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Abstract
We give an elementary proof of a celebrated theorem of Cappell, Lee and Miller
which relates the Maslov index of a pair of paths of Lagrangian subspaces to the
spectral flow of an associated path of self-adjoint first-order operators.
We particularly pay attention to the continuity of the latter path of operators, where

we consider the gap-metric on the set of all closed operators on a Hilbert space.
Finally, we obtain from Cappell, Lee and Miller’s theorem a spectral flow formula for
linear Hamiltonian systems which generalises a recent result of Hu and Portaluri.
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1 Introduction
Let 〈·, ·〉 be the Euclidean scalar product on R

2n and ω0(·, ·) = 〈J·, ·〉 the standard symplectic
form, where

J =

(
0 –In

In 0

)
(1)

and In denotes the identity matrix. Let us recall that an n-dimensional subspace L ⊂R
2n is

called Lagrangian if the restriction of ω0 to L × L vanishes. The set Λ(n) of all Lagrangian
subspaces in R

2n is called the Lagrangian Grassmannian. It can be regarded as a subman-
ifold of the Grassmannian Gn(R2n) and so it has a canonical topology. In the following,
we denote by I the unit interval [0, 1]. The Maslov index μMas(γ1,γ2) assigns to any pair
of paths γ1,γ2 : I → Λ(n) an integer which, roughly speaking, is the total number of non-
trivial intersections of the Lagrangian spaces γ1(λ) and γ2(λ) whilst the parameter λ travels
along the interval I . There are several different approaches to the Maslov index and here
we just want to mention [1, 4, 6, 8, 17] and [19], which is far from being exhaustive. Cap-
pell, Lee and Miller introduced in [5] four different ways to define the Maslov index and
showed that they are all equivalent. They first construct the Maslov index geometrically by
using a stratification of Λ(n) and intersection theory from differential topology following
[8]. Their approach also yields a uniqueness theorem for the Maslov index characterising
this invariant uniquely by six axioms. The uniqueness theorem is then used to show that
the Maslov index can alternatively be defined by determinant line bundles, η-invariants
and the spectral flow, respectively.
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In this paper we focus on the latter invariant and aim to give a more elementary proof of
the equality of the Maslov index and the spectral flow of a path of operators as introduced
by Cappell, Lee and Miller in [5]. Let us first recall that the spectral flow is a homotopy
invariant for paths of self-adjoint Fredholm operators that was invented by Atiyah, Patodi
and Singer in [2], and since then has been used in various different settings (see e.g. [22,
§5.2]). The spectrum of a self-adjoint Fredholm operator consists only of eigenvalues of
finite multiplicity in a neighbourhood of 0 ∈ R and, roughly speaking, the spectral flow of
a path of such operators is the net number of eigenvalues crossing 0 whilst the parameter
of the path travels along the interval.

Let us now consider for a pair of paths (γ1,γ2) in Λ(n) the differential operators

Aλ : D(Aλ) ⊂ L2(I,R2n) → L2(I,R2n), (Aλu)(t) = Ju′(t), (2)

where

D(Aλ) =
{

u ∈ H1(I,R2n) : u(0) ∈ γ1(λ), u(1) ∈ γ2(λ)
}

. (3)

By an elementary computation, Aλ is symmetric, and it is also not difficult to see that it
actually is a self-adjoint Fredholm operator. Note that the kernel of Aλ is isomorphic to
γ1(λ) ∩ γ2(λ), which suggests that the spectral flow of the path A = {Aλ}λ∈I is related to
the Maslov index of the pair (γ1,γ2). As we already mentioned above, their equality is one
of the main achievements of [5]. However, before we formulate this as a theorem, we want
to highlight a further issue related to this problem.

Above, we have spoken about paths of differential operators and so tacitly assumed con-
tinuity. Note that the family (2) has the non-constant domains (3) and so continuity is a
non-trivial problem. There are different metrics on spaces of unbounded self-adjoint Fred-
holm operators on a Hilbert space H and we recommend [11] for an exhaustive discussion
(see also [20]). A classical approach is to transform unbounded self-adjoint operators T
by functional calculus to the bounded self-adjoint operators

(
IH + T2)– 1

2 ∈L(H), (4)

and to use the operator norm on L(H) for introducing a distance between unbounded
operators. Actually, Atiyah, Patodi and Singer defined the spectral flow in [2] for bounded
self-adjoint Fredholm operators and applied it to paths of differential operators by using
(4). However, checking continuity along these lines is tedious, if possible at all (see e.g.
[13]), and it seems that the continuity of families of unbounded operators has sometimes
been ignored in the literature.

Every (generally unbounded) self-adjoint operator on a Hilbert space is closed, and there
is a canonical metric on the set of all closed operators which is called the gap-metric (see
§IV.2 in Kato’s monograph [10]). It was shown in [13] (see also [11, Prop. 2.2]) that every
path of self-adjoint Fredholm operators that is mapped to a continuous path of bounded
operators under (4) is also continuous with respect to the gap-metric. Finally, Booss-
Bavnbek, Lesch and Phillips constructed in [3] the spectral flow for paths of self-adjoint
Fredholm operators in this more general setting. The main result of this paper now reads
as follows (see [5, Thm. 0.4]).
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Theorem 1.1 If (γ1,γ2) is a pair of paths in Λ(n), then the family of differential operators
(2) is continuous with respect to the gap-metric and sf(A) = μMas(γ1,γ2).

Let us make a few comments on our proof. Firstly, we want to emphasise that we prove
the gap-continuity of the family (2) from first principles just by elementary estimates and
standard facts about orthogonal projections that can all be found in the monograph [10].
Secondly, our proof of the spectral flow formula in Theorem 1.1 is surprisingly simple. We
assume at first that

γ1(0) ∩ γ2(0) = γ1(1) ∩ γ2(1) = {0} (5)

and show that the Maslov index can be characterised in this case by three axioms. This
uniqueness theorem needs nothing else than the elementary properties of the Maslov in-
dex and the fact that the fundamental group of Λ(n) is infinitely cyclic, which was known
already from Arnold’s classical paper [1]. Two of our axioms are trivially satisfied for the
spectral flow of (2), and the remaining one only requires the computation of the spectra
of two simple examples of differential operators as in (2). The general case when (5) is
not assumed, can easily be obtained from the previous case by a simple conjugation by a
path of invertible operators. After a brief recapitulation of the Maslov index in Sect. 2.1,
and the gap-metric and spectral flow in Sect. 2.2, we explain all this in detail in Sect. 2.3
where we prove Theorem 1.1. Throughout the paper, we aim our presentation to be rather
self-contained, and we will just use some well-known facts from Kato [10].

