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Abstract 

An efficient trust-region algorithm with flexible sensitivity updating management scheme 

for electromagnetic (EM)-driven design optimization of compact microwave components is 

proposed. During the optimization process, updating of selected columns of the circuit 

response Jacobian is performed using a rank-one Broyden formula (BF) replacing finite 

differentiation (FD). The FD update is omitted for directions sufficiently well aligned with 

the recent design relocation. As the algorithm converges, the alignment threshold is 

gradually reduced so that the condition for using BF becomes less stringent. This allows for 

further reduction of the number of EM simulations involved in the optimization process. 

The presented flexible Jacobian update scheme allows for considerable reduction of the 

computational cost with only slight degradation of the design quality. Robustness of the 

presented algorithm is validated through multiple optimization runs from random initial 

designs. The verification experiments are conducted for a range of microwave 

components, including a compact microstrip coupler as well as a three-section CMRC-

based impedance transformer. The effects of the alignment threshold value on the 

computational efficiency of the algorithm and the design quality are investigated. 

Significant savings reaching fifty percent as compared to the reference algorithm are 

demonstrated. 

1. Introduction

Nowadays, full-wave electromagnetic (EM) analysis is a necessity in the design 

closure of microwave components and devices [1]. This especially applies to 

miniaturized structures: due to significant cross-coupling effects present in the densely 

arranged layouts, simplified representations (e.g., equivalent networks) either cannot be 

relied on or simply do not exist [2]. The examples of such structures include compact 

microstrip couplers [3], power dividers [4], impedance transformers [5], and filters [6]. 

The lack of dependable yet simple equivalent representations affects, to an even greater 

extent, design optimization of microwave components implemented with the use of slow-
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wave structures [7], such as compact microwave resonant cells (CMRCs) [5]. 

Furthermore, an increased number of geometry parameters describing CMRC-based or 

other miniaturized circuits (as compared to their conventional transmission-line-based 

realizations), may result in unmanageable computational overhead of the optimization 

process.  

The reduction of the number of time-consuming EM analyses, otherwise 

indispensable to ensure reliable evaluation of the circuit under design, can be achieved—

among others—by using adjoint sensitivities [8]. Unfortunately, the major setback for the 

usage of this technology is a limited support for it in commercial EM simulation packages. 

An alternative approach, allowing us to optimize geometry parameters of multivariate 

models with a limited number of electromagnetic simulations, are parametric reduced-

order models [9]. In recent years, surrogate-based optimization (SBO) [10], [11], has 

become a common method of choice to improve computational efficiency of EM-driven 

design. SBO works by replacing direct optimization of the expensive (high-fidelity) model 

with the iterative process of tuning a cheaper, yet less accurate, surrogate model. With the 

majority of operations cast onto the surrogate, the optimized design can be identified at the 

lower computational cost. Here, the principal use of the surrogate is to act as a prediction 

tool guiding the process towards a better design. The SBO procedures are iterative ones 

with the recently acquired high-fidelity data employed to improve the model. 

Computational speedup yielded by SBO is founded on the following two conditions: the 

surrogate delivers sufficiently accurate description of the structure at hand, and, at the 

same time, it is significantly faster than the high-fidelity model. SBO methods comprise, 

among others, the well-recognized space-mapping (SM) [12] as well as various response 
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correction techniques (manifold mapping [13], [14], shape preserving response prediction 

[15], adaptive response scaling [16]). Another SBO technique is feature-based optimization 

(FBO) [17], [18] in which the original problem is reformulated in terms of so-called 

characteristic points. For structures with well-defined response structure (e.g., multi-band 

antennas), FBO “flattens” the functional landscape to be handled, thus leading to lower 

computational expenses. 

