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The aim of an autoencoder neural network is to transform the input data into a lower-dimensional code and 
then to reconstruct the output from this representation. Applications of autoencoders to classifying sound 
events in the road traffic have not been found in the literature. The presented research aims to determine 
whether such an unsupervised learning method may be used for deploying classification algorithms applied to 
the automatic annotation of road traffic-related events based on noise analysis. Two-dimensional 
representation of traffic sounds based on 1D convolution was fed the core of autoencoder neural network, and 
after that classified with seven feed-forward classification subnetworks. Obtained results show that sound 
recordings can help determine the number of vehicles passing on the road. However, instead of being treated as 
independent, this method output should be combined with another source of data, e.g., video processing results 
or microwave radar data readings. Results of vehicle types classification and occupied lane obtained with the 
use of autoencoder are shown in the paper. 

1. INTRODUCTION

Classification of vehicles based on the audio signal is a topic that appears in many works on traffic-related 
issues. Until now, the standard approach has been to use k-Nearest Neighbors algorithm, Support Vector 
Machine classifiers or simple neural networks[1]–[3]. Previously, solutions like Hidden Markov Model and 
their modifications were used. Spectrograms, Mel-Frequency Cepstral Coefficients (MFCC), Linear Predictive 
Coding or low-dimension MPEG-7 descriptors were employed as parameters[1], [4]. Representation learning 
is a widely used technique, which can be used to parameterize audio signals such as acoustic scene ambient 
sound, music, speech or heart sounds [5], [6], [7]. The main difference between related works using 
autoencoder is feature extraction block (MFCC calculation) despite employing raw wave files as a feed [6]. 
Also previously mentioned approach using 1D convolution is based on MFCC feature maps [7]. In our 
research, we intended to perform unsupervised analysis of sounds gathered in the proximity of a road which 
may allow tasks such as classification of vehicle types or vehicle counting. These are examples of 
classification tasks providing crucial information required by intelligent transportation systems to perform 
tasks such as speed limit optimization. The novelty of our approach presented in the article is the use the auto 
encoder to classify vehicles and fact that this solution is characterized by the lack of parameterization of audio 
recordings due to the application of 1D convolutions in the context of parameterization of vehicle noise 
signals.  
The proposed solution uses the Acoustic Vector Sensor (AVS) as an audio data source [8]. Such an acoustical 
probe application in the context of traffic classification can be very useful, for example by installing it inside 
an intelligent road sign that monitors the expressways constantly. Examples of such solutions are presented in 
Figure 1. There are several studies on traffic noise analysis based on AVS, including vehicle classification [2], 
[9]–[12]. The presented auto encoder may be one of the solutions used for intelligent road signs as a vehicle 
classification module or for speed measurement purposes employing AVS [11]. 
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Figure 1. Standing and hanging smart road signs (patented utility models  [13] [14]) 

2. METHODOLOGY 
 

The acoustic signal is gathered by a MEMS microphone-based acoustic probe (AVS) employing IvenSense 
INMP441 sensors. Moreover, a video signal is captured for the purpose of its use in the process of manual 
labeling of acoustic data. Both microphone and the camera can be seen with the measurement environment in 
Figure 2.  

 

 
 

Figure 2. Hanging measurement module of an intelligent road sign in Lezno, Poland. At the bottom of the 
suspended box, marked with a red ellipse, microphone and camera is seen. 

 
Seven types of labels are taken into consideration which describes both the type of the vehicle passing by at the 
given moment of time and the lanes being occupied at that moment. The labels for the vehicle type include car, 
bus, truck, motorcycle and van. For the lane identification, there are two labels – closer lane and far lane 
(relative to the position of the microphone). An example of such a labeled audio signal is shown in Figure 3. 
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Figure 3. A visual depiction of labels assigned to audio segments from the manually annotated dataset with 

fragments marked in black. Each label represents a given vehicle type presence or presence of a vehicle on a 
given road lane. 

Each frame can be associated with only one class, but it also can be connected to no class or more than one 
class if multiple vehicles are passing. If no class is assigned to the audio frame, then the frame contains only 
sounds related to the acoustic environment. Eight hours of unlabelled audio was used to train an autoencoder in 
the form of a type 1D (one dimension) convolutional neural network. For assessment of the quality of the 
unsupervised learning stage and for the training of the audio classifier in a supervised manner, an additional 2 
hours of audio were manually labeled. Numbers of examples related to each class are shown in Table 1. 
 