Finally, we review a recent spectral flow formula for linear Hamiltonian systems by Hu
and Portaluri from [9], which they call a new index theory on bounded domains. Firstly,
we note that the considered families of Hamiltonian systems are continuous with respect
to the gap-metric, which follows easily from our approach to Cappell, Lee and Miller’s
theorem. Secondly, we obtain a spectral flow formula in this setting by a conjugation from
Cappell, Lee and Miller, and we explain that our result actually is a generalisation of Hu
and Portaluri’s theorem.

2 Maslov index and spectral flow—a brief recap
2.1 The Maslov index
The aim of this section is to briefly recall the definition of the Maslov index, where we
follow [16].

Let Sp(2n,R) denote the group of symplectic matrices on R
2n, i.e., those A ∈ M(2n,R)

satisfying AT JA = J or, alternatively, which preserve ω0. If we identify R
2n with C

n by
(x1, . . . , x2n) 	→ (x1, . . . , xn) + i(xn+1, . . . , x2n) then the standard hermitian scalar product on
C

n is

〈x, y〉C = 〈x, y〉 – iω0(x, y).

Hence each unitary matrix U ∈ U(n) preserves ω0 and so we can regard U(n) as a sub-
set of Sp(2n,R). Also, the orthogonal matrices O(n) can be seen as a subgroup of U(n)
by complexification. Then O(n) consists exactly of those A ∈ U(n) which leave R

n × {0}
invariant.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Izydorek et al. Fixed Point Theory and Applications          (2019) 2019:5 Page 4 of 20

Obviously, AL ∈ Λ(n) if L ∈ Λ(n) and A ∈ Sp(2n,R), and it can be shown that the re-
striction of this action to U(n) × Λ(n) → Λ(n) is transitive. As the stabiliser subgroup of
R

n × {0} ∈ Λ(n) is O(n), we see that there is a diffeomorphism

U(n)/O(n) 
 Λ(n), A 	→ A
(
R

n × {0}). (6)

Let us now consider the map d : U(n) → S1, d(A) = det2(A), which descends to the quotient
by

d : U(n)/O(n) → S1, A · O(n) 	→ det 2(A).

Note that

ker(d)/O(n) ↪→ U(n)/O(n) d−→ S1

is a fibre bundle, and it is not difficult to see that ker(d)/O(n) 
 SU(n)/SO(n), where the
latter space is simply connected. It follows from the long exact sequence of a fibre bundle
that the induced map

d∗ : π1
(
U(n)/O(n)

) → π1
(
S1) ∼= Z

is an isomorphism. Consequently, we obtain from (6) an isomorphism

μMas : π1
(
Λ(n)

) → Z,

which is the Maslov index for closed paths in Λ(n). Roughly speaking, given an arbitrary
L0 ∈ Λ(n), the Maslov index counts the total number of intersections of a loop in Λ(n) with
L0. This is independent of the particular choice of L0, which, however, is no longer the case
if we extend the definition to non-closed paths in Λ(n) as follows. We fix L0 ∈ Λ(n) and
note at first that L0 yields a stratification

Λ(n) =
n⋃

k=0

Λk(L0),

where

Λk(L0) =
{

L ∈ Λ(n) : dim(L ∩ L0) = k
}

.

From the fact that Λ0(L0) is contractible (see e.g. [16, Rem. 2.5.3]) and the long exact se-
quence of homology, we see that the inclusion induces an isomorphism

H1
(
Λ(n)

) → H1
(
Λ(n),Λ0(L0)

)
.

Also, as π1(Λ(n)) is abelian, H1(Λ(n)) is isomorphic to π1(Λ(n)) and so we obtain a se-
quence of isomorphisms

H1
(
Λ(n),Λ0(L0)

) → H1
(
Λ(n)

) → π1
(
Λ(n)

) → π1
(
U(n)/O(n)

) → Z. (7)
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Finally, every path in Λ(n) having endpoints in Λ0(L0) canonically yields an element in
H1(Λ(n),Λ0(L0)). The Maslov index of the path is the integer obtained from the sequence
of isomorphisms (7).

Let us note from the very definition the following three properties of the Maslov index:
(i) If γ1, γ2 are homotopic by a homotopy having endpoints in Λ0(L0), then

μMas(γ1, L0) = μMas(γ2, L0).

(ii) If γ1, γ2 are such that γ1(1) = γ2(0), then

μMas(γ1 ∗ γ2, L0) = μMas(γ1, L0) + μMas(γ2, L0).

(iii) If γ (λ) ∈ Λ0(L0) for all λ ∈ I , then μMas(γ , L0) = 0.
Let us point out that (iii) also follows from (i) and (ii) independently of the construction.

The Maslov index can easily be generalised to a pair of paths in Λ(n). To this aim let us
call a pair of paths (γ1,γ2) admissible if

γ1(0) ∩ γ2(0) = γ1(1) ∩ γ2(1) = {0}.

In the following we considerR2n ×R
2n as a symplectic space with respect to the symplectic

form (–ω0) × ω0. Note that the diagonal 	 is in Λ(2n), as well as L1 × L2 for any L1, L2 ∈
Λ(n). Moreover, L1 ∩L2 
= {0} if and only if (L1 ×L2)∩	 
= {0}. Hence it is natural to define
the Maslov index for a pair (γ1,γ2) of admissible paths in Λ(n) as

μMas(γ1,γ2) = μMas(γ1 × γ2,	).

Note that the basic properties which we previously mentioned carry over immediately,
i.e.,

(i′) μMas(γ1,γ2) = 0 if γ1(λ) ∩ γ2(λ) = {0} for all λ ∈ I .
(ii′) μMas(γ1 ∗ γ3,γ2 ∗ γ4) = μMas(γ1,γ2) + μMas(γ3,γ4) if γ1(1) = γ3(0) and γ2(1) = γ4(0).

(iii′) μMas(γ1,γ2) = μMas(γ3,γ4) if γ1 
 γ3 and γ2 
 γ4 are homotopic by a homotopy
through admissible pairs.

Also, it is not difficult to see from the construction of the Maslov index that
(iv′) μMas(γ1,γ2) = μMas(γ1, L0) in the case that γ2(λ) = L0 for some L0 ∈ Λ(n) and all

λ ∈ I ,
(v′) μMas(γ1,γ2) = –μMas(γ2,γ1) for any admissible pair (γ1,γ2).

Finally, let us define the Maslov index for a non-admissible pair of paths. It is important to
note that in this case there are different definitions in the literature. Here we follow [5], and
note that, given L1, L2 ∈ Λ(n) such that L1 ∩ L2 
= {0}, there is ε > 0 such that eΘJ L2 ∈ Λ(n)
and L1 ∩ eΘJ L2 = {0} for all 0 < |Θ| ≤ ε. We define the Maslov index as

μMas(γ1,γ2) = μMas
(
γ1, e–ΘJγ2

)
,

where Θ is such that γ1(0) ∩ e–Θ ′Jγ2(0) = γ1(1) ∩ e–Θ ′Jγ2(1) = {0} for all 0 < |Θ ′| ≤ Θ . By
the homotopy invariance, it is clear that this definition does not depend on the choice
of Θ . Also, it coincides with the previous definition in the case that the pair of paths is
admissible.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Izydorek et al. Fixed Point Theory and Applications          (2019) 2019:5 Page 6 of 20

The final aim of this section is to compute the Maslov index for two elementary paths
that will also become important in our proof of Theorem 1.1 below. The examples also
show that (7) is very convenient to obtain paths in Λ(n) with a given Maslov index.