The surrogate models are constructed either from sampled high-fidelity EM data 

(data-driven or approximation models) or they are physics-based. The physics-based 

models (e.g., corrected equivalent networks commonly used by SM [12]) are more 

problem-dependent and less general, however, they are less affected by the curse of 

dimensionality. The effectiveness of SBO physics-based methods is strongly determined by 

the underlying low-fidelity model. The equivalent network representations of miniaturized 

microwave components frequently provide insufficient accuracy, thus their usage in 

conjunction with the SBO techniques may be of limited value. On the other hand, the 

multipurpose, data-driven models, involving kriging interpolation [19] or neural networks 

[20], [21], are limited to rather low-dimensional cases [19]. This is because the number of 

required training data samples grows quickly with the number of the model parameters. 

Consequently, the computational cost of developing surrogate model can surpass the cost 

of direct optimization of the fine model. 

No matter what kind of optimization technique is utilized, either direct or 

surrogate-assisted, the key issue is to lessen the total computational overhead. Here,  

a numerically efficient trust-region algorithm with flexible sensitivity updating 

management scheme is introduced, that allows for achieving a significant computational 
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speedup. The savings come from omitting a portion of finite differentiation calculations 

of the circuit response Jacobian. The flexible management scheme is guided by both the 

alignment between the recent design relocation direction and the coordinate system axes, 

as well as by the algorithm convergence indicators. For the selected columns of the 

Jacobian, corresponding to the model parameters for which the alignment is satisfactory 

(depending on a user-defined threshold), the Jacobian update is performed using a rank-

one Broyden formula. With the algorithm converging, the alignment acceptance threshold 

is adaptively adjusted, and therefore the condition for using the BF relaxes. That leads to 

further reduction of the number of EM simulations needed by the optimization algorithm.  

The proposed technique has been validated at length for two compact CMRC-

based structures (a rat-race coupler and an impedance matching transformer). The 

obtained computational savings as compared to the reference algorithm are substantial. In 

the future work, the presented algorithm will be employed to accelerate SBO procedures 

involving variable-fidelity EM models.  

2. Efficient Optimization with Flexible Sensitivity Updating Scheme 

In this section, we formulate the microwave device design problem as an 

optimization task. In addition, we provide the outline of the conventional trust-region 

procedure utilized as a reference. Then, the proposed algorithm adopting a flexible 

sensitivity updating scheme is described in detail. Comprehensive numerical validation 

involving a range of compact microwave components is provided in Section 3. 

 

2.1. Design Closure as an Optimization Task 

In this paper, we consider a design closure problem, in which geometry parameter 

values of a microwave structure at hand are adjusted in order to improve performance 
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figures of interest. The task is formulated as a nonlinear minimization problem of the 

form [1] 

* arg min ( ( ))U
x

x R x  (1) 

where U is a nonlinear objective function, R(x) represents a response of the EM 

simulation model of the structure under design, and x denotes a vector of adjustable 

parameters. A particular definition of the objective function U is determined by both the 

type of the circuit and design specifications imposed. Let us consider impedance 

transformers. In that case, a typical objective is to reduce the return loss within the 

frequency range of interest F which can be formally expressed by defining U as 

11( ( )) max{ :| ( , ) |}U f F S f R x x                                          (2) 

where |S11(x,f)| stands for the reflection (here, its dependence on the frequency f and on 

the geometry parameter vector x is explicitly shown). Another example are microwave 

couplers, where the performance figures may take different forms, e.g., maximization of 

the bandwidth B (often with an additional requirement of being symmetric with respect to 

the operating frequency f0). The optimization problem of a microwave coupler may also 

be aimed at obtaining the required (equal or non-equal) power split at f0, defined as dS = 

|S21| – |S31|. Other requirements may be imposed as well, such as allocation of the 

matching and the isolation characteristics minima close to f0. In the case of multiple 

objectives, it is a typical practice to select a primary one and cast others into constraints, 

often handled implicitly, e.g., using penalty functions. With this approach, the objective 

function may be defined as 

11 41

2 2 2
1 2 min. 0 3 min. 0( ( )) ( ) ( ) ( ( ) ) ( ( ) )S S SU B d f f f f        R x x x x x          (3) 
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where the frequencies fmin.S11 and fmin.S41 correspond to the minima of |S11| and |S41|, 

respectively, whereas j, j = 1, 2, 3, denote penalty coefficients. The formulation (3) is a 

convenient way of handling computationally expensive constraints, commonly occurring 

in the optimization of EM simulation models [2], [7]. 

