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ABSTRACT Deep neural networks have achieved great success in many domains. However, successful
deployment of such systems is determined by proper manual selection of the neural architecture. This is
a tedious and time-consuming process that requires expert knowledge. Different tasks need very different
architectures to obtain satisfactory results. The group of methods called the neural architecture search (NAS)
helps to find effective architecture in an automated manner. In this paper, we present the use of an architecture
search framework to solve the medical task of malignant melanoma detection. Unlike many other methods
tested on benchmark datasets, we tested it on practical problem, which differs greatly in terms of difficulty in
distinguishing between classes, resolution of images, data balance within the classes, and the number of data
available. In order to find a suitable network structure, the hill-climbing search strategy was employed along
with network morphism operations to explore the search space. The network morphism operations allow
for incremental increases in the network size with the use of the previously trained network. This kind of
knowledge reusing allows significantly reducing the computational cost. The proposed approach produces
structures that achieve similar results to those provided by manually designed structures, at the same time
making use of almost 20 times fewer parameters. What is more, the search process lasts on average only 18h
on single GPU.

INDEX TERMS Deep learning, convolutional neural network, neural architecture search, network mor-

phism, malignant melanoma.

I. INTRODUCTION

Deep learning has achieved great success in various fields,
such as image processing, natural language processing, image
generation, speech generation, and many more. These meth-
ods allow processing of high-dimensional data with mere
preprocessing, unlike classic methods that involve complex
preprocessing [1]. Deep learning-powered technology has
influenced many aspects of our modern society. Language
translation, text to speech, or speech to text systems are
just small examples of applications based on deep neural
networks that are widely used by millions of users.

The first successes of deep learning methods took place
in the field of image processing [2]. Currently, the deep
networks are used for many image processing tasks, such
as image classification (e.g. classification of ImageNet
dataset [3]), object detection (e.g. Yolo [4], Faster R-CNN
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(Region-based Convolutional Neural Networks) [5]), scene
segmentation [6], depth estimation [7], and many more. They
are deployed in many domains, such as autonomous cars [8],
medical applications [9], surveillance [10], automatic content
labeling on web services, image synthesis [11], [12], or data
generation [13]. The number of applications is huge and
still growing up. Deep learning-based methods highly out-
perform classical methods that require preparations of both
the feature extraction algorithms and the classifier. In the
classic approach, one needs to put effort to choose the proper
methods, which involves having domain expertise and knowl-
edge of many image processing algorithms. Moreover, those
methods tend to have poor generalization abilities, for exam-
ple, they are often not robust to light changing conditions,
different size and positions of objects [14]. Deep learning
methods have helped to overcome these problems and to
achieve impressive results in image processing tasks in vari-
ous conditions [1]. To handle these tasks, many architectures
were proposed by the researchers in recent years.
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Over time, state-of-the-art structures have achieved bet-
ter and better results. The most popular architectures
include VGG (Visual Geometry Group) [15], DenseNet [16],
ResNet [17], WideResnet [18], or Efficient Net [19]. The
very first architectures were plain, chain-structured networks,
consisting of many layers in a pipeline. Next, the researchers
discovered that so-called skip connections are advantageous
for more effective training and achieving better results. The
next proposed architectures consisted of a much more par-
allel path of signals within the neural network such as in
Inception or DenseNet networks. The progress in image pro-
cessing was made not only due to better architecture design
but also due to the advance in other areas such as opti-
mization (Adam [20], SGDR [21]), regularization (batch nor-
malization [22], dropout [23]), activations function (Leaky
ReLU [24], Scaled Exponential-Regularized Linear Units
(SERLU)[25]), and data augmentation (Cutout [26], style-
transfer based image generation [27]).

The mentioned architectures are considered as universal
structures and are used as the off-the-shelf solution in numer-
ous problems. However, the price that needs to be paid for
their universality is the excessively complex structure of the
network and an overly large number of network parameters
to be found. Such structures are usually difficult to train in
cases when only a small dataset is available.

