DOI: 10.17423/afx.2020.62.1.08 # THE EFFECT OF LOG SORTING STRATEGY ON THE FORECASTED LUMBER VALUE AFTER SAWING PINE WOOD Piotr Taube – Kazimierz A. Orłowski – Daniel Chuchała – Jakub Sandak ## **ABSTRACT** The optimal transformation path for the resource is determined by the quality of a log combined with its dimension. The commercial value of derived products is also closely connected with the size and extent of containing wood deficiencies. The results of studies with three diverse strategies for log sorting are presented in the paper. Resource assessment by a worker without extensive experience in sorting logs, the certified grading expert, and the automatic in-line system including optical scanner with dedicated software are compared. It was shown that the lack of experience of the person performing the sorting operation results in reducing the potential economic profits of a sawmill. On the contrary, the overall efficiency of the log conversion process is considerably improved by the automated sorting systems with scanners. Early identification of logs optimal for specific lumber production is assured by reducing the human errors and subjective evaluation. Both, the yield of produced timber and profits of the sawmill are directly affected this way. It was demonstrated that the log sorting rate performed by the scanner is four times higher in comparison to grading by the certified expert, as well as three times higher compared to employee with no experience. The finding that the volume of high-quality lumber of elevated value is the lowest in the case the log is sorted by a human was proved. **Key words:** pine, log sorting method, log quality, shape scanner, sawmill. ## INTRODUCTION A rise in demand for sawn timber in Poland has been noticed recently as a boost use of construction timber and expansion in the furniture manufacturing. Unfortunately, an increase in demand is not combined with the sufficient increase in log supply. High quality timber is used not only for high-value furniture and single-family houses but also for multistory buildings, including both rafter framing (traditional and prefabricated) and cross-laminated timber structures (GOTYCH *et al.* 2009, KRZOSEK 2011). The shortage of supply and refined technical requirements for the construction material determine need for rationalization of the log use and consequent optimization of supply chains. The quality sorting is relatively well developed routine for the output stream of the sawmill production, including grading diverse assortments of sawn timber. The visual assessment is still most widely implemented sorting method, especially in a small and medium size sawmills (WIERUSZEWSKI *et al.* 2019). However, fully automatic quality sorting systems become standard in high throughput mills due to limitations of the human-based assessment (SANDAK 2009). The quality aspects evaluated in such automatic systems include diverse material properties, such as dimensions, grain/fibre direction, mechanical properties, presence of wood defects, colour pattern density among the others. Specific technical solutions differs between scanner and include mechanical testing (KRZOSEK 2011), stress wave velocity/attenuation, as well as radiometric absorbance/reflectance/transmittance in different ranges of electromagnetic spectrum among the others (KROHN and PALM 1981, KOLB and GRUBER 1981, GÖRGÜN and DÜNDAR 2018, SANDAK and SANDAK 2017). Even if sorting of timber is essential for assuring expected product quality and maximizing profits, the overall efficiency of the sawmill production can be substantially improved by appropriate sorting of logs and following optimization of the sawing pattern. The basic approach for quantifying log quality is a manual method described in standards, such as PN-92/D-95017 or EN1927-2:2008. In this case, an expert person performs set of manual measurements of the log geometry and identify presence of selected wood deficiencies noticeable on the log surface. It is clear that the correctness and repeatability of the grading decision, as well as time necessary for scrutinizing assessment will depend on the level of the operator training and his overall experience. In any case, the full objectivity and repeatability may not be guaranteed. As a consequence, the costs associated to the quality sorting at the log yard are considered as high (HAN-SUP *et al.* 2011). Alternative solutions for more efficient sorting were proposed to measure simultaneously lot of logs arranged in stacks (GEJDOS *et al.* 2019, GUTZEIT and VASKAMP 2012). Free vibrations, stress wave velocity or acoustic analysis (TSEHAYE *et al.* 2000) in combination with machine vision (GEJDOS *et al.