
Image Representation for Cognitive Systems using 
SOEKS and DDNA: A case study for PPE compliance 

Caterine Silva de Oliveira1, Cesar Sanin1 and Edward Szczerbicki2 

1 The University of Newcastle, Newcastle NSW, Australia 
caterine.silvadeoliveira@uon.edu.au, 
cesar.maldonadosanin@newcastle.edu.au

2 Gdansk University of Technology, Gdansk, Poland 
edward.szczerbicki@newcastle.edu.au

Abstract. Cognitive Vision Systems have gained significant interest from aca-
demia and industry during the past few decade, and one of the main reasons be-
hind this is the potential of such technologies to revolutionize human life as they 
intend to work under complex visual scenes, adapting to a comprehensive range 
of unforeseen changes, and exhibiting prospective behavior. The combination of 
these properties aims to mimic the human capabilities and create more intelligent 
and efficient environments. Nevertheless, preserving the environment such as hu-
mans do still remains a challenge in cognitive systems applications due to the 
complexity of such process. Experts believe the starting point towards real cog-
nitive vision systems is to establish a representation which could integrate im-
age/video modularization and virtualization, together with information from 
other sources (wearable sensors, machine signals, context, etc.) and capture its 
knowledge. In this paper we show through a case study how Decisional DNA 
(DDNA), a multi-domain knowledge structure that has the Set of Experience 
Knowledge Structure (SOEKS) as its basis can be utilized as a comprehensive 
embedded knowledge representation in a Cognitive Vision System for Hazard 
Control (CVP-HC). The proposed application aims to ensure that workers remain 
safe and compliant with Health and Safety policy for use of Personal Protective 
Equipment (PPE) and serves as a showcase to demonstrate the representation of 
visual and non-visual content together as an experiential knowledge in one single 
structure.  

Keywords: Cognitive Vision Systems, Knowledge Representation, SOEKS, 
DDNA, PPE compliance, Hazard Control  

1 Introduction 

Cognitive Vision Systems have gained considerable interest from academia and indus-
try during the past few decade, and one of the main reasons behind this is the potential 
of such technologies to revolutionize human life as they intend to work under complex 
visual scenes, adapting to a comprehensive range of unforeseen changes, and exhibiting 
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prospective behavior [1]. The combination of these properties aims to mimic the human 
capabilities and create more intelligent and efficient environments [2].  

Nonetheless, preserving the environment such as humans do still remains a challenge 
in cognitive systems applications due to the complexity of such process. It involves 
understanding the context and gathering visual and other sensorial information availa-
ble and translating it into knowledge to be useful. Moreover, past experiences also plays 
an important role when it comes to perception [3] and must also be considered as an 
important element in this process. Smart cognitive systems that have been proposed so 
far oversight the potential of using these experiences to enrich the application with 
smartness while, at the same time, creating decisional fingerprints. This would allow 
the system knowledge growth through daily operation autonomously, just like human 
experience do in real life [4]. 

Experts believe the starting point towards real cognitive vision systems is to establish 
a representation which could integrate image/video modularization and virtualization, 
together with information from other sources (wearable sensors, machine signals, con-
text, etc.) and capture its knowledge. In this context, Decisional DNA (DDNA), a multi-
domain knowledge structure based on experience, has been extended to the visual do-
main to be used as a comprehensive embedded knowledge representation for Cognitive 
Systems [5]. DDNA has the Set of Experience Knowledge Structure (SOEKS) [6] as 
its basis and allow the creation of a multi-modal space composed of information from 
different sources, such as contextual, visual, auditory etc., in a form of a structure and 
explicit experiential knowledge [7]. 

The applicability of such representation have been tested over a Cognitive Vision 
Platform for Hazard Control (CVP-HC). The CVP-HC is scalable yet adaptable plat-
form capable of working in a variety of video analysis scenarios whilst meeting specific 
safety requirements of industries [8]. This platform aims to assist the safety manage-
ment process in industrial environments, and the special case of PPE compliance is 
presented in this paper.  