Let us first consider the path [0, 1] � λ 	→ A(λ) = diag(eiπλ, 1, . . . , 1) ∈ U(n) and its projec-
tion A(λ) := A(λ) · O(n) to the quotient U(n)/O(n). Note that A(0) diag(–1, 1, . . . , 1) = A(1)
and so A is a closed curve. Also, as det2(A(λ)) = e2π iλ, we see that the Maslov index of the
corresponding path in Λ(n) is 1. Using the identification C

n ∼= R
2n, it is readily seen that

γnor(λ) := A(λ)
(
R

n × {0}) = R
(
cos(πλ)e1 + sin(πλ)en+1

)
+

n∑
j=2

Rej ∈ Λ(n).

Hence we have found a path γnor such that γnor(0) = γnor(1) = R
n × {0} and μMas(γnor) = 1.

Let us now consider [0, 1] � λ 	→ B(λ) = diag(–ieiπλ, i, . . . , i) ∈ U(n) and note that again
the projection B to U(n)/O(n) is a closed path and det2(B(λ)) = (–1)ne2π iλ. Hence

γ ′
nor(λ) := B(λ)

(
R

n × {0}) = R
(
sin(πλ)e1 – cos(πλ)en+1

)
+

2n∑
j=n+2

Rej ∈ Λ(n)

is such that γ ′
nor(0) = γ ′

nor(1) = {0} ×R
n and μMas(γ ′

nor) = 1.

2.2 The gap-metric and the spectral flow
Our first aim of this section is to recall the definition of the gap-metric, where we follow
Kato’s monograph [10].

Let H be a real Hilbert space and let G(H) denote the set of all closed subspaces of H . For
every U ∈ G(H) there is a unique orthogonal projection PU onto U which is a bounded
operator on H . We set

dG(U , V ) = ‖PU – PV ‖, U , V ∈ G(H),

and note that this is obviously a metric on G(H). The distance between two non-trivial
subspaces U , V ∈ G(H) can also be obtained as follows. Let SU denote the unit sphere in
U and d(u, V ) = infv∈V ‖u – v‖. Then, for δ(U , V ) = supu∈SU d(u, V ),

dG(U , V ) = max
{
δ(U , V ), δ(V , U)

}
, (8)

which explains why dG(U , V ) is called the gap between U and V .
We now consider operators T : D(T) ⊂ H → H , which we assume to be defined on a

dense domain D(T). Let us recall that T is called closed if its graph graph(T) is closed in
H × H . If we denote by C(H) the set of all closed operators, then the gap-metric on H × H
induces a metric on C(H) by

dG(T , S) = dG
(
graph(T), graph(S)

)
, S, T ∈ C(H).

As the adjoint of a densely defined operator is closed, every self-adjoint operator on H
belongs to the metric space C(H). Moreover, let us recall that a closed operator T is called
Fredholm if its kernel and cokernel are of finite dimension. In the following, we denote the
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subset of C(H) consisting of all T which are self-adjoint and Fredholm by CF sa(H). It is
well known that the spectrum σ (T) of every self-adjoint operator is real. Moreover, if T ∈
CF sa(H) then 0 is either in the resolvent set or an isolated eigenvalue of finite multiplicity
(see e.g. [22, Lemma 2.2.5]).

It was shown in [3] that for every T ∈ CF sa(H) there is ε > 0 and a neighbourhoodNT ,ε ⊂
CF sa(H) of T such that ±ε /∈ σ (S) and the spectral projection χ[–ε,ε](S) is of finite rank for
all S ∈ NT ,ε . Let us now consider a path A = {Aλ}λ∈I in CF sa(H). There are 0 = λ0 < λ1 <
· · · < λN = 1 such that the restriction of the path A to [λi–1,λi] is entirely contained in a
neighbourhood NTi ,εi as above for some Ti ∈ CF sa(H) and some εi > 0. The spectral flow
of the path A is defined as

sf(A) =
N∑

i=1

(dim(im
(
χ[0,εi](Aλi )

)
– dim

(
im

(
χ[0,εi](Aλi–1 )

))
. (9)

It follows by an argument of Phillips [15] that sf(A) only depends on the path A, and that
the following fundamental property holds (see also [3]).

(i) Let h : I × I → CF sa(H) be a homotopy such that the dimensions of the kernels of
h(s, 0) and h(s, 1) are constant for all s ∈ I . Then

sf
(
h(0, ·)) = sf

(
h(1, ·)).

Moreover, it is easily seen from the definition of the spectral flow that
(ii) if the dimension of the kernel of Aλ is constant for all λ ∈ I , then sf(A) = 0;

(iii) if A1 and A2 are two paths in CF sa(H) such that A1
1 = A2

0, then

sf
(
A1 ∗A2) = sf

(
A1) + sf

(
A2).

Let us finally note two further elementary properties of the spectral flow which play a
crucial role in our proof of Theorem 1.1 below. The first of them has been used, e.g., in
[14, §7].

Lemma 2.1 Let A : I → CF sa(H) be gap-continuous and set Aδ = A+ δIH for δ ∈R. Then,
for any sufficiently small δ > 0, Aδ is a gap-continuous path in CF sa(H) and

sf(A) = sf
(
Aδ

)
. (10)

Proof We note at first that the operatorsAδ
λ are self-adjoint and Fredholm for δ sufficiently

small, which follows from standard stability theory (see e.g. [10]). Moreover, the path Aδ

is gap-continuous by [10, Thm. IV.2.17], and so sf(Aδ) is well defined.
To show (10), let 0 = λ0 < · · · < λN = 1 be a partition of the unit interval and εi > 0, i =

1, . . . , N , for A as in (9). Let NT ,εi be an open neighbourhood of some T ∈ CF sa(H) as
in the construction of the spectral flow such that Aλ ∈ NT ,εi for all λ ∈ [λi–1,λi]. Now
there is δi > 0 such that Asδi

λ ∈ NT ,εi for all s ∈ [0, 1] and all λ ∈ [λi–1,λi], i.e. the spectral
projections χ[–εi ,εi](A

sδi
λ ) are of the same finite rank. Moreover, by choosing δi > 0 smaller,

we can assume that

σ (Aλi ) ∩ [–δi, 0) = σ (Aλi–1 ) ∩ [–δi, 0) = {0}.
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Then, as σ (Aδi
λ ) = σ (Aλ) + δi, we see that

dim
(
im

(
χ[0,εi](Aλ)

))
= dim

(
im

(
χ[0,εi]

(
Aδi

λ

)))
, λ = λi–1,λi.