There are many regularization techniques to overcome
the problem of small datasets. The most popular is to use
transfer learning that enables using the knowledge gathered
on another dataset (usually large Imagenet dataset) [28].
In this approach, the weights of another network trained
on large datasets are used as the initial weights during the
training on the target dataset. The results achieved by this
method are satisfactory, but the problem is that these archi-
tectures are naturally predisposed to classification tasks with
many classes. For example, they are adapted to distinguish
between different classes such as dog breeds and household
devices. However, in many practical tasks, there is no need
for such complex feature extraction and more specific fea-
ture extractors are needed — for example, to classify medical
images.

In order to tackle those problems, there is a need to
design architectures that are better suited to solve a par-
ticular task. The structure design process should take into
account the difficulty of the problem to be solved, the size
of the dataset available, implementation constraints, learning
time, and many more. Proper architecture selection is an
error-prone and laborious process that involves intuition and
expertise. Each new-designed network needs to be validated.
Unfortunately, the training of a deep neural network lasts very
long and therefore the number of architectures that can be
examined is limited.

The field of research called Neural Architecture Search
(NAS) [29] tries to remedy this problem. NAS is a family of
methods that try to find, in an automated fashion, an optimal
network structure with respect to the existing limitations and
available dataset.
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Early works on the automated design of deep neural struc-
tures achieved decent results but the accompanying com-
putational cost was unacceptably high. The search process
took thousands of GPU-hours, hence such algorithms were
not suitable for practical use by average users [30], [31].
The appearance of new methods, such as network mor-
phism operations [32] and gradient-based neural architecture
search [33], allowed to significantly reduce the computational
time of this process.

Many deep learning solutions are tested on benchmark
datasets. Although it is good for the machine learning com-
munity, due to standardized testing workflow, there could be
the problem that proposed solutions could overfit to datasets
used in practice that are usually of much smaller size. More-
over, the problem with benchmarks is that they are well
prepared i.e. they contain very large number of good-quality
images that are equally distributed between classes. On the
contrary, the raw, real-life datasets being in use in industry,
business, economy, laboratories and so on, are often of dif-
ferent quality and scales, unbalanced, with noisy labels.

In this work, we deployed one of the neural architecture
search methods to the non-benchmark, medical problem of
malignant melanoma detection [34]. The applied dataset has
features that are often met in practical solutions. The classes
are not equally balanced, moreover examples from different
classes are very similar, and their proper classification may
be a problem even for skilled specialists. Because of that,
the network has to have high accuracy and high generalization
ability. The process of single network training takes a few
hours, which makes a manual design of a new architecture
difficult.

The remainder of the paper is organized as follows.
The related works are overviewed in Section II, while
in Section III, network morphism methods are presented
that allow the expansion of networks. The description of
the implemented search algorithm is given in Section IV.
Section V brings a brief overview of the malignant melanoma
detection task. The implementation details are provided in
section VI. The results are discussed in Section VI and con-
cluded in Section VII.

Il. RELATED WORK
The research on neural architecture search had been con-
ducted before the interest in deep learning emerged. Early
systems involved random search, grid search [35], and evolu-
tionary algorithms [36], [37] to find the proper architecture of
a classic (shallow), fully connected neural network. With the
growth of the size of neural networks, many difficulties have
arisen due to long training time which limit the possibility of
testing new architectures. Not only the training times become
longer, but also the search space larger. With the grow of net-
work structures, the number of hyperparameters describing
the architecture increases significantly.

Each NAS framework can be described by three elements:
search space, search method and performance evaluation
strategy [29]. The search space defines which architecture
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types could be found during the process. The search strategy
defines the way the search space should be explored. The
performance evaluation strategy defines the way the perfor-
mance of the proposed network is estimated.