This paper is organized as follow: In Section 2, some fundamental concepts are pre-
sented, including the evolution of systems towards augmented cognitive technologies 
and the challenge of representation and management of knowledge in these systems. 
The proposed representation based on SOEKS and DDNA is also explained. In Section 
3 a case study for the case of PPE compliance is presented, including its applicability, 
design and experimental results achieved so far. Finally, in Section 5 conclusions and 
future work is presented. 

2 Fundamental Concepts 

In order to offer a more complete view, we briefly introduce concepts that have driven 
the proposed research as well as the technologies involved. 
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2.1 From Computer Vision to Cognitive Vision Systems 

The use of computer vision techniques can support automatic detection and tracking of 
objects and people with reasonable accuracy [9-13]. Visual sensing facilities, such as 
video cameras can gather a large amount of data, such as video sequences or digitized 
visual information that, with support of machine learning technologies and powerful 
machines, can operate in real time [14].  For those reasons, computer vision systems 
have been a research focus for a long time in surveillance systems, human detection, 
and tracking.  

However, computer vision systems have their own inherent limits, especially those 
whose task is to work in unidentified environments and deal with unknown scenarios 
and specifications. Besides the significant improvements in computer vision technolo-
gies, they are still challenged by issues such as occlusion or position accuracy; and 
background changes result in the necessity of adapting the algorithms for different con-
ditions, clients and situations. To date, the creation of a general-purpose vision system 
with the robustness and resilience comparable to human vision still remains a challenge 
[13]. 

In this context, methods incorporating prior knowledge and context information have 
gained interest. The understanding about scene composition in an image (which set of 
objects are present) can improve recognition performance about the scene where they 
are inserted [15]. For instance, the presence of multiple cutlery items in an image can 
aid the recognition of a kitchen image. This relationship is held both ways, as contextual 
knowledge can also offer insights about the function of an object in a scene, reducing 
the impacts of sensor noise or occlusions [16]. These technologies are known as 
knowledge-based systems. For instance, an automatic semantic and flexible annotation 
service able to work in a variety of video analysis with little modification to the code 
using Set of Experience Knowledge Structure (SOEKS) was proposed in work by Zam-
brano et al. [17]. This system is a pathway towards cognitive vision and it is composed, 
basically, by the combinations of detection algorithms and an experience based approx-
imation.  

The design of a general-purpose vision system with the robustness and resilience of 
the human vision is still a challenge. One of the latest trends in computer vision re-
search to mimic the human-like capabilities is the joining of cognition and computer 
vision into cognitive computer vision. Cognitive Systems have been defined as “a sys-
tem that can modify its behavior on the basis of experience” [18]. Although, most ex-
perts tend to agree that such systems only exists in theory, that is, systems that can 
independently process, reason and create in the same capacity as the human brain has 
not yet been implemented successfully [19]. 

In this scenario, the concept of Augmented Intelligence, also known as Cognitive 
Augmentation or Intelligence Amplification (IA) comes into play [20]. For any specific 
application humans being and machines have both their own strengths and weaknesses. 
Machines are very efficient in numerical computation, information retrieval, statistical 
reasoning, with almost unlimited storage. Machines can capture many categories of 
information from the environment through various sensors, such as range sensors, vis-
ual sensors, vibration sensors, acoustic sensors, and location sensors [21]. On the other 
hand, humans have their own cognitive capabilities which includes consciousness, 
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problem-solving, learning, planning, reasoning, creativity, and perception. These cog-
nitive functions allows humans to learn from last experiences and use this experiential 
knowledge to adapt to new situations and to handle abstract ideas to change their envi-
ronment. Therefore, the combination of both human experiential knowledge and infor-
mation collected by a system can be used to enhance smartness of systems and for im-
proved decision making [22]. Fig. 1 shows the steps towards Augmented Cognitive 
Vision and a synthesis of components involved in each stage. 

 

 
Fig. 1. Steps towards Augmented Cognitive Vision. 