If we now set δ = min{δ1, . . . , δN } > 0, then

dim
(
im

(
χ[0,εi](Aλ)

))
= dim

(
im

(
χ[0,εi]

(
Aδ

λ

)))
, λ = λi–1,λi,

holds simultaneously for this δ and all i = 1, . . . , N , and so the assertion follows from the
definition (9). �

Finally, let us note the following stability of the spectral flow under conjugation by in-
vertible operators, where we denote by MT the adjoint of an operator in the real Hilbert
space H .

Lemma 2.2 Let A : I → CF sa(H) be a gap-continuous path and M : I → GL(H) a contin-
uous family of bounded invertible operators. Then {MT

λ AλMλ}λ∈I is gap-continuous and
sf(MTAM) = sf(A).

Proof Note that

graph
(
MT

λ AλMλ

)
=

{(
u, MT

λ AλMλu
)

: u ∈ M–1
λ

(
D(Aλ)

)}
=

{(
M–1

λ v, MT
λ Aλv

)
: v ∈D(Aλ)

}
=

(
M–1

λ 0
0 MT

λ

)
graph(Aλ) =: Nλ graph(Aλ) ⊂ H × H ,

and so {NλPgraph(Aλ)N–1
λ }λ∈I is a continuous family of oblique projections onto {graph(MT

λ ×
AλMλ)}λ∈I in L(H × H). By [10, Thm. I.6.35], we have for the corresponding orthogonal
projections Pgraph(MT

λ AλMλ) onto graph(MT
λ AλMλ) the inequality

‖Pgraph(MT
μAμMμ) – Pgraph(MT

λ AλMλ)‖ ≤ ∥∥NμPgraph(Aμ)N–1
μ – NλPgraph(Aλ)N–1

λ

∥∥
for all μ,λ ∈ I . Consequently, {Pgraph(MT

λ AλMλ)}λ∈I is continuous, which shows that MTAM
is gap-continuous.

For the equality of the spectral flows, we just need to note that M is homotopic inside
GL(H) to the constant path given by the identity IH . Let us point out that this does not
even require Kuiper’s theorem as we just need to shrink M to a constant path and use the
fact that GL(H) is connected. As the conjugation preserves kernel dimensions, we obtain
by the homotopy invariance (i) from above

sf
(
MTAM

)
= sf(A). �

2.3 Proof of Theorem 1.1
The proof of Theorem 1.1 falls naturally into two parts. In the first part we deal with the
continuity of families of the type (2), where we actually consider a slightly more general
setting. In the second part we show the spectral flow formula in Theorem 1.1.
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2.3.1 Continuity
To simplify notation, we set E = L2(I,R2n) and H = H1(I,R2n). The aim of this step is to
prove the following proposition, which we will later apply in the cases X = I and X = I × I .

Proposition 2.3 Let X be a metric space and γ1,γ2 : X → Λ(n) two families of Lagrangian
subspaces in R

2n. Then

A : X → CF sa(E), (Aλu)(t) = Ju′(t),

where D(Aλ) = {u ∈ H : u(0) ∈ γ1(λ), u(1) ∈ γ2(λ)}, is continuous with respect to the gap-
metric on CF sa(E).

We want to use (8) and consider δ(graph(Aλ), graph(Aλ0 )). Note at first that for u ∈
D(Aλ) and v ∈D(Aλ0 )

∥∥(u,Aλu) – (v,Aλ0 v)
∥∥

E⊕E =
∥∥(

u – v, J
(
u′ – v′))∥∥

E⊕E

≤ (‖u – v‖2
E + ‖J‖∥∥u′ – v′∥∥2

E

) 1
2

= ‖u – v‖H , (11)

where we have used that ‖J‖ = 1. Let us recall that the topology of Gn(R2n) is induced by
the metric d(L, M) = ‖PL – PM‖, where PL, PM ∈ M(2n,R) are the orthogonal projections
onto L and M, respectively. Hence, by the continuity of γ1 and γ2, there are two families
of orthogonal projections P̂, P̃ : X → M(2n,R) such that

im(P̂λ) = γ1(λ), im(P̃λ) = γ2(λ), λ ∈ X.

We define for w ∈ H ,

(Pλw)(t) = w(t) – (1 – t)(I2n – P̂λ)w(0) – t(I2n – P̃λ)w(1).

It is easily seen that P2
λw = Pλw, as well as Pλw ∈ D(Aλ) for all w ∈ H and λ ∈ X, which

shows that

inf
v∈D(Aλ0 )

‖u – v‖H ≤ ‖u – Pλ0 u‖H . (12)

As

u(t) – (Pλ0 u)(t) = (1 – t)(I2n – P̂λ0 )u(0) + t(I2n – P̃λ0 )u(1),

it follows for u ∈D(Aλ) that

‖u – Pλ0 u‖H ≤ 2
(∥∥(I2n – P̂λ0 )u(0)

∥∥ +
∥∥(I2n – P̃λ0 )u(1)

∥∥)
= 2

(∥∥(I2n – P̂λ0 )P̂λu(0)
∥∥ +

∥∥(I2n – P̃λ0 )P̃λu(1)
∥∥)

≤ 2
(∥∥(I2n – P̂λ0 )P̂λ

∥∥∥∥u(0)
∥∥ +

∥∥(I2n – P̃λ0 )P̃λ

∥∥∥∥u(1)
∥∥)

, (13)
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where we have used that u ∈ D(Aλ) and so P̂λu(0) = u(0) and P̃λu(1) = u(1). Let us note
that the factor 2 appears in the previous estimate as we are dealing with the norm on H
and so we also need to take into account the derivatives of u – Pλ0 u with respect to t.

Since the point evaluation is continuous in H , there is a constant α > 0 such that for t = 0
and t = 1

∥∥u(t)
∥∥ ≤ α‖u‖H = α

(‖u‖2
E +

∥∥u′∥∥2
E

) 1
2 = α

(‖u‖2
E +

∥∥Ju′∥∥2
E

) 1
2 , (14)

where we use the fact that J is an isometry on R
2n. Hence, by (11)–(14),

d
(
(u,Aλu), graph(Aλ0 )

)
= inf

v∈D(Aλ0 )

∥∥(u,Aλu) – (v,Aλ0 v)
∥∥

E⊕E

≤ inf
v∈D(Aλ0 )

‖u – v‖H ≤ ‖u – Pλ0 u‖H

≤ 2
(∥∥(I2n – P̂λ0 )P̂λ

∥∥∥∥u(0)
∥∥ +

∥∥(I2n – P̃λ0 )P̃λ

∥∥∥∥u(1)
∥∥)

≤ 2α
(∥∥(I2n – P̂λ0 )P̂λ

∥∥ +
∥∥(I2n – P̃λ0 )P̃λ

∥∥)(‖u‖2
E +

∥∥Ju′∥∥2
E

) 1
2 .