* 2019, GUTZEIT and VASKAMP 2012) were identified as most suitable. The highest economic gain and optimal use of raw resources along the supply chain requires decision regarding the resource quality and usage suitability as early as possible. For that reason, some prototype solutions for quality grading aligned with the tree felling by the processor directly at the forest stand were proposed (SANDAK et al. 2019). However, till now the automated log sorting methods implemented in the sawmill yard are considered as more practical solution. In majority of state-of-the-art systems dedicated scanners allow measurement of the log dimensions, shape variation and consequently to determine the quality quantifier. This kind of scanning is carried out during the separation of incoming logs (sorting according to dimensional/quality class) or before sawing operation to optimize the sawing pattern. Set of laser triangulation sensors scanning the log from different directions are usually used for raw data acquisition. A great advantage of this approach is minimal requirement regarding the yard area for storing logs as well as capacity for sorting high number of logs with feed speeds up to 200 m·min⁻¹ (SIEKIAŃSKI et al. 2019). The trend of further upgrade of the log scanners by integrating additional to triangulation measurements is noticeable these days. Machine vision systems working in visible or infrared ranges, light scatter detectors, ultrasonic or microwave scanning modules are combined allowing multi-sensor evaluation and consequently more effective detection of wood defects and/or quality sorting. The latest technological developments provide a possibility to visualize defects in the log interior (such as knots or cracks) that are not visible on the log surface. In that case affordable X-ray radiography module is integrated with industrial scanners (FREDRIKSSON et al. 2014). The number of modules may vary from one to a few, resulting in better representation of the raw resource. The X-ray scanning of logs may be extended to the fully functional Computed Tomography (CT) scanners that are capable to real-time measure, grade or optimize logs at full industrial speeds (RAIS et al. 2017). The combination of diverse sensing techniques leads to improvement of the produced timber quality. RIDOUTT et al. (1999) reported that proper sorting of logs have an impact on the strength of the lumber produced. The goal of this study was to quantify an effect of the log sorting strategy on the estimated yields and economic gain for the lumber obtained after sawing process in a real case of the middle-sized sawmill. The critical comparison of three alternative sorting schemes was performed with a special emphasis on the variety of constrains common in the industrial environments. #### MATERIALS AND METHODS ## **Materials** Scotch pine (*Pinus sylvestris* L.) logs harvested in the Błędno Forestry, Lubichowo District in the Pomeranian Region in Poland were used as experimental samples. The sample lot corresponded to a typical single transport delivered by logistic operator to the premises of the Sylva sawmill. The wood was ordered from the forest as a large-size logs with dimensions in accordance to PN-92/D-95017 standard, assuming log length $L_w = 4$ m and a minimum available diameter of the top end without bark $d_{top} = 14$ cm. The total number of logs in the delivery lot was $N_t = 143$, however, subset $N_a = 60$ of logs was randomly selected for the sorting simulation. Each chosen log was marked with a unique number to assure proper tracking and further comparison of results (Figure 1). Microsoft Office Excel 2007 was used for randomized selection of logs. Table 1 presents a list of logs used for experimentation. Fig. 1 Marked Scotch pine logs ready for sorting operation. Tab. 1 Identifiers of randomly selected logs used for sorting simulation. | log nu | log number (d_{top} - measured with an optical scanner) | | | | | | | | | | | | | | |--------|------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------| | 1 | 3 | 13 | 14 | 16 | 17 | 19 | 20 | 21 | 22 | 25 | 28 | 29 | 30 | 35 | | (27) | (26) | (23) | (26) | (22) | (25) | (25) | (33) | (26) | (23) | (31) | (26) | (25) | (23) | (25) | | 38 | 39 | 41 | 43 | 46 | 47 | 51 | 53 | 54 | 55 | 59 | 63 | 64 | 65 | 68 | | (29) | (32) | (23) | (29) | (29) | (22) | (26) | (28) | (26) | (26) | (26) | (26) | (27) | (22) | (23) | | 69 | 72 | 77 | 78 | 79 | 81 | 84 | 85 | 87 | 89 | 90 | 92 | 93 | 95 | 98 | | (25) | (22) | (24) | (23) | (24) | (23) | (22) | (23) | (27) | (29) | (27) | (27) | (22) | (29) | (27) | | 99 | 101 | 103 | 105 | 111 | 112 | 114 | 115 | 117 | 119 | 124 | 135 | 137 | 139 | 140 | | (23) | (26) | (22) | (27) | (31) | (24) | (24) | (23) | (30) | (28) | (23) | (22) | (24) | (27) | (25) | ## **Strategies for log sorting** The lot of experimental logs was subjected to dimensional and qualitative assessment