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Abstract. Using the Mountain Pass Theorem we show that the prob-
lem {

d
dt
Lv(t, u(t), u̇(t)) = Lx(t, u(t), u̇(t)) for a.e. t ∈ [a, b]

u(a) = u(b) = 0

has a solution in anisotropic Orlicz-Sobolev space. We consider La-
grangian L = F (t, x, v) + V (t, x) + 〈f(t), x〉 with growth conditions de-
termined by anisotropic G-function and some geometric conditions of
Ambrosetti-Rabinowitz type.

1. Introduction

We consider the second order boundary value problem:

(ELT)

{
d
dtLv(t, u(t), u̇(t)) = Lx(t, u(t), u̇(t)) for a.e. t ∈ [a, b]

u(a) = u(b) = 0

where L : [a, b]× RN × RN → R is given by

L(t, x, v) = F (t, x, v) + V (t, x) + 〈f(t), x〉 .

Using the Mountain Pass Theorem we show that the problem (ELT) has a
solution in anisotropic Orlicz-Sobolev space.

Recently, existence of periodic solution to the equation

d

dt
∇G(u̇(t)) = ∇V (t, u(t)) + f(t)

was established by Authors in [1] via the Mountain Pass Theorem. In this
paper we consider more general differential operator:

d

dt
Fv(t, u, u̇).

We assume that F is convex in the last variable and that the growth of F
and its derivatives is determined by underlying G-function. We also assume
that F and V satisfies some geometric conditions of Ambrosetti-Rabinowitz
type.
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2 M. CHMARA AND J. MAKSYMIUK

If F (v) = 1
p |v|

p then the equation (ELT) reduces to (one-dimensional or

ordinary) p-laplacian equation

d

dt
(|u̇|p−2 u̇) = ∇V (t, u) + f(t), u(a) = u(b) = 0.

Existence of solutions to the above problem has been studied by many au-
thors in many different contexts. See for example,to mention only a few,
[2, 3, 4, 5, 6, 7] and references therein. One can also consider more general
case F (v) = φ(|v|), where φ is convex and nonnegative. In all the above
cases F does not depend on v directly but rather on its norm |v| and the
growth of F is the same in all directions, i.e. F has isotropic growth.

The novelty of this article lies in fact that F can be dependent not only on
u̇ but also on t and u. Moreover we consider anisotropic case, i.e. F (t, x, ·)
depends on all components of v not only on |v| and has different growth
in different directions. To the best author knowledge there is no results on
existence in our setting.

We obtain solution to the problem (ELT) by applying the Mountain Pass
Theorem. To do this we first need to show that corresponding action func-
tional satisfies the Palais-Smale condition. First we prove that a Palais-
Smale sequence {un} is bounded, the proof is rather standard and involves
Ambrosetti-Rabinowitz condition and assumption F (t, x, v) ≥ ΛG(v). Then
we need to show that {un} has a convergent subsequence. We show that

lim
n→∞

∫
I
〈Fv(t, un, u̇n, u̇− u̇n〉 dt = 0,

where u is a weak limit of {un}, which in turn implies that

lim
n→∞

∫
I
F (t, un, u̇n) dt =

∫
I
F (t, u, u̇) dt.

The proof of this fact is based on convexity of F and embedding W1 LG ↪→
L∞. Next, using convexity of F and condition F (t, x, v) ≥ ΛG(v), we obtain
that {u̇n} converges strongly. This reasoning shows that action functional
satisfies so called (S+) condition (see for example [8]).

This result seems to be of independent interest and the methods presented
in this paper can be also applied in other problems (e.g. in the case of
periodic problem).

Our work was partially inspired by the paper of de Napoli and Mariani
[9]. They consider elliptic PDE

−div(a(x,∇u)) = f(x, u)

with Dirichlet conditions. To show that corresponding functional satisfies
the Palais-Smale condition they also prove that (S+) condition is satisfied.
However, they use stronger condition, namely they assume uniform convex-
ity of functional.

As in [1] we consider two cases: G satisfying ∆2, ∇2 at infinity and glob-
ally. It turns out that in both cases the mountain pass geometry of action
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MOUNTAIN PASS SOLUTIONS WITH GENERAL ANISOTROPIC OPERATOR 3

functional is strongly dependent on two factors: the embedding constant for
W1 LG ↪→ L∞ and on Simonenko indices pG and qG (see Lemmas 4.4 and
4.5).