The assumed search space has a crucial impact on the
search process. If the search space is too small it leads to
poor performance, while on the other hand, if it is too big it
could significantly extend the search time. The search space
can be described by such factors as the number of layers,
number of neurons within the layers, type of layers, activation
function, etc. In most cases, the search space is conditional,
which means that some hyperparameters have an influence
on the total number of hyperparameters e.g. the increase of a
number of layers will increase the number of hyperparameters
describing those layers.

Two types of search space can be distinguished: the
network-based search space, and the cell-based search space.
The network-based approach explores the whole architecture,
whereas the cell-based approach finds just the cells that are
then stacked to solve a given problem [38]. The number of
cells in the stack depends on the task being solved.

Currently, numerous search methods are used to explore
the search space including random search, grid search [35],
evolutionary algorithms [28], [35], Bayesian optimization
[36], [37], reinforcement learning (RL), and the gradient
methods [33], [42]-[44], which are nowadays gaining ground
and popularity.

The performance evaluation strategy is the way in which
the performance of the neural network is estimated. The
simplest way is to train each network until convergence and
then measure the validation accuracy. Although it provides
an accurate estimate of the network architecture, this method
is very time-consuming. Many methods have been proposed
to speed up the process of network evaluation during the
architecture search. Lower fidelity estimates involve network
evaluation based on, for instance, limited training time [45],
the limited size of dataset [46], or reduced size of photos
in the dataset [47]. The learning curve extrapolation strategy
allows accelerating the search process by rejecting structures
at an early stage of training based on the prediction of their
performance [48]. Another approach to speed up the struc-
ture performance estimation is to use weight inheritance or
function preserving transformation [32], instead of training
the network from scratch.

The NAS field has attracted a lot of attention in recent
years. The popular approaches relied on either evolutionary
algorithms or reinforcement learning. Authors of [30] pro-
posed the reinforcement learning algorithm to design deep
network architectures with the use of vast computational
power. The method involves training of the Recurrent Neu-
ral Network (RNN) based on Long Short Term Memory
(LSTM) [49] cells to generate the new architectures. The
RNN is trained using the REINFORCE [50] algorithm. Each
network proposed by the RNN controller is trained for
50 epochs on CIFAR10 dataset. The method is computation-
ally expensive and involves the use of vast computational
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resources (800 GPUs). During the exploration of search
space, the algorithm proposed and trained 12 800 archi-
tectures, in total. The computational complexity of the
method makes it impossible to use in practice by individ-
ual researchers, academic research teams, and even small
companies.

Authors of [31] applied an evolutionary approach to
explore the architecture space for the task of CIFARI10 clas-
sification. That method evolves the population of models
with organisms being the neural network structures. The evo-
lutionary approach chooses individuals and performs muta-
tions that alter their structure. The search algorithm runs for
10 days and utilizes 250 GPUs.

Although both methods achieve promising results on
CIFARI10 dataset, their success relies on an extremely high
computational demand. This is caused by the fact that those
methods sample many architectures that are then trained from
scratch. Therefore, there was a need for a method that allows
incorporating the experience from previous training into new
architectures.

One of the solutions to this problem is so-called network
morphism [32], [51]. This is a family of methods that enable
expanding a network by new elements (e.g. filters or layers)
while preserving its performance. The new architecture gets
the same accuracy, validation loss, or other selected statistical
measures. The extended network has the same performance
as the parent network but it has a bigger capacity. This
means that the extended network has the ability to fit a wider
variety of functions. As a result, the network can learn more
complex relationships in the data during further training. This
approach leads to significant decrease in the search time,
as it utilizes the knowledge acquired during the training of
previous network architecture to form new, more efficient
architectures.

The authors of [52] propose a reinforcement learning
framework that takes advantage of the network morphism
operation to design the network structure. They use the
reinforcement learning approach to train the RNN agent
that explores the architecture space by applying network
preserving transformations. The methods are limited to trans-
formations that either insert a layer or make the layer wider.
That approach allows designing only plain chain-structured
networks. The utilization of knowledge from previously
trained networks makes the search process more efficient
compared with the methods in which the networks are trained
from scratch. The methods allow for a huge reduction of com-
putational requirements from a few thousand of GPU-days to
only 5 GPU-days.