implementing four sorting strategies. ## Forester in the forest The first quality assessment was performed by the certified forest worker who sorted logs to quality classes in accordance with the PN–92/D–95017 and PN–D–95000:2002 standards. The assessment was performed before transporting logs to the sawmill and was a basis for the estimation of the market values of logs. The set of information recorded in the transport documentation included: wood species (Scotch pine), log length (large-size logs with $L_{\rm w}=4$ m) and minimum quality class of log within the lot (class C). The summary of such characteristics as extracted from the formal documentation is presented in Table 2. Unfortunately, due to the lack of tracing procedure for identification of a single log, it was impossible to link this information with a specific logs. Consequently, the formal trade documentation had only limited value for the sawmill sorting operations as the whole procedure must be repeated on-site. In addition, a common practice of the sawmill is to perform debarking operation before sorting and storing logs. The result of debarking is a clean log that allows more precise dimension measurements and better sight to wood defects present on its surface. Tab. 2 The set of information available to extract from the forest logistics documentation when lot of logs reaches sawmill destination. | Symbol of logs | Quality | Length. Lw | Diameter. d_{top} | Quantity | Volume. V _{wood} | |----------------|---------|------------|----------------------------|----------|---------------------------| | | class | (m) | (cm) | (pieces) | (m^3) | | SO - W | A | 4.0 | 31 | 2 | 0.66 | | SO - W | A | 4.0 | 32 | 1 | 0.35 | | SO - W | A | 4.0 | 34 | 1 | 0.39 | | SO - W | В | 4.0 | 23 | 8 | 1.52 | | SO - W | В | 4.0 | 24 | 5 | 1.00 | | SO - W | В | 4.0 | 25 | 7 | 1.54 | | SO - W | В | 4.0 | 26 | 5 | 1.20 | | SO - W | В | 4.0 | 27 | 6 | 1.50 | | SO - W | В | 4.0 | 28 | 3 | 0.81 | | SO - W | В | 4.0 | 29 | 1 | 0.29 | | SO - W | В | 4.0 | 31 | 1 | 0.33 | | SO - W | В | 4.0 | 33 | 1 | 0.37 | | SO - W | С | 4.0 | 20 | 2 | 0.28 | | SO - W | С | 4.0 | 21 | 9 | 1.44 | | SO - W | С | 4.0 | 22 | 21 | 3.57 | | SO - W | С | 4.0 | 23 | 24 | 4.56 | | SO - W | С | 4.0 | 24 | 12 | 2.40 | | SO - W | С | 4.0 | 25 | 10 | 2.20 | | SO - W | С | 4.0 | 26 | 6 | 240 | | SO - W | С | 4.0 | 27 | 6 | 1.50 | | SO - W | С | 4.0 | 28 | 2 | 0.54 | | SO - W | С | 4.0 | 29 | 3 | 0.87 | | SO - W | С | 4.0 | 31 | 1 | 0.33 | | Sum total | | | | 141 | 30.05 | ## *Unexperienced* person The set of experimental logs after debarking process was spread out on the storage yard (Figure 2) to allow easy access to each log for taking required measurements. The following assessment was performed by the team of two sawmill workers who were not specifically trained for the quality sorting of logs. Both operators were instructed to perform simple measurements of log dimensions by using standard tools (measuring tape and ruler), including small-end diameter of $\log d_{\rm top}$ and its length $L_{\rm w}$. The unexperienced employees did not take into account a taper of the logs. In addition, the bulk volume of each log V_{wood} was calculated following equation 1 adopted for determining the volume of a simple cylinder. $$V_{wood} = \frac{\pi \cdot d_{top}^2}{40000} \cdot L_w \tag{1}$$ The unexperienced workers did not sort logs into specific quality classes and therefore the whole lot was assumed to be of same but unknown quality. As a rule, all these logs were destinated for the follow-up sawing operation as a diameter-based sorts where the optimal sawing pattern is defined to maximize the volume of generated products without wood quality consideration. Fig. 2 Experimental logs ready for manual grading after debarking and spacing on the storage yard. # Certified grading expert The second mode of sorting was conducted by the certificated grading expert. This experienced employee measured and classified quality of selected logs following rules defined in PN-92/D-95017 and PN-D-95000:2002 standards. The volume of log was estimated with the use of formal tables included in GM-900-7/2013 (Ordinance of General Director of State Forests in Poland no 74) and calculated according to equation 2, considering the log as a bevelled cone with a taper z. $$V_{wood} = \frac{\pi}{40000} \cdot (d_{top} + z \cdot \frac{L_w}{2})^2 \cdot L_w$$ (2) ## In-line automatic scanning system The scanner JORO-3D-800 produced by Jörg Elektronik GmbH (Oberstaufen, Germany) was used for automatic sorting of experimental logs following the manual quality assessment procedures. It is equipped with three sets of triangulation sensors combined with video cameras. Those are arranged all around the measured log passing through the scanner on the conveyer. The system allows continuous