Table 1. The number of examples associated with each class in the labeled dataset. Silence (no class) means 
that no vehicle or lane-associated class were assigned to a given frame. 
 

number of 
frames 
counted 

silence 
(no class) 

car bus truck motorcycle van close 
lane 

far 
lane 

14160 9673 3441 103 613 96 431 2277 2414 
 
Autoencoder neural network has the ability to perform unsupervised analysis of the structure of data fed to its 
input. The architecture employed in this study forces the network to represent each sample of data as a set of 
64 channels, each consisting of 188 parameters. In total, each representation consists of 64 ∙ 188 =  12032 
coefficients. Such a representation of the audio frame is used by the decoding part of the network to recreate 
the original input signal. Decoder architecture is built in the same way as the encoding part of the network; 
however, it is a mirror reflection of the encoder structure. The task of the network during the training process is 
to minimize the reconstruction error. The encoding part of this network was used as the first part of 1D 
convolutional network which is performing classification. Two hours of audio recording were used for the 
training of the neural network. Frames of audio signals were 500 ms long. The sampling rate of the audio 
signal is 48 kHz. The general structure of the neural network used for the study is depicted in Figure 4. 
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Figure 4. A general depiction of the unsupervised stage of pre-training 

To interpret the output of the encoder, an additional set of sub-networks consisting of 7 feed-forward neural 
networks to perform classification tasks were added. Their inference is based upon an input from the encoder 
part of the autoencoder network. The general diagram of the proposed solution is presented in Figure 5. The 
output of the encoding part of the autoencoder is fed into 7 independent feed-forward neural networks. Each of 
the networks is associated with one of seven labels used for the study. The classification for each class is 
performed independently from each other, because a single frame can belong to multiple classes at the same 
time. The result of the classification is returned by the network in the form of seven two-element lone one-hot 
vectors. 
 

 
Figure 5. Structure of the classifier neural network employed in the supervised stage of the experiment 

As a learning rate optimizer, the ADAM algorithm was employed in both the unsupervised and supervised 
learning-based stage of the experiment [15]. Learning rate in both cases was set to 10ିସ. 

3. RESULTS AND DISCUSSION 
 
Further analyses were carried out for both the results of unsupervised and supervised learning processes. The 
unsupervised learning stage resulted in the assignment of frames of audio signals to points in a decision space 
consisting of 12032 dimensions. Each dimension represents one of the coefficients of the representation 
generated by the encoding part of the autoencoder neural network. An easy way of a quick assessment of the 
results of such a process is to employ PCA to reduce the dimensionality of the decision space obtained from 
the autoencoder and to display points in the form of clusters using only two first components of PCA, which 
contain the most significant values of the original set variance. Graphical depiction of the autoencoder-based 
clusterization calculated in this manner is presented in Figures 6 and 7.  Each point depicted in Figures 6 and 7 
is related to the frame belonging to a given class. Also, centroids of each class-related datasets are depicted in 
those figures, as its placement carries useful information about the possible achievable separation between 
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classes of sounds analyzed by the neural networks. The network itself had no information about the class of 
sound it processes. The result visible in Figures 6 and 7 was obtained by parameterization of frames obtained 
from a manually labeled fragment of the dataset, for which associated class labels were known and could be 
depicted in the image. Additionally, a so-called centroid of the joint set created by merging all single-class 
datasets shown in the figure is also presented. It may serve as a reference in calculation of the influence of the 
choice of points belonging to a certain class on the position of the cluster to which those data points belong. 
  

 
Figure 6. Result of the unsupervised training – decision space visualized with the use of the PCA transformation. 

Black triangle markers denote centroids of class-related data subsets and centroid of the whole joint dataset 
containing all data points from all subsets. 