Similar observation can be found in [10, 11, 12] where the existence of
elliptic systems via the Mountain Pass Theorem is considered. In [11] au-
thors deal with an anisotropic problem. The isotropic case is considered in
[10, 12].

2. Orlicz-Sobolev spaces

In this section we briefly recall the notion of anisotropic Orlicz-Sobolev
spaces. For more details we refer the reader to [13, 1] and references therein.
We assume that

(G) G : RN → [0,∞) is a continuously differentiable G-function (i.e. G
is convex, even, G(0) = 0 and G(x)/|x| → ∞ as |x| → ∞ ) satisfying
∆2 and ∇2 conditions (at infinity).

Typical examples of such G are: G(x) = |x|p, G(x1, x2) = |x1|p1 + |x2|p2
and G(x) = |x|p log(1 + |x|), 1 < pi <∞, 1 < p <∞.

Let I = [a, b]. The Orlicz space associated with G is defined to be

LG = LG(I,RN ) =

{
u : I → RN :

∫
I
G(u) dt <∞

}
.

The space LG equipped with the Luxemburg norm

‖u‖LG = inf

{
λ > 0:

∫
I
G
(u
λ

)
dt ≤ 1

}
is a separable, reflexive Banach space. We have two important inequalities:

a) the Fenchel inequality

〈u, v〉 ≤ G(u) +G∗(v), for every u, v ∈ RN ,

b) the Hölder inequality∫
I
〈u, v〉 dt ≤ 2‖u‖LG‖v‖LG? , for every u ∈ LG and v ∈ LG

?
,

where G∗ is a convex conjugate of G. Functional RG(u) =
∫
I G(u) dt is called

modular. Note that if G(x) = |x|p then LG = Lp and RG(u) = ‖u‖pLp . In
general case, relation between modular and the Luxemburg norm is more
complicated.

The Simonenko indices for G-function are defined by

pG = inf
|x|>0

〈x,∇G(x)〉
G(x)

, qG = sup
|x|>0

〈x,∇G(x)〉
G(x)

.

It is obvious that pG ≤ qG. Moreover, since G satisfies ∆2 and ∇2, 1 < pG
and qG < ∞. If G(x) = 1

p |x|
p then pG = qG = p. The following results are

crucial to Lemma 4.5

Proposition 2.1. Assume that G satisfies ∆2 and ∇2 globally.
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4 M. CHMARA AND J. MAKSYMIUK

a) If ‖u‖LG ≤ 1, then ‖u‖qG
LG
≤ RG(u).

b) If ‖u‖LG > 1, then ‖u‖pG
LG
≤ RG(u).

The proof can be found in [1, Appendix A]. More information about
indices for isotropic case can be found in [14, 10]. When G satisfies ∆2 and
∇2 only at infinity we have weaker estimates

Proposition 2.2. If ‖u‖LG > 1 then RG(u) ≥ ‖u‖LG. If ‖u‖LG ≤ 1 then
RG(u) ≤ ‖u‖LG.

For relations between Luxemburg norm and modular for anisotropic spaces
we refer the reader to [13, Examples 3.8 and 3.9]. We will also use the fol-
lowing simple observations

Lemma 2.3.

lim
‖u‖

LG
→∞

RG(u)

‖u‖LG
=∞.

Lemma 2.4. Let {un} ⊂ LG. Then {un} is bounded if and only if {RG(un)}
is bounded.

The anisotropic Orlicz-Sobolev space is defined to be

W1 LG = W1 LG(I,RN ) = {u ∈ LG : u̇ ∈ LG},

with usual norm

‖u‖W1 LG = ‖u‖LG + ‖u̇‖LG .

It is known that elements of W1 LG are absolutely continuous functions.
An important role in our considerations plays an embedding constant for
W1 LG ↪→ L∞. We denote this constant by C∞,G. Let AG : RN → [0,∞)
be the greatest convex minorant of G (see [15]), then

‖u‖L∞ ≤ max{1, |I|}A−1
G

(
1

|I|

)
‖u‖W1 LG .