 

2.2. Reference Trust-Region Algorithm  

Below, a brief description of a conventional trust-region (TR) gradient search 

algorithm [22] is given. The TR algorithm allows for a convenient solving of (1) with the 

objective function and the constraints evaluated through EM analysis. The procedure is 

iterative and delivers a series of designs x(i), i = 0, 1, …, representing approximations to 

the optimum solution x* 

( ) ( ) ( )

( 1) ( )

;
arg min ( ( ))

i i i

i iU

   


x δ x x δ
x L x                                         (4) 

where L(i)(x) = R(x(i)) + JR(x(i))(x – x(i)) is a first-order Taylor expansion of R at x(i). 

Establishing L(i) requires performing calculation of the Jacobian JR through finite 

differentiation, which involves additional n EM simulations during each algorithm 

iteration (where n denotes the number of optimizable parameters). 

The conventional TR algorithm uses an Euclidean, ball-type search region 

||x  x(i)|| ≤ δ(i). Here, a different approach is adopted, in which a hypercube-like search 

region is employed and the inequalities –δ(i)  x – x(i)  δ(i) of (3) are understood as 

component-wise. The rationale behind this approach is to accommodate various ranges of 

the geometry parameters, which may vary from fractions of millimeters (gaps) to tens of 

millimeters (longitudinal values). 
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2.3. Proposed Trust-Region Optimization Algorithm with Flexible Updating Scheme 

In this section, a computationally efficient TR algorithm with flexible sensitivity 

updating management scheme is depicted. The key concept is a conscientious selection of 

the columns of the circuit response Jacobian JR, which are to be calculated using an 

updating formula instead of the finite differentiation. In this paper, a rank-one Broyden 

update formula is adopted [23], [24] 

 ( 1) ( ) ( 1) ( 1)

( 1) ( )
( 1) ( 1)

i i i i T

i i
i T i

  


 

  
  R

R R

f J h h
J J

h h
,  i = 0, 1, …  (5) 

In (5), the following notation is used: f(i+1) = R(x(i+1)) – R(x(i)), and h(i+1) = x(i+1) – x(i). It 

should be underlined that the information about the system sensitivity, contained in the 

Jacobian estimate JR
(i), calculated upon ith iteration, is only pertinent to an i-dimensional 

subspace spanned by the vectors h(1), h(2), …, h(i). Therefore, at least n iterations are 

necessary to estimate the Jacobian in all n directions. For this reason, poor results are 

typically obtained with the Jacobian calculated with the sole usage of the BF update 

formula (5), especially for higher-dimensional spaces (see the results of Section 3). 

In our approach, this issue is dealt with using a flexible, both selective and 

adaptive, sensitivity updating scheme. The Jacobian JR, utilized in the optimization 

course, is merged from the columns evaluated through FD as well as BF. Selection of the 

variables for which the Broyden formula is applied, based on the alignment between the 

most recent design relocation and the coordinate system axes. Furthermore, the selection 

criterion is adaptively adjusted as the algorithm converges, with the measure of the latter 

being the TR region size. The flow diagram of the proposed algorithm is shown in Fig. 1. 
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Initialize selection vector γ0: 
γ0.k = 1, k = 1, ..., n 

Find candidate design xtmp 

 R(xtmp) 

Update TR region size δ(i+1) 

Set i = 0

Set i = i + 1

EM 
Solver

END

Yes

Set k = 1

Calculate Jacobian Jk(x
(i)) 

using finite differentiation 
Calculate Jacobian Jk(x

(i)) 
using Broyden formula 

Set k = k + 1

Yes

Calculate gain ratio ρ(R(xtmp)) 

JACOBIAN UPDATE 

Calculate temporary Jacobian JR(xtmp) 
using Broyden formula 

Set k = 1

SELECTION VECTOR UPDATE

Accept candidate design 
x(i+1) = xtmp 

Set k = 1

Calculate alignment  factor φk
(i+1) 

Set k = k + 1

γi+1.k = 0 γi+1.k = 1

Calculate temporary 
alignment factor φk tmp 

Jk
(i+1) = Jk(xtmp)

Yes

No

Yes

Yes

Yes

No

No

No

No

φmin =φ0

γi.k = = 1?

k ≤ n ?