 

 
Figure 7. Result of the unsupervised training – decision space visualized with the use of the PCA transformation 
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A visual depiction of decision space shows, that there is possible to obtain separability for classes of a passing 
vehicle, however no similar clear tendency is visible for the type of lane the vehicle is placed on. To analyze if 
such separability occurs in the original high-dimensional decision space, a series of statistical tests was 
conducted. Such an approach is necessary, as PCA-based visualization show only a part of the original 
variance of the high-dimensional dataset. Data were split into seven subsets, each containing points associated 
with one of seven groups of vehicles. For each of those sets, a centroid was calculated in a similar manner as it 
is shown in Figures 6 and 7. Centroid was also calculated for the original set containing points from all the 
groups.  In our statistical analysis, we used two distances – a distance to a centroid of a class-related cluster 
𝑑௖௟௔௦௦  and a distance to a centroid of a joint dataset 𝑑௝௢௜௡௧. A visual depiction of the beforementioned distances 
used in this process is presented in Figure 8. 

 
 

 
 

Figure 8. Depiction of calculation of distances from the centroid of the set containing examples of all classes 
(𝒅𝒋𝒐𝒊𝒏𝒕) and centroid of the set consisting only of examples of class to which belongs the currently analyzed point 

(𝒅𝒄𝒍𝒂𝒔𝒔).= 

Next, a difference between the distance to general set and to class-related set centroid was calculated, which 
can be written in short form as Δd =  𝑑௝௢௜௡௧  −  𝑑௖௟௔௦௦. The difference Δd is greater than zero if centroid of a 
class-related cluster of data points is positioned closer to the chosen data point than a centroid containing all 
analyzed points. Therefore, if statistically the mean or a median of Δd is greater than 0, then the separation 
between a joint dataset and a class-related dataset is obtained. This premise is used as an alternative hypothesis 
in statistical tests performed in our study. The null hypothesis is that the mean of Δd in a given dataset is zero 
and no separation is obtained. A boxplot of values of Δd derived in such a way is presented in Figure 9. The 
distance is normalized by the division of distance by a standard deviation of the joint dataset. 
 

centroid of data points  
from the “X” dataset. 

centroid of data points  
from the “O” dataset. 

a “joint” centroid of dataset 
consisting of points 
from both the “X” 
and “O” datasets 

𝑑୨୭୧୬୲ 
𝑑ୡ୪ୟୱୱ 
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Figure 9. The difference of distances from the center of the set containing data points of all classes and center of 

the cluster containing only one class of data-points. The distance is expressed in terms of the mean standard 
deviation of the set containing all classes of vehicles. 

To test statistical hypotheses about the obtained separability in the dataset generated by the autoencoder neural 
network, an iterated t-test was conducted to check if the mean value of distances depicted in Figure 9 is greater 
than zero. All p-values were lesser than a standard value of significance level α = 0.05. Values of t-statistic, 
associated p-values and medians of Δ𝑑 are given in Table 2. A Holm-Bonferroni correction for the multiple 
comparisons was applied to take into account the fact that iterated testing was performed. 
 
Table 2. Values of t statistic obtained from the t-test (after application of Holm-Bonferroni multiple 
comparison corrections). 
 

class car bus truck motorcycle van close far 
t statistic 23.45 6.90 7.35 6.67 7.32 2.32 1.97 

p-value < 10ିଷ < 10ିଷ < 10ିଷ < 10ିଷ < 10ିଷ 0.041 0.049 

𝚫𝒅 
median 

[std. dev.] 
0.149 0.874 0.904 2.300 0.111 0.001 0.002 

 
As can be seen from Figure 9, the parameter which is unique to the motorcycle class is its wide interquartile 
range what suggests that data for this class are associated with high levels of variance when compared to the 
rest of classes. Therefore, a Brown-Forsythe statistic test was applied to test such a hypothesis. A resulting 
value of the Brown-Forsythe test statistic is 1543.2. Therefore, the p-value of the test is lesser than 10ିଷ , so 
we can conclude that there are statistically significant differences in the variance of distance differences. To 
test which pairs are statistically different in terms of variance a Dunn posthoc statistic test was performed. To 
test the variance of distances, the following transform was applied to the data: 
 

𝑑̅ = |𝑑 − 𝐸(𝑑)| (1) 

  