In their further work [53], the authors expanded the avail-
able network morphism operations to allow building multi-
branch neural networks. The proposed function preserving
operations allow replacing a single layer with a multi-branch
motif. Then, those motifs can be further transformed by other
modifications. The introduction of multi-branch structures
leads to better performance and significant reduction in the
number of parameters describing the network.
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Our work has been inspired by [54], which uses the hill-
climbing algorithm with the network morphism transforma-
tion to search for the architectures. The method enables
designing multi-branch neural networks, but the network
transformation operators differ from those used in [53]. The
search algorithm applied in this work could be interpreted as
a simple evolutionary algorithm with no crossover operation.
It incrementally expands the initial network applying net-
work morphism operations. The algorithm applies mutations
(network morphism operation) to the best organism from the
previous iteration. Then, each generated network is trained
for small number of epochs. The best organism passes to the
next generation as a parent and the process repeats. The pro-
posed method allows finding competitive architectures in less
than 1 GPU-day on CIFARIO task. The hill-climbing algo-
rithm can be interpreted as a simple evolutionary algorithm
with only the mutation operator. Therefore, terms related to
this field e.g. organism, offspring, or parent, are used further
in the paper.

lll. NETWORK MORPHISM

The network morphism is a family of methods that allow
expanding the size of a neural network without loss of the
acquired experience [32]. It can significantly accelerate the
neural architecture search algorithm. Early NAS algorithms
proposed a large number of architectures and trained them
from scratch. It was a wasteful process, as the experience
acquired during the training was not transferred to other
networks trained later. In contrast, the network morphism
enables transferring the knowledge from the original network
to the bigger one by applying a special way of weights
initialization in the extended network. This is realized by
so-called function preserving transformations that produce
network g(-) by modifying network f(-) in the way which
satisfies the equation:

Vx, f () =gx) ey

where x is the input of the network.

Through such an approach, the expanded network contains
all of the experience acquired by the smaller one, but it has a
higher capacity; therefore, its performance can be improved
in further training. This type of initialization allows to reuse
the information from the previously trained networks and
save time.

The network morphism operation can be specified as fol-
lows [51]: given the original (initial) network represented by
the function y = f(x; 8), where x is the input, y is the output,
and 6 represents the parameters of the network, the task is to
choose a new set of parameters 6’ for an extended network g
such that:

Vx, f(x;0)=gx;6) ()

In this work, we employ the layer addition opera-
tion (Net2WiderNet), the layer extension operation [32],
and the operations that allow constructing multi-branch
architectures [53].
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Net2WiderNet enables to expand any layer by additional
units (e.g. filters in a convolutional layer, or neurons in a fully
connected layer). The method involves replicating weights
of randomly chosen units from the layer being expanded.
The number of weights of each unit in the next layer is
increased to take into account units inserted in the previous
layer. Moreover, the weights in the next layer are multiplied
by the scaling factors, taking into account additional units in
the previous layer in order to perform the same function as
the original network.

Net2DeeperNet modification allows adding a layer any-
where within the network. It is realized by initializing
the weights of the inserted layer as either the identity
matrix or identity filters. Unlike the Net2WiderNet method,
the weights of other layers are not modified. The newly added
layer has to have the same size as the previous layer (e.g. the
same number of filters).

To introduce branch connections during NAS algorithm
operation, the methods described in [53] were used. Nowa-
days, multi-branch neural networks are extensively used
in the deep learning community. The most popular archi-
tectures that use this kind of connections include Incep-
tion, Resnet, and Densenet. In those networks, the signal
is often distributed to several branches. Each branch con-
ducts some computations, then the signals from the branches
are aggregated using one of the merge schemes (add or
concatenation).

The function preserving operations can transform each
layer into an equivalent multi-branch motif with either
add or concatenation merge scheme.