As the unit sphere in graph(Aλ) is given by

{
(u,Aλu) : u ∈D(Aλ),‖u‖2

E +
∥∥Ju′∥∥2

E = 1
}

,

we finally get

δ
(
graph(Aλ), graph(Aλ0 )

)
= sup

{
d
(
(u,Aλu), graph(Aλ0 )

)
: u ∈D(Aλ),‖u‖2 +

∥∥Ju′∥∥2 = 1
}

≤ 2α
(∥∥(I2n – P̂λ0 )P̂λ

∥∥ +
∥∥(I2n – P̃λ0 )P̃λ

∥∥)
. (15)

Note that if we swap λ and λ0 and repeat the above argument, we also have

δ
(
graph(Aλ0 ), graph(Aλ)

) ≤ 2α
(∥∥(I2n – P̂λ)P̂λ0

∥∥ +
∥∥(I2n – P̃λ)P̃λ0

∥∥)
. (16)

To finish the proof, we need the following well-known theorem, which can be found, e.g.,
in [10, I.6.34].

Theorem 2.4 Let E be a Hilbert space and P, Q orthogonal projections in E. If

∥∥(IE – P)Q
∥∥ < 1 and

∥∥(IE – Q)P
∥∥ < 1,

then

∥∥(IE – P)Q
∥∥ =

∥∥(IE – Q)P
∥∥ = ‖P – Q‖.

Now, as (I2n – P̂λ)P̂λ0 = (I2n – P̂λ0 )P̂λ = 0 for λ = λ0, we have for all λ in a neighbourhood
of λ0

∥∥(I2n – P̂λ)P̂λ0

∥∥ =
∥∥(I2n – P̂λ0 )P̂λ

∥∥ = ‖P̂λ – P̂λ0‖
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and likewise

∥∥(I2n – P̃λ)P̃λ0

∥∥ =
∥∥(I2n – P̃λ0 )P̃λ

∥∥ = ‖P̃λ – P̃λ0‖.

Consequently, we obtain from (8), (15) and (16) for all λ sufficiently close to λ0

dG(Aλ,Aλ0 ) = max
{
δ
(
graph(Aλ), graph(Aλ0 )

)
, δ

(
graph(Aλ0 ), graph(Aλ)

)}
≤ 2α

(‖P̂λ – P̂λ0‖ + ‖P̃λ – P̃λ0‖
)
,

which shows that A = {Aλ}λ∈X is indeed continuous in CF (E). Hence Proposition 2.3 is
shown.

2.3.2 The spectral flow formula
We now prove the spectral flow formula in Theorem 1.1 in two steps.

Step 1: Theorem 1.1 for admissible paths We begin this first step of our proof with the
following elementary observation.

Lemma 2.5 The set of all transversal pairs in Λ(n), i.e.

{
(L1, L2) ∈ Λ(n) × Λ(n) : L1 ∩ L2 = {0}} ⊂ Λ(n) × Λ(n), (17)

is path-connected.

Proof Let us first recall the well-known fact that Λ0(L0) is contractible, and hence path-
connected, for any L0 ∈ Λ(n) (see [16, Rem. 2.5.3]). Now let (L1, L2) and (L3, L4) be two
transversal pairs. As in the construction of the Maslov index in Sect. 2.1, L′

1 = eΘJ L1 is
transversal to L2 and L4 for any sufficiently small Θ > 0. In particular, we obtain a path
connecting (L1, L2) and (L′

1, L2) inside (17). Also, as Λ0(L′
1) is path-connected, there is a

path connecting (L′
1, L2) and (L′

1, L4) inside (17). Finally, there is a path from (L′
1, L4) to

(L3, L4) inside (17) as Λ0(L4) is path-connected. �

This step of the proof is based on the following proposition, in which we denote by Ω2

the set of all admissible pairs of paths in Λ(n) (see (5)). Let us note that by (v′) in Sect. 2.1,
μMas(γnor, L1) = 1 and μMas(L0,γ ′

nor) = –1, where L0 = R
n ×{0}, L1 = {0}×R

n and γnor, γ ′
nor

are the paths that we introduced at the end of Sect. 2.1.

Proposition 2.6 Let μ : Ω2 → Z be a map such that the same properties (i′)–(iii′) from
Sect. 2.1 are satisfied, as well as

(N) μ(γnor, L1) = 1 and μ(L0,γ ′
nor) = –1, where L0 = R

n × {0} and L1 = {0} ×R
n.

Then μ = μMas on Ω2.

Proof We note at first that we have by the properties (ii′) and (iii′) homomorphisms

μ,μMas : π1
(
Λ(n) × Λ(n), (L0, L1)

) → Z (18)

and we now claim that they coincide.
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We first note that

π1
(
Λ(n) × Λ(n), (L0, L1)

) ∼= π1
(
Λ(n), L0

) × π1
(
Λ(n), L1

) ∼= Z⊕Z,

where the first isomorphism is induced by the projections onto the components and the
second one is given by the Maslov index. As γnor(0) = L0, γ ′

nor(0) = L1 and μMas(γnor) =
μMas(γ ′

nor) = 1, we see that the pairs of paths {(γnor, L1), (L0,γ ′
nor)} define a basis of

π1(Λ(n) × Λ(n), (L0, L1)). Since the homomorphisms in (18) coincide on this basis by (N),
it follows that μ and μMas are indeed equal for closed paths based at (L0, L1).

Let us now assume that (γ1,γ2) ∈ Ω2 is an arbitrary admissible pair of paths. We connect
(L0, L1) to (γ1(0),γ2(0)) by a pair of paths (γ3,γ4) and (γ1(1),γ2(1)) to (L0, L1) by a pair of
paths (γ5,γ6), where we can assume by Lemma 2.5 that γ3(λ) ∩ γ4(λ) = γ5(λ) ∩ γ6(λ) = {0}
for all λ. Then by (i′), (ii′) and the first step of our proof

μ(γ1,γ2) = μ(γ3,γ4) + μ(γ1,γ2) + μ(γ5,γ6)

= μ
(
(γ3,γ4) ∗ (γ1,γ2) ∗ (γ5,γ6)

)
= μMas

(
(γ3,γ4) ∗ (γ1,γ2) ∗ (γ5,γ6)

)
= μMas(γ3,γ4) + μMas(γ1,γ2) + μMas(γ5,γ6) = μMas(γ1,γ2),

which proves the proposition. �

Remark 2.7 Let (γ1,γ2) be a pair of paths in Λ(n) as in (i′), i.e. γ1(λ) ∩ γ2(λ) = {0} for all
λ ∈ I . Then (γ1,γ2) is homotopic to the constant pair of paths (γ̃1(λ), γ̃2(λ)) = (γ1(0),γ2(0)),
λ ∈ I , by a homotopy of admissible pairs. Hence μ(γ1,γ2) = μ(γ̃1, γ̃2) by (iii′). As

μ(γ̃1, γ̃2) = μ
(
(γ̃1, γ̃2) ∗ (γ̃1, γ̃2)

)
= μ(γ̃1, γ̃2) + μ(γ̃1, γ̃2)

by (ii′), we see that μ(γ1,γ2) = μ(γ̃1, γ̃2) = 0 and so (i′) follows from (ii′) and (iii′). Conse-
quently, Proposition 2.6 actually characterises the Maslov index by the three axioms (ii′),
(iii′) and (N).