We introduce the following subspace of W1 LG:

W1
0 L

G = {u ∈W1 LG : u = 0 on ∂I}.

It is proved in [13, Theorem 4.5] that for every u ∈W1
0 L

G the following
form of Poincaré inequality holds

(1) ‖u‖LG ≤ |I| ‖u̇‖LG .

It follows that one can introduce an equivalent norm on W1
0 L

G:

‖u‖W1
0 L

G = ‖u̇‖LG .
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MOUNTAIN PASS SOLUTIONS WITH GENERAL ANISOTROPIC OPERATOR 5

3. Main results

Let G satisfies assumption (G) and let I = [a, b]. We consider Lagrangian
L : I × RN × RN → R given by

L(t, x, v) = F (t, x, v) + V (t, x) + 〈f(t), x〉 .

We assume that F : I ×RN ×RN → R, V : I ×RN → R are of class C1 and
satisfy

(F1) F (t, x, ·) is convex for all (t, x) ∈ I × RN ,
(F2) there exist a ∈ C(R+,R+) and b ∈ L1(I,R+) such that for all

(t, x, v) ∈ I × RN × RN :

|F (t, x, v)| ≤ a(|x|) (b(t) +G(v)),(2)

|Fx(t, x, v)| ≤ a(|x|) (b(t) +G(v)),(3)

G∗(Fv(t, x, v)) ≤ a(|x|) (b(t) + G∗ (∇G(v))),(4)

(F3) There exist θF > 0 such that for all (t, x, v) ∈ I × RN × RN :

〈Fx(t, x, v), x〉+ 〈Fv(t, x, v), v〉 ≤ θF F (t, x, v),

(F4) there exists Λ > 0 such that for all (t, x, v) ∈ I × RN × RN :

F (t, x, v) ≥ ΛG(v),

(F5) F (t, x, 0) = 0 for all (t, x) ∈ I × RN ,

(V1) there exist θV > 1, θV > θF and r0 > 0 such that for all t ∈ I

〈∇V (t, x), x〉 ≤ θV V (t, x), |x| ≥ r0,

(V2) ∫
I
V (t, 0) dt = 0,

(V3) there exist ρ0 > 0 and g ∈ L1(I,R) such that for all t ∈ I

V (t, x) ≥ −g(t), |x| ≤ ρ0,

(V4)

V (t, x) < 0, t ∈ I, |x| ≥ r0,

(f) f ∈ LG
?
(I,RN ).

Now we can state our main theorems.

Theorem 3.1. Assume that ρ0 ≥ C∞,G and

(A)

∫
I
g(t) dt < (Λ− 2|I| ‖f‖LG? )

ρ0

C∞,G
.

Then (ELT) has at least one nontrivial solution.

Assumption ρ0 ≥ C∞,G can be relaxed if we assume that G satisfies ∆2

and ∇2 globally. In this case we also have weaker assumptions on V .
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6 M. CHMARA AND J. MAKSYMIUK

Theorem 3.2. Assume that G satisfies ∆2 and ∇2 globally and

(B)

∫
I
g(t) dt+ 2|I| ‖f‖LG?

ρ0

C∞,G
< Λ


(

ρ0
C∞,G

)qG
, ρ0 ≤ C∞,G(

ρ0
C∞,G

)pG
, ρ0 > C∞,G

Then (ELT) has at least one nontrivial solution.

One can show that, in fact, every solution of (ELT) is of class W1,∞ (see
[1, Proposition 3.5]).

3.1. Some remarks on assumptions. Assumptions (F3) and (V1) are
Ambrosetti-Rabinowitz type conditions. It follows that F and V are subho-
mogeneous respectively everywhere and for large arguments (cf. [9]).

Lemma 3.3. For every λ > 1

a)

F (t, λx, λv) ≤ λθFF (t, x, v) for all (t, x, v) ∈ I × RN × RN

b)

V (t, λx) ≤ λθV V (t, x) for all t ∈ I, |x| ≥ r0

Proof. Let (t, x, v) ∈ I × RN × RN and λ > 1, then

log

(
F (t, λx, λv)

F (t, x, v)

)
=

∫ λ

1

d

dλ
logF (t, λx, λv) dλ =

=

∫ λ

1

〈Fx(t, λx, λv), x〉+ 〈Fv(t, λx, λv), v〉
F (t, λx, λv)

dλ ≤
∫ λ

1

θF
λ
dλ = log λθF .

by (F3) and the result follows. The proof of b) is similar �

Remark 3.4. Note that if F (t, x, v) = G(v) then assumption (F3) implies
that G satisfies ∆2 condition globally.

