated ones. Considering
presented results of validation, one should keep in mind that following factors are very crucial and have

a big impact on the calculated results:

1)  a method of segmentation used to calculate segment masses, segment lengths, segment radii of
gyration (in the study it was applied Zatsiorsky’s method, which assumes that each segment is a
homogenous cylinder);

2)  segment moments of inertia that influence dynamics of system considered (in this study a
Zatsiorsky’s method was used to calculated segment moments of inertia);

3) methods applied for kinematic data processing that are used to calculate segment angular
velocities and segment angular accelerations (data processing should constrain non-physiological
jerks);

4)  data that describe the upper body part influence in each planar model (location of mass of upper

body with respect to the hip joints of each model);

5)  data that describe the seventh segment of the sagittal 7DOF model (mass m7, length L7, radius

of gyration S7 and moment of inertia J7).

5. Conclusions

The aim of this study was to create multibody biomechanical models that can be used to analyze a
normal gait of the human and to identify joint moments of the lower limbs during normal gait in the
single and the double support phase. Applying Newton-Euler formulation, six planar biomechanical
models were developed: 1) a mathematical 6DOF model describing gait in the sagittal plane of the body
for single support phase (open sagittal 6DOF model); 2) a mathematical 6DOF model describing a gait
in the sagittal plane of the body for double support phase (closed sagittal 6DOF model); 3) a
mathematical 7DOF model describing a gait in the sagittal plane of the body for single support phase
(open sagittal 7DOF model); 4) a mathematical 7DOF model describing a gait in the sagittal plane of
the body for double support phase (closed sagittal 7DOF model); 5) a mathematical 7DOF model
describing a gait in the frontal plane of the body for single support phase (open frontal 7DOF model);
6) a mathematical 7DOF model describing a gait in the frontal plane of the body for double support
phase (closed frontal 7DOF model). Proposed mathematical models can be applied to solve a forward
dynamic task or an inverse dynamic task. A validation of these models had been performed by

comparing results measured over examination of normal human gait with calculated ones obtained by
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solving an inverse dynamic task. Applying a sagittal 7DOF model, the influence of the moment of
inertia of the upper body is taken into account, whereas the sagittal 6DOF model and the frontal 7DOF
model only consider an influence of upper body load. Due to the fact that proposed biomechanical
models only describe planar motions, they should be applied with caution to analyze an asymmetrical
gait.

Applying models presented in this paper, one can assess joint moments and joint intersegmental
forces that origin due to influence of elements linking neighboring segments. These elements model an
influence of soft tissues that are bending each joint (ligaments, bursa, muscles with tendons) and also
affecting acceleration or deceleration of segments, especially at the end of the range of motion.
Moreover, joint moments and joint intersegmental forces are produced due to interaction (contact)
between the components of musculoskeletal system. On the base of calculated kinematic and kinetic
data one can assess power produced by the chosen segments and joint powers produced by the chosen
joints of the lower limb. However, one should take in mind that application of an inverse dynamic
approach does not allow to consider influence of multi-joint muscles and to detect a co-contraction
phenomenon that is very important to maintain a stable posture [9]. Proposed biomechanical models
can be used to obtain data to design a mechanical construction of the exoskeleton used to enhance
performance of the lower limbs. Also, these models can be used to design a control system of this
exoskeleton to enhance the given motion performance by keeping the chosen range of the human
locomotive stability. Moreover, considering motions of the human, one should keep in mind that all
motions are performed in some range of variability [10].

It is worth remembering that planar models presented in this paper cannot model phenomena
occurring due to rotations in the transverse plane, since presented models only describe phenomena
occurring towards a medio-lateral axis of rotation (in the sagittal plane of the body) and anterior-

posterior axis of rotation (in the frontal plane of the body).
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