R(x(i)) 

|| δ(i+1 )||<ε ? and ||x(i+1 )− x(i )||<ε ?

 ρ > 0 ?

 δ(i+1) > δ0?

φk
(i+1) ≥ φmin ?

k ≤ n ?

φk tmp  ≥  φmin ?

Set k = k + 1

k ≤ n ?

Yes

No

No

Yes

No

Yes

No

OPTIMIZATION

φmin = φ0 ·(log(|| δ(i+1 )||/ε )/log(|| δ0
 )||/ε ))

Fig. 1. Flow diagram of the proposed algorithm using flexible sensitivity updating scheme; the 
following notation is used: δ(i+1) – TR region size in the (i+1)th iteration, δ0 – TR region size 
threshold value (below which the alignment threshold φmin starts to decrease); ε – algorithm 
termination threshold; γi – binary selection vector (governing the choice between FD and BF in 
the ith iteration); φmin – alignment acceptance threshold (φ0 being its initial value); φk

(i+1) –
alignment factors for the (i+1)th iteration and the kth parameter, k = 1, …, n.  

The top-left panel of Fig. 1 depicts the Jacobian updating procedure. Let us 

denote by Jk = ∂R/∂xk the kth column of JR (comprising the system response R 

sensitivities w.r.t. the kth parameter). In addition, γi refers to an n-element binary 

selection vector, that governs the choice between FD and BF in the current (ith) iteration: 

if its kth element γi.k equals 1, k = 1, …, n, the respective Jacobian column Jk is calculated 

using FD, if it equals 0 – BF is used instead. The algorithm initializes with all entries of 

the initial selection vector γ0 set to 1, which implies that the initial estimate of the 

Jacobian JR
(0) is obtained solely with FD.  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


In the ith iteration, after the Jacobian update is completed, the actual optimization 

procedure is carried out (see the bottom-left panel of Fig. 1). First, (4) is solved and the 

candidate design xtmp is identified. Then, a gain ratio ρ = (U(R(xtmp) –

 U(R(x(i))/(L(i)(xtmp) – L(i)(x(i))) is calculated, and the TR region size δ(i+1) for the next 

(i+1)th iteration is adjusted. Unless the termination criterion is satisfied, i.e., ||δ(i+1)|| < ε 

and ||h(i+1)|| < ε, where ε is an algorithm termination threshold (here,  = 10–3), the 

selection vector for the next iteration is assessed using the procedure shown in the right 

panel of Fig. 1. 

If the iteration was successful (the gain ratio ρ is greater than zero), the candidate 

design is accepted. Next, the values of the alignment factors φk
(i+1) = |h(i+1)Te(k)|/||h(i+1)||, 

which control the selection between the FD and the BF, for each parameter k, are 

calculated. Let e(k) denote the standard basis vectors, e(k) = [0 … 0 1 0 … 0]T (1 on the kth 

position). The factors φk
(i+1) serve as a measure of the alignment between the current 

design relocation h(i+1) and the respective basis vectors e(k). The values of φk
(i+1) range 

from 0 to 1: φk
(i+1) = 0 if the vectors h(i+1) and e(k) are orthogonal, whereas φk

(i+1) = 1 if the 

vectors are co-linear. If the alignment φk
(i+1) is better than a user-defined alignment 

acceptance threshold φmin, the corresponding selection factor γi+1.k is set to 0 (BF), 

otherwise γi+1.k = 1 (FD). The larger the threshold φmin, the stricter the condition for using 

BF becomes, leading to lowering potential computational savings and supposedly a better 

design quality. On the other hand, lowering φmin may accelerate the optimization process, 

however, possibly, accompanied by a slight degradation of the design quality. 