4. Proof of the main theorems

Define action functional J : W1
0 L

G(I,RN )→ R by

(J ) J (u) =

∫
I
F (t, u, u̇) + V (t, u) + 〈f, u〉 dt

Under above assumptions, J is well defined and of class C1. Furthermore,
its derivative is given by
(J ′)
J ′(u)ϕ =

∫
I
〈Fx(t, u, u̇), ϕ〉 dt+

∫
I
〈Fv(t, u, u̇), ϕ̇〉 dt+

∫
I
〈∇V (t, u), ϕ〉+〈f, ϕ〉 dt

See [13, Theorem 5.7] for more details. It is standard to prove that critical
points of J |W1

0 L
G are solutions of (ELT).

Our proof is based on the well-known Mountain Pass Theorem (see [16]).
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MOUNTAIN PASS SOLUTIONS WITH GENERAL ANISOTROPIC OPERATOR 7

Theorem 4.1. Let X be a real Banach space and I ∈ C1(X,R) satisfies the
following conditions:

a) I satisfies Palais-Smale condition,
b) I(0) = 0,
c) there exist ρ > 0, e ∈ X such that ‖e‖X > ρ and I(e) < 0.
d) there exists α > 0 such that I|∂Bρ(0) ≥ α,

Then I possesses a critical value c ≥ α given by c = infg∈Γ maxs∈[0,1] I(g(s)),
where Γ = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = e}.

We divide the proof into sequence of lemmas.

4.1. The Palais-Smale condition. Now we show that J satisfies the
Palais-Smale condition. We divide the proof into two steps. First we show
that every (PS)-sequence is bounded and then that it contains a convergent
subsequence.

The first part of the proof is standard. Let us note that assumptions (F3),
(F4) and (V1) are crucial. The second part is more involved, let us outline
it. First we show that un ⇀ u and embedding W1 LG ↪→ L∞ imply that∫

I
〈Fv(t, un, u̇n), u̇− u̇n〉 dt→ 0.

Then we show that ∫
I
F (t, un, u̇n) dt→

∫
I
F (t, u, u̇) dt.

In the case of p-Laplacian equation (i.e. F (t, x, v) = 1
p |v|

p), the last condi-

tion implies that u̇n → u̇. The same is true if F (t, u, v) = G(v), since in this
case RG(u̇n) → RG(u̇). The last condition implies desired convergence for
{u̇n} (see [13, Lemma 3.16] and [1, p. 593]).

In our case this argument does not apply directly because convergence
of above integrals does not imply that RG(u̇n) → RG(u̇). However, we
can extend the reasoning presented in the proof of [13, Lemma 3.16] to our
general integrand and show that∫

I
F

(
t, un,

u̇n − u̇
2

)
dt→ 0

and then apply condition (F4) to show that RG(u̇n − u̇) → 0 and hence
u̇n → u̇ in LG by [13, Lemma 3.13].

Lemma 4.2. Functional J satisfies the Palais-Smale condition

Proof. Fix u ∈W1
0 L

G. From assumptions (F3) and (F4) we obtain

(5)

∫
I
θV F (t, u, u̇)− 〈Fx(t, u, u̇), u〉 − 〈Fv(t, u, u̇), u̇〉 dt ≥

≥ (θV − θF )

∫
I
F (t, u, u̇) dt ≥ C1

∫
I
G(u̇) dt,
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8 M. CHMARA AND J. MAKSYMIUK

where C1 = Λ(θV − θF ) > 0, since θV > θF . Set M = sup{|θV V (t, x) −
〈∇V (t, x), x〉 | : t ∈ I, |x| ≤ r0}, then by (V1) we obtain
(6)∫
I
θV V (t, u)−〈∇V (t, u), u〉 dt ≥

∫
{|u(t)|>r0}

θV V (t, u)−〈∇V (t, u), u〉 dt−|I|M ≥ −|I|M.