The test was performed on the values of 𝑑̅. Dunn’s test performed on data transformed in such a way allows to 
find out a difference in the variance of two given datasets. Resulting p-values of the Dunn’s test are provided 
in Table 3. 
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Table 3. Values of Dunn’s posthoc test for equality of variances of two classes. Pairs for which a statistically 
significant (𝛂 =  𝟎. 𝟎𝟓) differences of variance found are marked with a bold font. 
 
 car bus truck motorcycle van close far 

car  0.002 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 0.540 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 
bus 0.002  0.869 0.433 0.002 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 
truck < 𝟏𝟎ି𝟑 0.869  0.393 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 
motorcycle < 𝟏𝟎ି𝟑 0.433 0.393  < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 
van 0.540 0.002 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑  < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 
close < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑  0.996 

far < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 < 𝟏𝟎ି𝟑 0.996  

 
It can be found that despite the fact that the labeled dataset contains only 93 examples, they represent a high 
variance and can be associated with high values of Δ𝑑. Therefore, there is a potential for obtaining a separation 
for this class. On the other hand, high variance means also that some examples may be hard to distinguish from 
other classes as an inter-quartile range of motorcycle-related distances overlaps with ranges associated with 
other analyzed classes. 
The result of a supervised learning-based classification is shown in Table 4. As can be seen, in the table there 
are 4 classes of 7 discussed before. Since precision and recall scores for 3 remaining classes were close to zero, 
we decided to not include results for them, because such a result indicates poor accuracy. However, in case of 
detection of cars and trucks, and a vehicle presence on both: a lane which is closer or a lane more distant to the 
position of a camera, reasonable results of classification were achieved. An autoencoder output allowed 
training the neural network on both: labeled and unlabelled data. 
There are some limitations of the presented approach. Firstly used dataset is unbalanced as there are 
differences of a number of examples provided for each class in the labeled dataset. This could cause the 
problem with the classification of poorly resented classes e.g motorcycle or bus. That can be seen in Table 4, 
especially if analyzing the F1 score results. This is probably the reason why no satisfactory result was obtained 
for the motorcycle class.  
 

Table 4. Results of classification using the architecture presented above  

 Accuracy Precision  Recall F1 score 
car 0.870 0.706 0.703 0.704 
truck 0.987 0.136 0.375 0.200 
close lane 0.852 0.357 0.405 0.380 
far lane 0.852 0.587 0.459 0.515 

 
Secondly annotated dataset consists of only two hours of recordings, which could be not enough to properly 
capture all dependencies and features necessary for appropriate classification for use of autoencoder. The 
annotation process for traffic noise recordings is a time-consuming process, thus it does not enable acquiring 
more data within a reasonable time. 

4. CONCLUSION 
 

According to the presented results, with our approach, it is possible to classify cars with ~ 87% accuracy, with 
a satisfying precision and recall, as well with a ~70% F1 score. The remaining results are slightly worse, 
probably since numbers of examples in each class were unbalanced and most of the data were acquired for 
cars. Despite the above difficulties, a distinction between two classes of vehicles, namely: cars and trucks, was 
possible to make based on acoustical data. The outcome for motorcycle class may be a consequence of a low 
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number of observations for this class and the fact that any single-track vehicle was interpreted as a motorcycle. 
There is a lot of variety of single-track vehicles. 
The obtained results of distinguishing between lanes may be influenced by the fact that the simultaneous 
occupation of both lanes occurred commonly in the analyzed data set. Based on the audio modality only, it is 
difficult to distinguish which lane is currently occupied, because the sounds from both lanes overlap, despite 
the differences. The solution to this problem could be the introduction of an additional class indicating the 
occupancy of both lanes in future work. 
The advantage of the proposed approach is the fact, that the use of autoencoder for unsupervised pre-training 
allowed to utilize unlabelled audio data. Another advantage of the proposed classifier architecture lays in its 
modularity. The autoencoder-derived part of the network may be reused as a feature extraction module for 
another neural network performing the classification of vehicles. The frames of raw audio signals acquired in 
the proximity of a road can be used for both: supervised and unsupervised training of neural networks.
However, despite an unsupervised pre-training stage it is still necessary to provide a sufficiently high number 
of annotated examples as it could be seen in the case of motorcycle class. Despite good characteristics in the 
decision space, the classifier was not able to achieve an entirely satisfactory accuracy level. 
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