To transform a layer C(-) to the equivalent motif with add
merge scheme, the layer has to be replicated. To preserve
the function performed by a single layer, the outputs of the
original and replicated layers have to be scaled by factor
0.5 before adding, that yields:

0.5% C(x) + 0.5 % C(x) = C(x) A3)

which gives the same result as from the original layer.

To transform the layer in an equivalent motif with con-
catenation merge scheme, the layer is split into two parts.
Each part contains half of the units. The branches are joined
together using concatenation that results in the operation
that is equivalent to that performed by the layer before
modification.

Although after modification, those multi-branch motifs act
as a single layer, those structures could be further expanded
by modifications inside the motifs e.g. by inserting a layer in
one of the branches and making that layer wider. It is also
possible to create other branched motifs inside the existing
ones. The way the add and concatenation merge schemes are
constructed is outlined in Fig. 1.

The skip connections that are a special type of multi-branch
motifs are constructed by using Net2DeeperNet and the add
merge scheme. We propose the method that first adds a new
layer, and next adds the skip connection to this layer in a
similar way as in the add merge scheme. The output of the
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FIGURE 1. Construction of the add and concatenation motifs that are
equivalent to a single layer.

identity layer and the skip connection are summed up with
0.5 weights.

IV. SEARCH ALGORITHM

This section provides the general idea of the method we used,
while the implementation details are provided in Section VI.
We make use of the NAS approach similar to [54]. We apply
the same search strategy, but with different kind of net-
work morphism operations. Moreover, our approach is used
to search for networks that process much bigger images
—224 x 224 x 3 instead of 32 x 32 x 3 processed in the cited
paper. The implemented search strategy is based on a greedy
algorithm called the hill-climbing algorithm. The algorithm
allows faster exploration of the search space than a genetic
algorithm does. Moreover, the algorithm does not use cross-
over operation, that could be very difficult to apply in our
approach. The scheme of this algorithm is shown in Fig. 2.

Train initial
network

'

Create offspring
applying network  —»|

Train offspring and Choose the

morphism evaluate best offspring
No
Final epoch?
Yes

Train final network

FIGURE 2. Scheme of the search algorithm.

The first step of the framework is to train a small network
for a certain number of epochs. Then, this network becomes
the parent in the first iteration of the hill-climbing algorithm.
At the beginning of each iteration, offspring are produced
by applying one or more function-preserving operations to
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extend the structure of the parent. Next, each offspring is
trained for a certain number of epochs. Due to the network
morphism, training of each offspring is not performed from
scratch, but it begins from a point at which the parent finishes
its training. For example, if the parent finishes training with
70% accuracy, each offspring starts from the point when it
already has 70% accuracy. The training enables to exploit an
increased capacity resulted from introducing extra elements
to the structure.

The following modifications are applied during the search
process:

« inserting a layer [32],

« adding filters to the existing layer [32],

« adding the add merge scheme [53],

« adding the skip merge scheme,

« adding the concatenation merge scheme [53].

For every iteration, the function preserving operations
are sampled by the algorithm. Then it draws the place
where the operation has to be performed e.g. which layer
to expand or where to place the additional layer. At the
end, the final network proposed by the algorithm undergoes
further training.

V. CASE STUDY

We decided to evaluate the neural architecture search algo-
rithm on the task of skin lesion classification. This task
involves distinguishing between benign and malignant skin
lesions.

The classical method of skin cancer detection involves
the examination of a skin lesion by a skilled specialist. The
decision of whether the lesion is benign or malignant is made
based on specific properties of the lesion such as symmetry,
border, color, and differential structures [55], [56]. The main
problem is that the rules how to classify skin lesions are not
precisely defined. This means that the distinction between
benign and malignant lesions is very ambiguous and may
lead to different diagnoses given by different physicians. Such
inconsistency in diagnosis makes the problem of automatic
classification much more difficult than in standard tasks
where people have almost perfect accuracy, for instance when
distinguishing between cars and planes.