We also have, by Hölder’s inequality, (1) and (f), that

(7) (θV − 1)

∫
I
〈f(t), u〉 dt ≥ −2(θV − 1)‖f‖LG?‖u‖LG ≥ −C2‖u̇‖LG ,

where C2 = 2|I|(θV − 1)‖f‖LG? > 0. From (J ) and (J ′) we get

θV J (u)− J ′(u)u =

∫
I
θV F (t, u, u̇)− 〈Fx(t, u, u̇), u〉 − 〈Fv(t, u, u̇), u̇〉 dt+

+

∫
I
θV V (t, u)− 〈∇V (t, u), u〉 dt+ (θV − 1)

∫
I
〈f(t), u〉 dt.

Using (5), (6) and 7 we obtain

C1

∫
I
G(u̇) dt ≤ θV |J (u)|+ ‖J ′(u)‖‖u‖W1

0 L
G + C2‖u̇‖LG + |I|M.

Let {un} ⊂W1
0 L

G be a Palais-Smale sequence, i.e. {J (un)} is bounded and
J ′(un)→ 0. If {un} is not bounded, we may assume that ‖un‖W1

0 L
G →∞.

Then dividing by ‖un‖W1
0 L

G = ‖u̇n‖LG we get

C1

‖u̇n‖LG

∫
I
G(u̇n) dt ≤ θV |J (un)|

‖u̇n‖LG
+ ‖J ′(un)‖+ C2 +

|I|M
‖u̇n‖LG

.

Letting n → ∞, we obtain a contradiction with Lemma 2.3, thus {un} is
bounded.

Next we show that {un} has a convergent subsequence. Passing to a
subsequence if necessary, we may assume that un → u in L∞, {u̇n} bounded
in LG, u̇n → u̇ a.e. and un → u a.e.

Since J ′(un)→ 0 and {un − u} is bounded in W1
0 L

G, we conclude that

lim
n→∞

〈
J ′(un), un − u

〉
= 0,

from the other hand,

lim
n→∞

∫
I
〈∇V (t, un) + f(t), un − u〉 dt = 0.

Thus, by (J ′) we have that

lim
n→∞

∫
I
〈Fx(t, un, u̇n), un − u〉 dt+

∫
I
〈Fv(t, un, u̇n), u̇n − u̇〉 dt = 0

Define nondecreasing function α(s) = supτ∈[0,s] a(τ). Since {un} is bounded

in W1
0 L

G, there exists C3 > 0 such that

a(|un(t)|) ≤ α(‖un‖L∞) ≤ C3
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MOUNTAIN PASS SOLUTIONS WITH GENERAL ANISOTROPIC OPERATOR 9

and there exists C4 > 0 such that∫
I
G(u̇n) dt ≤ C4.

It follows from (3) and the above that ‖Fx(·, un, u̇n)‖L1 is uniformly bounded.
Since un → u in L∞, we get∣∣∣∣∫

I
〈Fx(t, un, u̇n), un − u〉 dt

∣∣∣∣ ≤ ‖Fx(·, un, u̇n)‖L1‖un − u‖L∞ → 0.

and consequently

(8) lim
n→∞

∫
I
〈Fv(t, un, u̇n), u̇n − u̇〉 dt = 0.

By continuity of F we have that F (t, un(t),±u̇(t)) → F (t, u(t),±u̇(t))
a.e. From (2) and u̇ ∈ LG we get

|F (t, un(t),±u̇(t))| ≤ C3(b(t) +G(±u̇(t)) ∈ L1 .

Hence

(9) lim
n→∞

∫
I
F (t, un,±u̇) dt =

∫
I
F (t, u,±u̇) dt.

From the other hand, convexity of F (t, x, ·), (8) and (9) yields

lim sup
n→∞

∫
I
F (t, un, u̇n) dt ≤ lim

n→∞

∫
I
F (t, un, u̇)+〈Fv(t, un, u̇n), u̇n − u̇〉 dt =

∫
I
F (t, u, u̇) dt.

Since F (t, un(t), u̇n(t)) ≥ 0 and F (t, un(t), u̇n(t)) → F (t, u(t), u̇(t)) a.e., we
have ∫

I
F (t, u, u̇) dt ≤ lim inf

n→∞

∫
I
F (t, un, u̇n) dt

by Fatou’s Theorem. Finally,

(10) lim
n→∞

∫
I
F (t, un, u̇n) dt =

∫
I
F (t, u, u̇) dt.