We now define μ : Ω2 → Z, μ(γ1,γ2) = sf(A), where A is the path of differential opera-
tors (2) for the pair (γ1,γ2). We aim to use Proposition 2.6 to show Theorem 1.1 and so we
need to check the properties (i′), (ii′), (iii′) and (N). Let us first note that (i′) follows imme-
diately from (ii) in Sect. 2.2 and the fact that ker(Aλ) = γ1(λ)∩γ2(λ). Also, (ii′) follows from
(iii) in Sect. 2.2. Finally, (ii′) is an immediate consequence of the homotopy invariance (i)
of the spectral flow and Proposition 2.3.

Hence it remains to show that μ(γnor, L1) = 1 and μ(L0,γ ′
nor) = –1, which will be a direct

consequence of the following lemma.

Lemma 2.8 The spectra of the operators Aλ in (2) are
(i) for (γ1,γ2) = (γnor, L1)

σ (Aλ) =
{
πλ –

π

2
+ πk : k ∈ Z

}
∪

{
π

2
+ kπ : k ∈ Z

}
,
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(ii) for (γ1,γ2) = (L0,γ ′
nor)

σ (Aλ) =
{

–πλ +
π

2
+ πk : k ∈ Z

}
∪

{
π

2
+ kπ : k ∈ Z

}
.

Proof We consider Ju′ = μu and note that the solutions of this equation are

u(t) = exp(–μtJ)v, t ∈ I, v ∈R
2n.

Let us first consider the path in (i). Then u belongs to the domain of Aλ if and only if

u(0) = v ∈ γnor(λ), u(1) = exp(–μJ)v ∈ L1. (19)

As exp(–μJ)v ∈ L1 if and only if v ∈ exp(μJ)L1, and exp(μJ) = cos(μ)I2n + sin(μ)J , we see
that (19) is equivalent to

(
cos(μ)I2n + sin(μ)J

)({0} ×R
n) ∩

(
R

(
cos(πλ)e1 + sin(πλ)en+1

)
+

n∑
j=2

Rej

)

= {0}.

There are two different cases where these spaces intersect non-trivially. Firstly, if cos(μ) =
0, i.e. μ = π

2 + kπ for k ∈ Z. Secondly, if there is an α 
= 0 such that sin(πλ)en+1 =
α cos(μ)en+1 and cos(πλ)e1 = –α sin(μ)e1, where we use the fact that Jen+1 = –e1. Of course,
the latter equations are equivalent to sin(πλ) = α cos(μ) and cos(πλ) = –α sin(μ), which
can be rewritten as

eiπλ = cos(πλ) + i sin(πλ) = α
(
– sin(μ) + i cos(μ)

)
= αieiμ = αei(μ+ π

2 ).

Hence |α| = 1, and this equation holds if and only if πλ = μ + π
2 + kπ , or equivalently

μ = πλ – π
2 – kπ .

In (ii), u belongs to the domain of Aλ if and only if

u(0) = v ∈ L0, u(1) = exp(–μJ)v ∈ γ ′
nor,

which is equivalent to

(
cos(μ)I2n – sin(μ)J

)(
R

n × {0}) ∩
(
R

(
sin(πλ)e1 – cos(πλ)en+1

)
+

2n∑
j=n+2

Rej

)

= {0}.

Again, there are two cases in which this intersection is non-trivial. Firstly, μ = kπ + π
2

where cos(μ) = 0. Secondly, if there is some α 
= 0 such that α cos(μ)e1 = sin(πλ)e1 and
α sin(μ)en+1 = cos(πλ)en+1, which is equivalent to

eiπλ = cos(πλ) + i sin(πλ) = α
(
sin(μ) + i cos(μ)

)
= αie–iμ = αei( π

2 –μ).

Hence |α| = 1, and the latter equation holds if and only if πλ = π
2 – μ + kπ which finally

shows that μ = –πλ + π
2 + kπ . �
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We see from the previous lemma that in both cases there is only one eigenvalue of Aλ

that crosses the axis whilst the parameter λ travels from 0 to 1. It is now an immediate
consequence of the definition of the spectral flow that sf(A) = 1 for (γ1,γ2) = (γnor, L1) and
sf(A) = –1 for (γ1,γ2) = (L0,γ ′

nor). Hence Theorem 1.1 is shown in the admissible case.

Step 2: the general case Let (γ1,γ2) be a pair of paths in Λ(n) which is not necessarily
admissible, and let A be the path (2). Let δ > 0 be as in Lemma 2.1 such that sf(A) = sf(Aδ0 )
for all 0 ≤ δ0 ≤ δ.

We consider the solution Ψ : I → Sp(2n,R) of the differential equation
⎧⎨
⎩JΨ ′(t) + δ0Ψ (t) = 0, t ∈ I,

Ψ (0) = I2n,

and the operator M ∈ GL(L2(I,R2n)) given by (Mu)(t) = Ψ (t)u(t), t ∈ I . Then, as D(Aδ0
λ ) =

D(Aλ), MTAδ0
λ M is defined on the domain

D
(
MTAδ0

λ M
)

= M–1(D(
Aδ0

λ

))
=

{
Ψ (·)–1u ∈ H1(I,R2n) : u(0) ∈ γ1(λ), u(1) ∈ γ2(λ)

}
=

{
v ∈ H1(I,R2n) : v(0) ∈ γ1(λ), v(1) ∈ Ψ (1)–1γ2(λ)

}
and given by

(
MTAδ0

λ Mu
)
(t) = MT(

JΨ ′(t)u(t) + JΨ (t)u′(t) + δ0Ψ (t)u(t)
)

= MT(
–δ0Ψ (t)u(t) + JΨ (t)u′(t) + δ0Ψ (t)u(t)

)
= Ψ (t)T JΨ (t)u′(t) = Ju′(t).

As Ψ (t) = exp(δ0Jt), t ∈ I , we see that Ψ (1)–1 = exp(–δ0J). Finally, if δ0 > 0 is sufficiently
small, we obtain by Step 1, Proposition 2.3 and the definition of the Maslov index for non-
admissible paths in Sect. 2.1,

sf(A) = sf
(
Aδ0

)
= μMas

(
γ1, e–δ0Jγ2

)
= μMas(γ1,γ2),

which proves Theorem 1.1 in the general case.