2.2 Knowledge Representation for Cognitive Systems 

The implementation of cognitive vision systems require the design of functionalities 
for knowledge engineering (acquisition and formalism), recognition and categorization, 
reasoning about events for decision making, and goal specification, all of which are 
concerned with the semantics of the relationship between the visual agents and their 
environments i.e. context [23]. These functionalities direct cognitive vision systems 
towards purposeful behavior, adaptability, anticipation, such as human beings.  

In this context, knowledge and leaning are central to cognitive vision. To be readily 
articulated, codified, accessed and shared, knowledge must be represented in an explicit 
and structured way [24]. In addition, the choice of a suitable representation greatly fa-
cilitates obtaining methods that efficiently learn the relevant information available. 
Therefore, an appropriate knowledge representation is crucial for the success in design-
ing of cognitive systems.  

Nevertheless, most approaches that have been proposed on past years, even though 
they present some principles for intelligent cognitive vision, they fail in providing a 
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unique standard that could integrate image/video modularization, its virtualization, and 
capture its knowledge [6].  To address these issues an experience-based technology that 
allows a standardization of image/video and the entities within together with any other 
information as a multi-source knowledge representation (required for the further devel-
opment of cognitive vision) without limiting their operations to a specific domain 
and/or following a vendor’s specification has been proposed [25]. This representation 
supports mechanisms for storing and reusing experience gained during cognitive vision 
decision-making processes through a unique, dynamic, and single structure called De-
cisional DNA (DDNA) [5].  DDNA makes use of Set of Experience (SOE) in an ex-
tended version for the use of storing formal decision events related to image and video.  
DDNA and SOE provide a knowledge structure that has been proven to be multi-do-
main independent [7]. 

Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA). 
The Set of Experience Knowledge Structure (SOEKS) is a knowledge representation 
structure created to acquire and store formal decision events in a structured and explicit 
way. It is composed by four key elements: variables, functions, constraints, and rules. 
Variables are commonly used to represent knowledge in an attribute-value form, fol-
lowing the traditional approach for knowledge representation. Functions, Constraints, 
and Rules of SOEKS are ways of relating variables. Functions define relationships be-
tween a set of input variables and a dependent variable; thus, SOEKS uses functions as 
a way to create links among variables and to build multi-objective goals. Constraints 
are functions that act as a way to limit possibilities, limit the set of possible solutions 
and control the performance of the system in relation to its goals. Lastly, rules are rela-
tionships that operate in the universe of variables and express the condition-conse-
quence connection as “if-then-else” and are used to represent inferences and associate 
actions with the conditions under which they should be implemented [6]. Rules are also 
ways of inputting expert knowledge into the system. The Decisional DNA consists is a 
structure capable of capturing decisional fingerprints of an individual or organization 
and has the SOEKS as its basis. Multiple Sets of Experience can be collected, classified, 
organized and then grouped into decisional chromosomes, which accumulate decisional 
strategies for a specific area of an organization. The set of chromosomes comprise, 
finally, what is called the Decisional DNA (DDNA) of the organization [5]. 

3 Case Study: PPE Safety Compliance 

Hazards are present in all workplaces and can result in serious injuries, short and long-
term illnesses, or death [26]. Reports HSE UK report has shown that over 80% of re-
ported workplace injuries are sustained due to a person not wearing correct protective 
clothing [27]. In this context, the verification of PPE compliance becomes essential in 
the management of safety to ensure the occupational health of workers. Technologies 
to support its practical and automated implementation have emerged as a need, but the 
current technologies available still face considerable limitations [9, 13, 15, 28]. 
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The combination of vision and sensor data together with the resulting necessity for 
explicit and formal representations builds a central element of an autonomous system 
for detection and tracking of laborers in workplaces environments. To be able to per-
form in a variety of plants and scenes, making sure employees remain safe and compli-
ant with Health & Safety policy without the necessity of recoding the application for 
each specific case scenario, the system must be adaptable and perceive the environment 
as automatically as possible and change its behavior accordingly. However, computer 
vision systems have their own inherent limits, especially those whose task is to work in 
unidentified environments and deal with unknown scenarios and specifications [29]. 