Now we are in position to show that u̇n → u̇ in LG. The following is a
modification of [13, Lemma 3.16]. Convexity of F (t, x, ·) yields

F (t, un(t), u̇n(t)) + F (t, un(t),−u̇(t))

2
− F

(
t, un(t),

u̇n(t)− u̇(t)

2

)
≥ 0.

By continuity of F , u̇n → u̇ a.e. and (F5) we obtain

lim
n→∞

F (t, un(t), u̇n(t)) + F (t, un(t),−u̇(t))

2
−F

(
t, un(t),

u̇n(t)− u̇(t)

2

)
=

=
F (t, u(t), u̇(t)) + F (t, u(t),−u̇(t))

2
a.e.

Thus, by Fatou’s Lemma,∫
I

F (t, u, u̇) + F (t, u,−u̇)

2
dt ≤ lim inf

n→∞

∫
I

F (t, un, u̇n) + F (t, un,−u̇)

2
−F

(
t, un,

u̇n − u̇
2

)
dt
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10 M. CHMARA AND J. MAKSYMIUK

Taking into account (9) and (10) we have

lim
n→∞

∫
I

F (t, un, u̇n) + F (t, un,−u̇)

2
=

∫
I

F (t, u, u̇) + F (t, u,−u̇)

2
dt

and consequently∫
I

F (t, u, u̇) + F (t, u,−u̇)

2
dt ≤

∫
I

F (t, u, u̇) + F (t, u,−u̇)

2
dt−lim sup

∫
I
F

(
t, un,

u̇n − u̇
2

)
dt

It follows that

lim
n→∞

∫
I
F

(
t, un,

u̇n − u̇
2

)
dt = 0

From ellipticity condition (F4) we get

lim
n→∞

∫
I
G

(
u̇n − u̇

2

)
dt ≤ lim

n→∞

1

Λ

∫
I
F

(
t, un,

u̇n − u̇
2

)
dt = 0

Thus u̇n → u̇ in LG by [13, Theorem 3.13].
�

4.2. Mountain Pass geometry. Now we show that J has a mountain
pass geometry. It follows immediately from (J ), (F5) and (V2) that

Lemma 4.3. J (0) = 0

We next prove that J is negative at some point outside Bρ(0), where
ρ = ρ0

C∞,G
.

Lemma 4.4. There exists e ∈W1
0 L

G such that ‖e‖W1 LG > ρ and J (e) <
0.

Proof. Choose u0 ∈ W1
0 L

G such that |{t ∈ I : |u0(t)| ≥ r0}| > 0. Set
M = sup{|V (t, x)| : t ∈ I, |x| ≤ r0}. For any λ > 1 we have

J (λu0) =

∫
I
F (t, λu0, λu̇0) dt+

∫
I
V (t, λu0) dt+

∫
I
〈f, λu0〉 dt ≤

≤ λθF
∫
I
F (t, u0, u̇0) dt+λθV

∫
{|u0(t)|≥r0}

V (t, u0) dt+M |I|+λ
∫
I
〈f, u0〉 dt

by Lemma 3.3. Since V (t, x) is negative for |x| ≥ r0 and θV > 1, θF < θV ,

lim
λ→∞

J (λu0) = −∞

Thus, choosing λ0 large enough, we can set e = λ0u0. �

Lemma 4.5. Assume that either A or B holds. Then

inf
‖u‖

W1
0 LG

=ρ
J (u) > 0
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Proof. Let ‖u‖W1
0 L

G = ρ. Then

|u(t)| ≤ C∞,G‖u‖W1
0 L

G = ρ0, for all t ∈ I.

Using (F4), (V3) and Hölder’s inequality we have

J (u) ≥ Λ

∫
I
G(u̇) dt−

∫
I
g(t) dt− 2‖f‖LG?‖u‖LG .