3 A spectral flow formula for Hamiltonian systems
Let γ1,γ2 : I → Λ(n) be two paths of Lagrangian subspaces in R

2n. We note for later refer-
ence the following two standard properties of the Maslov index (see e.g. [17])

(vi′) If Ψ : I → Sp(2n,R) is a path of symplectic matrices, then

μMas(Ψ γ1,Ψ γ2) = μMas(γ1,γ2). (20)

(vii′) If γ ′
1,γ ′

2 : I → Λ(n) denote the reverse paths defined by γ ′
1(λ) = γ1(1 –λ) and γ ′

2(λ) =
γ2(1 – λ), then

μMas
(
γ ′

1,γ ′
2
)

= –μMas(γ1,γ2). (21)
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Moreover, we need below the following homotopy invariance property which is an im-
mediate consequence of (iii′) in Sect. 2.1 and the definition of the Maslov index for non-
admissible pairs of paths:

(viii′) μMas(γ1,γ2) = μMas(γ3,γ4) if γ1 
 γ3 and γ2 
 γ4 are homotopic by homotopies
with fixed endpoints.

Let now S : I × I → M(2n,R) be a two parameter family of symmetric matrices and let us
consider

⎧⎨
⎩Ju′(t) + Sλ(t)u(t) = 0, t ∈ I,

(u(0), u(1)) ∈ γ1(λ) × γ2(λ),
(22)

as well as the differential operators Aλ : D(Aλ) ⊂ L2(I,R2n) → L2(I,R2n),

(Aλu)(t) = Ju′(t) + Sλ(t)u(t) (23)

on the domains D(Aλ) = {u ∈ H1(I,R2n) : u(0) ∈ γ1(λ), u(1) ∈ γ2(λ)}.
We denote for λ ∈ I by Ψλ : I → Sp(2n,R) the matrices defined by

⎧⎨
⎩JΨ ′

λ(t) + Sλ(t)Ψλ(t) = 0, t ∈ I,

Ψλ(0) = I2n,
(24)

and we set (Ψ γ1)(λ) = Ψλ(1)γ1(λ). The aim of this final section is to obtain the following
spectral flow formula from Theorem 1.1.

Theorem 3.1 Under the assumptions above, A is a gap-continuous path of self-adjoint
Fredholm operators on L2(I,R2n) and sf(A) = μMas(Ψ γ1,γ2).

Proof We define a continuous family of bounded invertible operators on L2(I,R2n) by
(Mλu)(t) = Ψλ(t)u(t), t ∈ I . Then

(
MT

λ AλMλu
)
(t) = Ψ T

λ (t)
(
JΨ ′

λ(t)u(t) + JΨλ(t)u′(t) + Sλ(t)Ψλ(t)u(t)
)

= Ψ T
λ (t)

(
–Sλ(t)Ψλ(t)u(t)

)
+ Ψ T

λ (t)JΨλ(t)u′(t)

+ Ψ T
λ (t)Sλ(t)Ψλ(t)u(t) = Ju′(t)

and

D
(
MT

λ AλMλ

)
= M–1

λ

(
D(Aλ)

)
=

{
u ∈ H1(I,R2n) : u(0) ∈ γ1(λ), u(1) ∈ Ψλ(1)–1γ2(λ)

}
.

By Theorem 1.1, MTAM is gap-continuous, and it follows from Lemma 2.2 that A is gap-
continuous as well. Moreover, we obtain from Theorem 1.1 and (20) that

sf(A) = sf
(
MTAM

)
= μMas

(
γ1,Ψ(·)(1)–1γ2

)
= μMas(Ψ γ1,γ2). �
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Note that we obtain from Ψ and γ1 further pairs of paths in Λ(n) by

I � t 	→ Ψ0(t)γ1(0) ∈ Λ(n), I � t 	→ Ψ1(t)γ1(1) ∈ Λ(n).

The following corollary is an easy reformulation of the previous theorem.

Corollary 3.2 Under the previous assumptions,

sf(A) = μMas
(
Ψ1(·)γ1(1),γ2(1)

)
+ μMas(γ1,γ2) – μMas

(
Ψ0(·)γ1(0),γ2(0)

)
.

Proof We consider the family Γ : I × I → Λ(n) × Λ(n) defined by Γ (λ, t) = (Ψλ(t)γ1(λ),
γ2(λ)). We set

η1(t) = Γ (0, t), η2(λ) = Γ (λ, 1), η3(t) = Γ (1, 1 – t), η4(λ) = Γ (1 – λ, 0).

As I × I is contractible, η1 ∗ η2 ∗ η3 ∗ η4 is homotopic to a constant path by a homotopy
with fixed endpoints. Hence the Maslov index of η1 ∗ η2 ∗ η3 ∗ η4 vanishes by (viii′).

As μMas(η4) = –μMas(γ1,γ2), μMas(η3) = –μMas(Ψ1(·)γ1(1),γ2(1)) and Ψλ(0) = I2n for all
λ ∈ I , it follows that

μMas(Ψ γ1,γ2) = –μMas
(
Ψ0(·)γ1(0),γ2(0)

)
+ μMas(γ1,γ2) + μMas

(
Ψ1(·)γ1(1),γ2(1)

)
.

The corollary is now an immediate consequence of the previous theorem. �

Note that if S0(t) = S1(t) for all t ∈ I , then Ψ0(t) = Ψ1(t), t ∈ I . If, moreover, γ1(0) = γ1(1)
and γ2(0) = γ2(1), then we obtain from the previous corollary that

sf(A) = μMas(γ1,γ2).

Consequently, under these assumptions the paths (23) and (2) have the same spectral flow
and so the spectral flow of (23) does not depend on the family of matrices S. Note that
each Sλ is Aλ-compact, i.e. Sλ : D(Aλ) → L2(I,R2n) is compact with respect to the graph
norm of Aλ on D(Aλ). Let us point out that, for closed paths of bounded self-adjoint
Fredholm operators, the spectral flow is invariant under perturbations by compact self-
adjoint operators (see [7, Prop. 3.8]).

Let us now consider again the general setting of Corollary 3.2, let α,β : [0, 1] → [0, 1] be
two continuous functions such that

β(λ) = α(λ) + λ, λ ∈ [0, 1]. (25)

Our final result generalises Theorem 2 of [9], where the following spectral flow formula
was shown for a particular class of functions α, β that satisfy (25).

Corollary 3.3 Under the assumptions of Corollary 3.2,

sf(A) = μMas
(
Ψ0

(
α(·))γ1(0),Ψ0

(
β(·))Ψ0(1)–1γ2(0)

)
+ μMas(γ1,γ2)

– μMas
(
Ψ1

(
α(·))γ1(1),Ψ1

(
β(·))Ψ1(1)–1γ2(1)

)
.
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Proof We define maps h1, h2 : I × I → I by

h1(s,λ) = (1 – s)α(λ) + s(1 – λ), h2(s,λ) = (1 – s)β(λ) + s,

and consider for i = 1, 2 the homotopies

Hi : I × I → Λ(n) × Λ(n), Hi(s,λ) =
(
Ψi

(
h1(s,λ)

)
γ1(i),Ψi

(
h2(s,λ)

)
Ψi(1)–1γ2(i)

)
.