In this paper, an adaptive algorithm is proposed, in which the alignment threshold 

value φmin is a function of the TR region size ||δ(i+1)|| as shown below 
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  
 

1

min 0

0

log

log

i 
 





 



                                                    (6) 

Here,  is the algorithm termination threshold (for convergence in argument), whereas 

||δ0|| is a user-defined value of the TR region size, below which the threshold value φmin 

starts to decrease (here, ||δ0|| = 0.01). Therefore, the acceptance threshold φmin maintains 

its initial value φ0 until ||δ(i+1)|| gets below ||δ0||. Beyond that value, φmin is gradually 

reduced and the alignment condition relaxes, reaching zero when approaching 

convergence. As a consequence, BF is used more frequently. Thus, utilization of (6) 

allows for additional speedup when compared to the fixed acceptance threshold. 

Reduction of the acceptance threshold is justified by the fact that, as the algorithm 

converges, the design relocation between subsequent iterations decreases, hence, the 

response gradients change less significantly.  

In the right panel of Fig. 1, the case of the rejected iteration is also presented. The 

proposed algorithm exploits the fact that the information comprised in the rejected design 

can still contribute to a sensitivity estimation enhancement [23]. Thus, the temporary 

Jacobian JR(xtmp) is calculated using (5) (with xtmp inserted instead of x(i+1)), and the 

temporary alignment factors φk
i
tmp are calculated. For each parameter k, if φk

i
tmp ≥ φmin, 

the respective column of the temporary Jacobian Jk(xtmp) supersedes the Jacobian column 

Jk, calculated in the previous iteration. 

3. Case Study and Results 

The proposed procedure has been verified using two compact microwave structures 

implemented on Taconic RF-35 substrate (εr = 3.5, h = 0.762 mm, tan δ = 0.018). The first 

structure is an equal-split rat-race coupler (RRC) [25] shown in Fig. 2(a) composed of 
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compact microstrip resonant cells (CMRCs). The RRC geometry is described by the 

following parameters: x = [l1 l2 l3 d w w1]T, along with d1 = d + |w – w1| (a relative 

variable), as well as fixed dimensions: d = 1.0, w0 = 1.7, l0 = 15 (all in mm). The 

coupler’s operating frequency is f0 = 1 GHz (at which the coupler is intended to feature 

equal power split and good matching and isolation). The second device considered is the 

50-to-100 Ohm impedance matching transformer [26] shown in Fig. 2(c), in which the 

CMRC shown in Fig. 2(b) is incorporated. The parameters of the transformer are x = [l1.1 

l1.2 w1.1 w1.2 w1.0 l2.1 l2.2 w2.1 w2.2 w2.0 l3.1 l3.2 w3.1 w3.2 w3.0]T. In the RRC case, the design 

objective is to maximize the symmetric bandwidth at –20 dB level around f0. Whereas for 

the transformer, minimization of the reflection coefficient within the frequency range 

from 1.5 GHz to 4.5 GHz is performed.  

Table I   Performance Statistics of the Proposed Algorithm

Algorithm 

Compact RRC Three-section transformer 

Cost1 
Cost 

savings2 

[%] 

B3

[GHz] 

STD 

(B)4 

[GHz] 

Cost1

Cost 
savings2

[%] 

max 

|S11|5 

[dB] 

STD 
(max 

|S11|)6

[dB] 