In other words, the difficulty of the task comes from
high intra-class variance and high inter-class similarity. That
means the examples from two different classes can be very
similar to each other. Note the similarity between the two
lesions in Fig. 3. These lesions look very similar, but they
represent two different classes — benign (top) and malignant
(bottom). In fact, the benign lesion can attract the attention of
an inexperienced patient, as it meets the rules of a malignant
lesion, such as not sharp and asymmetric border, visible
structures inside the lesion, and inconsistent color.

The publicly available dataset is provided by the Interna-
tional Skin Imaging Collaboration [34]. It consists of high-
quality dermoscopic images collected from clinics across
Europe, Australia and the United States, acquired from
patients of various age and sex. The images are annotated by
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FIGURE 3. Examples of benign (top) and malignant (bottom) lesions.

high-skilled experts into benign and malignant moles. The
dataset consists of about 12500 benign instances and only
1100 malignant instances. This disproportion between the
classes makes proper training of classification systems more
difficult. Moreover, the small number of examples leads to
a smaller validation set and the resulting noisy estimate of
neural network performance.

The abovementioned issues make the present problem dif-
fers from the problems tested on benchmark dataset in which
a large number of equally distributed examples are almost
always provided.

VI. IMPLEMENTATION DETAILS

A. DATA PREPROCESSING

The data preprocessing is performed the same way as in our
previous work [57]. Using the provided masks, the lesions
were extracted from the pictures. In order to improve the
training process, the dataset was normalized to obtain zero
mean and unit variance. The size of the images was changed
to 224 x 224px to fit the input of the neural network.

The standard train-validation-test scheme was applied. The
division was performed randomly. Both the test set and the
validation set contained 200 examples, with 100 examples per
class. The remaining part of the dataset became the training
data. To equalize the number of examples of each class in the
training set, the upsampling was performed.
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The dataset was augmented by numerous modifications,
such as rotation, width and height shift, horizontal and ver-
tical flip, and zooming. The data augmentation was applied
online during the training, before passing the images to the
neural network input.

B. BASELINE

The hand-crafted networks presented in our previous
research [57] were used as a baseline to compare the NAS
method. Although the results described in that paper were
evaluated using 5-fold cross-validation, in this work we
decided to evaluate only one-fold, as the task was to compare
automated against manual architecture design and this com-
parison can be effectively performed on one-fold. Moreover,
5-fold validation leads to a significant increase in the algo-
rithm runtime. We tested 6 manually designed architectures
from the family of VGG networks (VGGS, VGG11, VGG16),
with different regularization methods applied (transfer learn-
ing, dropout, batch normalization). The networks are enu-
merated in Table 1, while their detailed description is
provided in [57].

TABLE 1. Manually designed architectures of networks — The reference
networks for testing the nas algorithm.

Network A B C D E F
Network VGG 8 VGG 11 VGG 16
Tran;fer X
learning
Dropout X X X X
Batch
N X
normalization

C. THE NEURAL ARCHITECTURE SEARCH SYSTEM

The neural architecture search system involves the following
three steps: training of the initial network, the search process,
and training of the generated architecture. All the training
processes are performed using Stochastic Gradient Descent
with Warm Restarts (SGDR) [21]. This method involves cos-
inusoidal decay of the learning rate, and restart after every
chosen number of epochs. The batch size was set to 8 and
remained the same through all steps of the framework.

In order to reduce the computational demands of the algo-
rithm, the advantage was taken of the lower fidelity estimates
based on training on the one-third of the dataset. The initial
network training and the search process were performed on
the fraction of the dataset, whereas the final training was
performed on the full dataset.