As α(0) = β(0), we see that h1(s, 0) = h2(s, 0) and so

Hi(s, 0) =
(
Ψi

(
h1(s, 0)

)
γ1(i),Ψi

(
h2(s, 0)

)
Ψi(1)–1γ2(i)

)
=

(
γ1(i),Ψi(1)–1γ2(i)

)

is independent of s, where we have used (vi′). Moreover, since α(1) = 0, β(1) = 1, and
Ψi(0) = I2n,

Hi(s, 1) =
(
Ψi(0)γ1(i),Ψi(1)Ψi(1)–1γ2(i)

)
=

(
γ1(i),γ2(i)

)
,

and so Hi is a homotopy with fixed endpoints. Hence

μMas
(
Hi(0, ·)) = μMas

(
Hi(1, ·))

by (viii′) from above. Finally, we note that

Hi(0,λ) =
(
Ψi

(
α(λ)

)
γ1(i),Ψi

(
β(λ)

)
Ψi(1)–1γ2(i)

)
,

Hi(1,λ) =
(
Ψi(1 – λ)γ1(i),Ψi(1)Ψi(1)–1γ2(i)

)
=

(
Ψi(1 – λ)γ1(i),γ2(i)

)

for all λ ∈ I , and

μMas
(
Ψi(1 – ·)γ1(i),γ2(i)

)
= –μMas

(
Ψi(·)γ1(i),γ2(i)

)
,

where we have used (vii′). Now the assertion of the corollary follows from Corollary 3.2. �

Let us briefly point out that a version of the Morse index theorem in semi-Riemannian
geometry from [12] can easily be derived from Theorem 3.1 as well. We do not intend
to explain the geometric content of the theorem, but just mention that it deals with non-
trivial solutions of boundary value problems of the type

⎧⎨
⎩Ju′(t) + Sλ(t)u(t) = 0, t ∈ I,

u(0), u(1) ∈ {0} ×R
n,

(26)

where J is as in (1) and Sλ is again a family of symmetric 2n × 2n matrices. If we consider
the operators Aλ in (23) for Eqs. (26), then

sf(A) = μMas
(
Ψ

({0} ×R
n), {0} ×R

n) (27)
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by Theorem 3.1, where Ψ = {Ψλ(1)}λ∈I is the path in Sp(2n,R) obtained as in (24). This
is Proposition 6.1 in [12]. Note that in this setting the path A = {Aλ}λ∈I has the constant
domain D(Aλ) = {u ∈ H1(I,R2n) : u(0), u(1) ∈ {0} × R

n}, which allows one to compute its
spectral flow by crossing forms (see [18] and [21]) and yields the different proof of (27)
given in [12].

Finally, we want to discuss an example which illustrates that even in the most simple
settings, our theory has interesting implications. Let us consider for a continuous map
a : I × I →R the family of mixed boundary value problems

⎧⎨
⎩u′′(t) + aλ(t)u(t) = 0, t ∈ I,

u(0) = u′(1) = 0
(28)

and let us ask if there are any λ ∈ I for which (28) has a non-trivial solution.
To answer this question by the results obtained in this section, we transform (28) to the

equivalent first-order system

⎧⎨
⎩Jz′(t) + Sλ(t)z(t) = 0, t ∈ I,

z(0) ∈ {0} ×R, z(1) ∈R× {0},
(29)

where

Sλ(t) =

(
–aλ(t) 0

0 –1

)
.

Note that a non-trivial spectral flow of the corresponding path of differential operators
(23) implies that there is a λ ∈ I for which (29), and hence also our mixed boundary value
problem (28), has a non-trivial solution.

In the following, assume that a0 and a1 are constant functions and that these constants
are positive. Moreover, we suppose that

ai 
= (2k + 1)2 π2

4
, i = 0, 1, k ∈ Z. (30)

Let us now have a look at the spectral flow formula in Corollary 3.2. We see at first that
the middle term on the right hand side vanishes as the paths γ1 and γ2 are the constant
Lagrangian spaces {0} × R and R × {0} in this case. Note that the remaining terms only
depend on the differential operators for λ = 0 and λ = 1. To compute the Maslov indices, we
need to know the fundamental matrices in (24). As we assume a0 and a1 to be independent
of t, they are given by the matrix exponentials

Ψλ(t) = exp

(
0 t

–aλt 0

)
=

(
cos(√aλt) 1√aλ

sin(√aλt)
–√aλ sin(√aλt) cos(√aλt)

)
,

where t ∈R, λ = 0, 1. Consequently,

Ψλ(t)γ1 = Ψλ(t)
({0} ×R

)
= span

(
1√aλ

sin(√aλt)
cos(√aλt)

)
, t ∈R,λ = 0, 1,
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and we see that Ψλ(t)γ1 ∩ γ2 
= {0} if and only if t = (2k + 1) π
2 . Now firstly note that by

our assumption (30) the paths (Ψ1(·)γ1,γ2) and (Ψ0(·)γ1,γ2) are admissible. Secondly, as
for the examples at the end of Sect. 2.1, it is readily seen that each of the intersections of
Ψλ(t)γ1 and γ2, λ = 0, 1, contributes to the Maslov index μMas(Ψλ(·)γ1,γ2) by –1. Hence
we finally obtain from Corollary 3.2 that the spectral flow of the corresponding operators
(23) is given by

∣∣∣∣
{

t ∈ (0, 1) : t = (2k + 1)
π

2√a0

}∣∣∣∣ –
∣∣∣∣
{

t ∈ (0, 1) : t = (2k + 1)
π

2√a1

}∣∣∣∣
=

∣∣∣∣
{

k ∈N0 : k <
√a0

π
–

1
2

}∣∣∣∣ –
∣∣∣∣
{

k ∈N0 : k <
√a1

π
–

1
2

}∣∣∣∣,
where |{. . .}| stands for the cardinality of a set and N0 are the natural numbers including 0.
Let us stress once more that in this example the spectral flow of the whole path (23) only
depends on the two numbers a0 and a1 even though we do not impose any assumption on
the functions aλ(t) for λ 
= 0, 1 apart from their continuity.

4 Conclusion
We have given an elementary proof of a classical theorem of Cappell, Lee and Miller which
relates the Maslov index of a pair of paths of Lagrangian subspaces to the spectral flow of an
associated path of self-adjoint first-order operators. In our work, we have particularly paid
attention to the continuity of the latter path of differential operators, as we felt that this
point was somewhat neglected in the past. Finally, we have considered families of linear
Hamiltonian systems and generalised a recent result of Hu and Portaluri that is based on
Cappell, Lee and Miller’s theorem.
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