Assume that (A) holds. Since ρ ≥ 1, using Proposition 2.2 and (1), we
have

J (u) ≥ Λρ−
∫
I
g(t) dt− 2|I| ‖f‖LG?ρ > 0

by assumption (A).
Assume that (B) holds. If ρ > 1 then by Proposition 2.1

J (u) ≥ ΛρpG −
∫
I
g(t) dt− 2|I| ‖f‖LG?ρ

Similarly, if ρ ≤ 1 then

J (u) ≥ ΛρqG −
∫
I
g(t) dt− 2|I| ‖f‖LG?ρ

From (B) it follows that in both cases J (u) > 0. �

5. Some examples

In this section we provide some examples illustrating our assumptions.
Due to computational difficulties we restrict ourselves to isotropic case. First
we note that the function F need not be polynomial.

Example 5.1. Let G1(v) = 1
2 |v|

2 and set

F1(v) = 16|v|2 + cos(4|v|)− 1

Then F1 is C1, convex and satisfies

16G1(v) ≤ F1(v) ≤ 32 (1 +G1(v)),

G∗1(F1,v(v)) ≤ 1032 (1 +G∗1(∇G1(v))),

〈F1,v(v), v〉 ≤ 3F1(v).

Next example shows that F can change its growth on intermediate sets.

Example 5.2. Let G2(v) = 1
4 |v|

4 and define

F2(v) =


|v|4 |v| ≤ 1

2|v|2 − 1 1 < |v| ≤ 2

|v|4 − 6|v|2 + 15 |v| > 2

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


12 M. CHMARA AND J. MAKSYMIUK

Then F2 is C1, convex and

G2(v) ≤ F2(v) ≤ 4 (1 +G2(v)),

G∗2(F2,v(v)) ≤ 7(1 +G∗2(∇G2(v))),

〈F2,v(v), v〉 ≤ 6F2(v).

Thus assumptions (F1)–(F5) are satisfied.

In the next example F depends on all variables (t, x, v).

Example 5.3. Let G3(v) = 1
4 |v|

4 and define

F3(t, x, v) = |v|4(2 + |x|
9
2 − sin t)

Then F3 is C1, convex and

4G3(v) ≤ F3(t, x, v) ≤ 4 a(|x|) (1 +G3(v)),

|F3,x(t, x, v)| ≤ 9 a(|x|) (1 +G3(v)),

G∗3(F3,v(t, x, v)) ≤ 7 a(|x|)
4
3 (1 +G∗3(∇G3(v))),

〈F3,x(t, x, v), x〉+ 〈F3,v(t, x, v), v〉 ≤ 9F3(t, x, v),

where a(|x|) = F3(π/2, x, 1). Thus assumptions (F1)–(F5) are satisfied.

Now we provide example with G-function not satisfying ∆2 globally.

Example 5.4. Define

G4(v) =


e|v|2 exp(1− 1

|v|) |v| ≤ 1
4
9 |v|

4 − 5
3 |v|

3 + 4|v|2 − 16
9 |v| 1 ≤ |v| ≤ 4

1
4 |v|

4 4 ≤ |v|

This function satisfies (G) but does not satisfies ∆2 near zero. If we set
F4(v) = F2(v) then

1

2
G4(v) ≤ F4(v) ≤ 4(1 +G4(v))

|F4,v(v)| ≤ 4(1 + |∇G4(v)|)
In this example it is not possible to give explicit formula for G∗. Neverthe-
less, G∗4 is monotone in the sense that

|v1| ≤ |v2| =⇒ G∗4(v1) ≤ G∗4(v2).

Thus assumption (F2) is satisfied.

Finally, we give an example of F and V satisfying assumptions given in
theorem 3.2.

Example 5.5. Set G(v) = 1
4 |v|

4, F (v) = F2(v) and let |I| = 1. Recall that
in this case Λ = 1 and θF = 6. Furthermore, since AG(t) = G(t), we get

A−1
G (s) =

√
2|s|1/4 and

C∞,G = max{1, |I|}
√

2|I|−1/4 =
√

2

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


MOUNTAIN PASS SOLUTIONS WITH GENERAL ANISOTROPIC OPERATOR 13

Define

V (x) = − x8

1000
+
x4

10
− x

10
+ cos(x)− 1

Then setting r0 ≥ 4 we have V (x) < 0, for |x| > r0, and θF < θV = 8.
Moreover, setting ρ0 = 7/4 we have V (x) > −1

2 . Hence inequality (B)
holds for every f satisfying ‖f‖LG? < 0.7.
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