The gaps of current systems may be filled by connecting the probabilistic area of 
detection of events with the logical area of formal reasoning in a Cognitive Vision Plat-
form for Hazard Control (CVP-HC) [29]. This platform verifies the PPE compliance in 
variety of video analysis scenarios whilst meeting specific safety requirements of in-
dustries [25]. The proposed system is based on the Set of Experience Knowledge Struc-
ture (SOEKS or SOE in short) and Decisional DNA (DDNA). 

3.1 Applications 

Automated verification of PPE compliance can be useful in a variety of industries (e.g. 
Oil & Gas, Manufacturing & Production, Construction, Engineering, Pharmaceuticals, 
etc.) and applied in a range use case scenarios to ensure employees remain safe [30]. 
Below we exemplify two main applications that the proposed solution can address.                                                                                                                                                                                                                                                          

Access Control. With cameras positioned above an entrance/exit of a site or facility, 
the system is able to visually verify that laborers are wearing the protective equipment 
according to the safety requirements of that industry/area before allowing entry. In case 
of any equipment being missed at the point of entry, then the system will not permit a 
gate to open and will advise which items must be worn in order to enable access. Once 
all the mandatory equipment are detected the access is granted. The visual information 
from the cameras can be combined with other sensor data to give extra information 
about crucial required equipment (e.g. oxygen mask when oxygen level is critically 
low).  
 
Continuous Monitoring. Another solution can address the continuous monitoring of 
works  by the use of cameras and other sensor data covering the site or facility to ensure 
that employees remain wearing the required PPE in a given context. If laborers remove 
a required equipment then the system will recognize this in real-time and carry out an 
action based on a set of given preferences or recommendations. For instance, an alert 
can be sent directly to the employee or manager for correction on site; the event can be 
logged for future reports and analysis, etc. If sensors detect any abnormality, which 
changes the status of the required equipment, workers can also be advised of that for a 
quick action. 
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3.2 Representation of variables, constrains, functions and rules 

For the case study in analysis, a set of variables, functions, constrains and rules are 
represented as a Set of Experience Knowledge Structure (SOEKS). SOEKS allows the 
representation, use, storing and retrieval of visual and non-visual knowledge content 
together in one single standardized structure [25]. 

Variables. The variables in our system are composed by each image/frame being ana-
lyzed, body parts of workers, and annotations of each Personal Protective Equipment 
(PPE). In addition, we include, as part of the set of variables, the calculation of area of 
intercept 𝐴𝐴𝐼𝐼 between the bounding boxes containing a body part and a corresponding 
PPE, as well as the area of each PPE in the scene, which is defined respectively by: 

𝐴𝐴𝐼𝐼 =  
𝒎𝒎𝒎𝒎𝒎𝒎(0,𝒎𝒎𝒎𝒎𝒎𝒎(𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 , 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) −𝒎𝒎𝒎𝒎𝒙𝒙(𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 , 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥)) ∗ 
𝒎𝒎𝒎𝒎𝒎𝒎�0,𝒎𝒎𝒎𝒎𝒎𝒎�𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 , 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦� −𝒎𝒎𝒎𝒎𝒙𝒙�𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 , 𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥��

  (1) 

                       𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 = �(𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) ∗ �𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦��                      (2) 

Finally, the last two variables considered are: the dependent variable resulting from the 
creation of the overlap function 𝑂𝑂𝐼𝐼,𝑝𝑝𝑝𝑝𝑝𝑝 (eq. 3), and the safety status of scene, to be de-
fined by the set of rules. Both variables will explained in the following subsections.  