Reference 43.0 – 0.27 0.01 160 – –22.0 0.5 

Threshold 
value φ0 

0$ 15.9 63.0 0.18 0.11 76.6 52.1 –21.1 1.1 

0.025 13.4 59.5 0.21 0.06 79.2 50.0 –21.3 0.9 

0.05 28.9 32.8 0.25 0.04 83.9 47.6 –21.3 0.8 

0.1 27.0 37.2 0.24 0.05 101.0 36.9 –21.5 0.6 

0.2 42.6 0.9 0.24 0.05 132.6 17.1 –21.8 0.6 

0.3 41.3 4.0 0.23 0.06 124.3 22.3 –21.6 0.8 

0.4 35.9 16.5 0.23 0.08 144.5 9.7 –21.7 0.7 
1 Number of EM simulations averaged over 10 algorithm runs (random initial points);  
2 Percentage-wise cost savings w.r.t. the reference algorithm;  
3 Objective function values for the compact RRC (bandwidth B in GHz);  
4 Standard deviation of B in dB across 10 algorithm runs; 
5 Objective function values for the three-section transformer (maximum in-band reflection S11 in dB); 
6Standard deviation of S11 in dB across 10 algorithm runs;  
$ Broyden-only Jacobian updates meaning no FD used whatsoever. 
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The following initial values of the alignment threshold were used for both devices 

φ0 = 0, 0.025, 0.05, 0.1, 0.2, 0.3, and 0.4. The results obtained with the proposed 

algorithm, as well as the conventional TR procedure (used as a reference) are presented 

in Table I. The statistical data on the algorithm performance was collected by executing 

ten optimization runs using random start points. Figure 3 shows the initial and optimized 

responses for the selected algorithm runs.  

The results of Table I confirm our presumptions that smaller values of the 

acceptance threshold φ0, associated with less stringent conditions for replacing FD with 

BF, deliver considerably higher computational cost savings. At the same time, decreasing 

φ0 corresponds with the improvement of the design quality. Hence, the threshold value 

can be used to control the trade-offs between the computational speedup and the design 

quality. For the RRC, the boundary threshold value, which ensures acceptable solution 

quality accompanied by substantial cost savings (around 29%), is φ0 = 0.05. For the 

CMRC-based transformer, the higher threshold value is necessary i.e., φ0 = 0.1 for which 

both the satisfactory design quality is obtained (degradation w.r.t. reference algorithm as 

low as 0.5 dB) and significant computational speedup (over 36%). The reason for this is a 

significant difference in the parameter space dimensionality (5 for the RRC versus 15 for 

the transformer). This suggests making the acceptance threshold dimensionality 

dependent which will be addressed in the future work. Nevertheless, for both structures 

substantial savings have been obtained. It should be noted that for the RRC, neither the 

savings nor the solution quality degradation are monotonic with respect to φ0. This, 

however, is primarily a result of a limited number of optimization runs, leading to a 

relatively high variance of estimating the statistical moments of the objective function 
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presented in Table I. It can be suggested that more noticeable cost savings could be 

attained with the use of the proposed algorithm for more complex structures (described 

by the number of parameters exceeding 20).  

w0

l5
w2

l4

l3

l1

w4

w3

l2

w1

1 2

3 4

(a) 

(b) 

(c) 

Fig. 2. Microwave structures used for benchmark purposes: (a) microstrip rat-race coupler with 
slow-wave resonant structures [25], (b) compact microstrip resonant cell being incorporated into 
a CMRC-based miniaturized three-section impedance transformer (c). 

S-
pa

ra
m

et
er

s 
[d

B
]

(a) 

|S
11

| [
dB

]

(b) 
Fig. 3. Characteristics of the considered microwave devices for the representative algorithm runs: 
(a) compact RRC, (b) three-section impedance matching transformer. The initial and optimized
designs are marked gray and black, respectively. The vertical line in (a) indicates the required
operating frequency f0, whereas the horizontal line in (b) indicates the required operating bandwidth.
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4. Conclusion

In the paper, an accelerated gradient-based optimization procedure for EM-driven 

design of compact microwave components have been presented. Our approach is based on 

selective Broyden updates of the system response Jacobian, controlled by the alignment of 

the recent design relocation with the coordinate system basis, as well as the algorithm 

convergence status. Comprehensive validation demonstrated superiority of the procedure 

(almost 50 percent speedup) over the conventional TR algorithm used as a reference with 

minor deterioration of the design quality. The technique can be used for expedited direct 

EM-based microwave optimization as well as to accelerate variable-fidelity SBO 

procedures. The latter will be the subject of the future work. 
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