1) INITIAL NETWORK

The initial network has a plain, chain-structured feedforward
architecture. That is Input — 5* [Conv128 — MP] - Conv128 —
Sigmoid. The images of size 224 x 224 x 3 are provided
to the input. Conv stands for a convolutional layer, and the
number is the number of filters. Each convolutional layer
is followed by batch normalization [22] and ReLU layers,
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which are omitted here for better readability. Each convolu-
tional layer has a 3 x 3 filter size and stride set to 1. In order
to preserve the size of the output feature maps padding is
applied. The L2 regularization is applied to each layer with
the value of 0.0005. MP stands for MaxPooling layer, with
a 2 x 2 sliding window with stride set to 2. The initial
network was trained with standard binary cross-entropy loss,
for 60 epochs. The learning rate of the SGDR optimizer
decays cosinusoidally from 0.01 to 0, with restarts after every
10 epochs.

2) NAS ALGORITHM

In this study, the word epoch is used to refer to the training
of the neural network, while the word iteration refers to the
iterations in the hill-climbing algorithm.

The architecture exploration starts after the initial network
is trained. The hill-climbing algorithm runs for 15 iterations.
It is a compromise between the quality of network perfor-
mance, the size of the gained network, i.e. the number of its
parameters and the time of algorithm running. More iterations
do not increase the effectiveness of the classification but do
increase the number of network parameters. For example,
10 iterations of the algorithm resulted in 1.489M parame-
ters of the network; 15 iterations —1.932M; 20 iterations
—2.372M and 25 iterations resulted in 5.327M parameters
of the network. At each iteration, five offspring are cre-
ated by applying two random function preserving operations
to the parent structure. Furthermore, the parent structure
passes, without modification, to the next iteration as the sixth
offspring.

Each network preserving operation operates on 3 x 3 filters
and with 0.0005 weight decay applied in the first training.
The Net2WiderNet method doubles the number of filters in
the layer. At every iteration, each organism is trained for
8 epochs, with the SGDR algorithm with the learning rate
decayed from 0.005 to 0. At the end of an iteration, each
offspring is evaluated and the best organism passes to the next
epoch. If there is no improvement in the next iteration the
parent does not change.

3) FINAL TRAINING

The best model from the last iteration of the hill-climbing
algorithm is trained for a longer period of time. The train-
ing is performed for 200 epochs, with the SGDR algorithm
with the learning rate being decayed from 0.005 to O after
every 25 epochs.

VII. EXPERIMENTAL RESULTS

We performed several experiments to show the efficiency of
the proposed approach. All results presented in the tables
were obtained by evaluating the networks on the test set. Our
first attempt was to perform validation accuracy based neural
architecture search. The offspring selected as the parent in the
next iteration was the one with the best accuracy (ACC) score
on the validation set. In order to avoid statistical uncertainty
of the achieved results, the algorithm was run four times and
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TABLE 2. The search based on validation accuracy.

Run ACC AUC Parameters
1 run 72.0 0.792 1527873
2 run 70.0 0.779 2228 609
3 run 72.5 0.805 2083 841
4 run 74.5 0.827 1342593
AVG 72.25 0.801 1795 729

Search by validation loss

0.62 - —— val loss
—— val err

T T T T T T T T
0 2 4 6 8 10 12 14
Epoch

Search by accuracy

—— valloss |
—— val err

@
<
Ic]
>

T T T T T T T T
0 2 1 6 8 10 12 14
Epoch

FIGURE 4. Comparing two search approaches: by validation loss and by
validation accuracy.

then the average values were taken. The results obtained are
presented in Table 2.

During the experiments, we frequently observed the sit-
uation where more than one organism achieved the same
validation accuracy. Moreover, the model that achieved a
much better validation loss (binary crossentropy) often did
not become the parent network, because it achieved worse
validation accuracy score.