Functions. As defined before, function establishes relationships among input and de-
pendent variables as a way to find more elements of decision-making that reduce the 
possibility of duality, while facilitating knowledge elicitation [cite Cesar’ Thesis]. In 
our application, for each body part of a person detected there may be a range of com-
patible surrounding PPEs that can be associated with it, including ones belonging to 
other people in the scene. For instance, let’s imagine a scene where two people are 
being detected, one is wearing a respirator and another one is not (the second’s person 
respirator is placed next to them, on the floor). In this case we have four interceptions 
being computed and inputted into the system, producing different states in relation to 
the safety status of the scene. In this case, it is necessary to reduce the possibilities of 
duality in finding an optimal unique set of variables that identifies a unique state while 
reducing ambiguity [cite Cesar’ Thesis]. Therefore, we calculate the overlap between 
the areas of intercept 𝐴𝐴𝐼𝐼 and PPEs 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 as a function, which objective is to maximize 
the area of overlap, associating the PPE to the closest conforming body part.  

The maximum overlap 𝑂𝑂𝐼𝐼,𝑝𝑝𝑝𝑝𝑝𝑝 between intercept and corresponding PPE goes from 
0 (disjoint) to 1 (complete overlap) is calculated as following: 

                                                  𝑂𝑂𝐼𝐼,ppe = �[𝑚𝑚𝑚𝑚𝑚𝑚] 𝐴𝐴𝐼𝐼
𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝

� (3) 

Table 1 shows values of maximum 𝑂𝑂𝐼𝐼,helmet for a sequence of frames and the status of 
wearing/not wearing associated with them.  
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Table 1. Examples of [max] 𝑂𝑂𝐼𝐼,helmet and respective wearing/not wearing status. 

Frame  

     
[𝒎𝒎𝒎𝒎𝒎𝒎]𝑶𝑶𝑰𝑰,𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 0.49 0.44 0.40 0.00 0.00 

Wearing helmet? YES YES YES NO NO 

Constraints. In our analysis, we only consider the 𝑋𝑋𝑋𝑋 plane, i.e. no depth information 
is taking into consideration. When not taking the 𝑍𝑍 plane, protective equipment on the 
background may be wrongly associated with the body parts even being meters distant 
on the depth plane and vice versa. To minimize the set of possible misleading associa-
tions of body parts and PPEs that are distant from each other on the 𝑍𝑍 plane, we create 
a set of constraints. These constraints restrict the possible size of the PPE that can be 
associated with each body part being detected.  

Rules. To ensure flexibility and as well as to attend each specific requirements of dif-
ferent industries and scenarios, a set of rules is created. These rules are also a way of 
allowing expert knowledge to be included in the system reasoning as they can be easily 
changed and adjusted to attend specific requisites and situations. For this analysis in 
specific, the following set of rules are considered: 

 
Rule 1: 
IF 𝑂𝑂𝐼𝐼,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 > threshold 
 THEN safety_status = SAFE 
ELSE safety_status = UNSAFE 
 
Rule 3: 
IF 𝑂𝑂𝐼𝐼,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 > threshold & 
𝑂𝑂𝐼𝐼,ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 > threshold 
 THEN safety_status = SAFE 
ELSE safety_status = UNSAFE 
 
Rule 5: 
IF 𝑂𝑂𝐼𝐼,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 > threshold & 
𝑂𝑂𝐼𝐼,ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 > threshold & 𝑂𝑂𝐼𝐼,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
> threshold  
 THEN safety_status = SAFE 
ELSE safety_status = UNSAFE 
 

Rule 2: 
IF 𝑂𝑂𝐼𝐼,ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 > threshold 
 THEN safety_status = SAFE 
ELSE safety_status = UNSAFE 
 
Rule 4: 
IF 𝑂𝑂𝐼𝐼,ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > threshold & 𝑂𝑂𝐼𝐼,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
> threshold 
 THEN safety_status = SAFE 
ELSE safety_status = UNSAFE 
 
Rule 6: 
IF 𝑂𝑂𝐼𝐼,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  > threshold & 
𝑂𝑂𝐼𝐼,ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 > threshold & 𝑂𝑂𝐼𝐼,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
> threshold  
 THEN safety_status = SAFE 
ELSE safety_status = UNSAFED
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The threshold that defines wearing/not wearing is set to 0.4 for all overlaps in this anal-
ysis but can be modified to better suit each application’s requirement. 
A summary of all variables, functions, constraints and rules considered in this analysis 
is presented in Table 2. 