Although in many situations model selection is performed
based on the validation accuracy score, it is not a feasible
method in problems where a small validation set is provided.
The accuracy measure is a discrete value that can take on a
finite set of values. The number of elements of the set is equal
to the number of examples in the validation set. Therefore,
a lower number of validation examples may lead to situations
when more than one model achieves the same validation accu-
racy. This, in turn, causes problems with selecting the best
one. For the reasons stated above, we decided to select the
best offspring based on the binary cross-entropy validation
loss. The validation loss is a continuous value. Moreover,
it carries much more information about the network perfor-
mance than the validation accuracy, which only informs on a
fraction of time the classification was correct. The validation
loss takes into account also the certainty of prediction. During
the training and architecture search, if the validation accuracy
saturates, further training and the decrease of validation loss
push the classes apart from each other, which results in
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FIGURE 5. An example of generated network.
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a more confident and reliable classifier [58]. Whereas this
phenomenon is not a serious issue in tasks where big datasets
are provided, it causes a problem when only small datasets
are available. To illustrate the problem, the validation loss-
based search was compared with that based on accuracy. The
progress of these two search processes is shown in Fig. 4.

Note that the search by validation loss leads to a steady
decrease of both the validation loss and the validation error.
Whereas, in the case of search by accuracy, the validation
accuracy decreases while the validation loss grows. Higher
validation loss can lead to less robust classifier and lower
AUC (Area Under Curve) score.

Based on that, we performed the NAS based on the val-
idation loss. This approach leads to higher performance,
as reported in Table 3.

TABLE 3. The search based on validation loss.

Run ACC AUC Parameters

1 run 76.5 0.825 1198 593

2 run 74.0 0.812 1785 601

3 run 77.0 0.823 1054 593

4 run 78.0 0.845 750 849

AVG 76.38 0.826 1197 409
TABLE 4. Summary of the results.

Model ACC AUC Parameters
Network A 70.58 0.803 30 652 545
Network B 74.75 0.827 30 652 545
Network C 75.08 0.841 30 659 587
Network D 69.42 0.780 35971 843
Network E 67.83 0.748 41 456 449
Network F 75.75 0.847 41 456 449

Search based on loss 76.38 0.826 1197 409
Sea;f;if:; on 72.63 0.810 1795 729
Search based on loss - 77.00 0.843 7182916

ensemble of 4 networks

The summarized results of human-designed and auto-
matically designed networks are presented in Table 4. The
architectures generated by the NAS algorithm have similar
performance as those designed manually. Hoverer, the NAS
algorithm generates architectures with significantly fewer
parameters compared with those designed manually. What
is important, the searching process was completed in a very
short time, that on average took around 18 GPU-hours. Short
searching time was achieved as a result of the applied method,
but also due to the low fidelity performance estimation. The
search based on the whole dataset yields the same result as
those performed only on one-third of the dataset. We would
like to emphasize that the average runtime of an algorithm is
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FIGURE 6. An example of generated structure.
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very short compared with the training time of a single neural
network that takes on average a few hours, not including the
time to decide on the network structure. Examples of the
generated architectures are presented in an Appendix.

We also applied the networks ensemble as it is a simple
and cheap method to improve the performance of the classi-
fication algorithm. Since the search process was performed
four times, the networks were already trained. The network
ensemble improved the performance, both in accuracy and
AUC score, achieving 77% accuracy and 0.843 AUC score.
Note, that the sum of parameters of the networks composing
the ensemble is still far less than the number of parameters
designed manually.

VIIl. CONCLUSION

In this paper, we presented the neural architecture search
approach applied to designing a structure that solves the
challenging task of skin lesion classification.

The deployment of the hill-climbing algorithm with func-
tion preserving modifications leads to competitive results.
The network preserving transformations take advantage
of the previously trained networks by reusing the weights
from the previous training, which leads to significant com-
putational cost reduction. Our experiments have shown that
this approach enables producing structures with satisfactory
performance.

We analyzed and showed that for small datasets, searching
the structure with the performance function based on the
validation loss leads to finding the efficient models while the
searching based on validation accuracy worsen the efficiency
of the architecture search process.

The networks generated by the algorithm perform as
well as those designed manually, however, they have about
20 times fewer parameters. The search process is only few
times longer than the training of a single network. However,
note that the time of deployment of an effective architecture
is not limited only to single training but to many pieces of
training during a tedious try and error process.

In order to make use of the networks generated during
experiments, we applied an ensemble of a generated network,
yielding even better classification results.
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