 
Table 2. Set of variables, functions, constraints and rules considered in analysis. 

Elements Term 

Variable 

Image 

Body Parts: head, forearm, legs, torso etc. 

PPEs: boot, earmuff, respirator, etc. 

Area of intercept 𝐴𝐴𝐼𝐼 between body part and PPE 

 Area of PPE 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 

𝑂𝑂𝐼𝐼,𝑝𝑝𝑝𝑝𝑝𝑝 

safety_satatus of the scene 

Function Maximum overlap 𝑂𝑂𝐼𝐼,𝑝𝑝𝑝𝑝𝑝𝑝 

Constraint Size of PPEs relative to body part 

Rule Set of Rules  (1, 2, 3, 4, 5 and 6) 

3.3 Experimental Results 

The system has been tested over collection of frames (representing different industrial 
settings) of successful detections of body parts and PPEs. Only successful detections of 
PPEs are considered, as the goal at this stage is to evaluate the reasoning only. These 
images have been tested for two different set of rules, totalizing 150 observations.  

Table 3 shows examples of the outputs representing the safety status of the frame in 
analysis for the given rule. Body parts are represented on blue rectangles and PPEs as 
green rectangles on the input frames. 
 

Table 3. Output of system for each given set of rules. 
  Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 

Frame 
      

Required 
equipment 

Respirator Helmet Respirator 
and Helmet 

High Visibil-
ity Clothes 
and Boots 

Respirator, 
Helmet and 

Googles 

Harness, 
Helmet and 

Gloves 

Output SAFE UNSAFE UNSAFE SAFE UNSAFE SAFE 
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The outputs were manually verified to check the suitability of such approach. It has 
been measured the number of True Positive (TP), which is the number of frames tagged 
correctly as UNSAFE; True Negative (TN), the number of frames marked appropriately 
as SAFE; False Positive (FP), which is amount of frames that should have been identi-
fied as SAFE by the system but wrongly outputted the status as UNSAFE; and finally 
False Negative (FN), the number of frames the system tagged as UNSAFE mistakenly.  
The sensitivity and specificity rates also known by True Positive Rate (TPr) and True 
Negative Rate (TNr) respectively, have also been calculated [31]. Table 4 shows the 
results for evaluation of performance. 
 

Table 4. Evaluation of performance. 
Parameter TP TN FP FN TPr TNr Accuracy 

Value 97 50 2 1 98.98% 96.15% 98.00% 

 
Given a set of successful detections, the methodology works effectively in recognising 
the safety status of the scene. For real time applications, the wrong status of safety may 
happen due to wrong status of each variable inputted into the system reasoning (e.g. 
wrong detections of body parts and PPEs) or mistakes in the interpretation of these 
variables during the reasoning process. One of the advantages of explicit representation 
of knowledge is the possibility to evaluate the causes of unreasonable outputs by check-
ing the status of each variable involved. This way, if the issues are found to be related 
to the status of the variables, calibration the classifiers can be done as well as adjust on 
the data gathering process that could lead to such mislead. In addition, if the status of 
variables are found to be accurate, correction to reasoning can be made by adding a 
new set of constrains, functions or rules that adjust the output to the correct value for 
future observations. 

4 Conclusions 

In this paper we have shown through a case study how Decisional DNA (DDNA), a 
multi-domain knowledge structure that has the Set of Experience Knowledge Structure 
(SOEKS) as its basis can be utilized as a comprehensive embedded knowledge repre-
sentation in a Cognitive Vision System for Hazard Control (CVP-HC). The proposed 
application aims to ensure that workers remain safe and compliant with Health and 
Safety policy for use of Personal Protective Equipment (PPE) and serves as a showcase 
to demonstrate the representation of visual and non-visual content together as an expe-
riential knowledge in one single structure. At this point the implementation is working 
in offline mode, i.e. the application has been tested over images coming from a data-
base. For next steps, more complex scenarios will be explored for the creation of more 
complexes set of rules and analyses of the results presented for online operation of the 
system in which the input images and context variables are gathered from video cam-
eras and sensors in real time.  
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