and complete characterization of each log, providing reliable and repeatable sorting decisions derived on the basis of objectively measured log properties. The continuous and high resolution recording of the log surface features allows extraction of several relevant characteristics, such as: diameter, length, ovality, taper, curvature, as well as cross-section's flatness of log ends (Figure 3). The software expert system of the scanner determines the quality class on the basis of all available information collected from each log separately (Web Source 1). However, the grading decision derived by scanner is considered as only a suggestion that has to be confirmed or adjusted by the scanner operator. He was a highly skilled worker supervising the whole sorting line. The operation is able to observe the log appearance before decision. All the data collected from scanning experimental logs were recorded and stored on the computer hard disk for further analysis. Fig. 3 The in-line automatic scanning system for logs: laser line illuminating the log during scanning (a) and software for controlling, visualization and sorting (b) (Web Source 1). ## **Optimization of the log sawing pattern** The optimal pattern for sawing logs is critical to assure the best value of produced assortments as well as the highest production volume. Optiscie 2.0 (Etablissements Mauchamp SAS, Quetigny, France) software package was used to determine best sawing strategy for each sorted log. Two product lines are in the portfolio of the sawmill, where timber elements of highest (A) quality are sawn to the thickness of 27 mm, while moderate quality (class B and C) to the thickness of 52 mm. The kerf width of circular saw S_t used in analysis was 4 mm. Various sawing scenarios were generated assuming dimensional class graduation of the small-end diameter of log d_{top} every 2 cm and the maximum $d_{top} = 28$ cm. An example of two alternative sawing patterns for logs of diameter class 20.0–21.5 cm for different quality assortments are presented in Figure 4. The width of each board matched the allowed dimension matrices defined by production engineers of the Sylva sawmill. Fig. 4 Examples of alternative sawing patterns used for processing logs of varying quality but corresponding top diameter (range from 20 to 21.5 cm). ## RESULTS AND DISCUSSION Comparison of the cumulative volume V_{logs} of sorted pine logs estimated after implementing three diverse sorting scenarios is shown in Figure 5. It is evident that the volume of logs measured by the grading expert corresponds to that estimated by the optical scanner. The result of the cumulative volume obtained from the measurements performed by an unexperienced employee was clearly differencing from other approaches. This is related to the taper of logs neglected when calculating volume (equation 1). The summary of all log characteristics as measured by both workers, not skilled and expert, is reported in Table 3. The sorting time is an important issue increasing overall operational costs of the sawmill. The result of this research indicates that it varied considerably in each studied scenario. The optical scanner realizes sorting process with conveyor feed speed of 100 m·min⁻¹. The unit sorting time $t_{\rm u}$ for logs of length $L_{\rm w} = 4$ m, and with a standard distance between logs on the conveyor 2 m, corresponds to $t_u = 3.6$ seconds per single log. The sawmill worker's time necessary for the loading of the sorting line with logs from the entrance pile as well as unloading of sorted logs from the collection boxes should be taken into consideration when estimate the total cost of the sorting operation. This is defined as preparatory and finishing time $t_{\rm pf}$ that in the case of present study was estimated at 15 minutes (0.25 hour) for the lot of 60 logs (FELD 2003). The time $t_{\rm pf}$ increases even more to 30 minutes (0.50 hour) for manual sorting operations due to the necessity of spreading logs over the wide area before sorting and following collection along with separations of graded logs. It was noticed that the average time for quality sorting of a single log by the grading expert varied between 30 to 60 seconds, depending on the extent of wood defects and overall log quality. Therefore, an average value $(t_u = 45.0 \text{ seconds})$ was adopted for the following calculations. The worker without experience required approximately 15.0 seconds for each log to properly measure its dimensions. It is possible to express the sorting efficiency as a log sorting rate (LSR) indicator, computed as a ratio of the sorted logs volume and cumulative time necessary for this operation (equation 3). The resulting LRS for three tested sorting scenarios are shown in Figure 6. $$LSR = \frac{V_{logs}}{t_{pf} + (N_a \cdot t_u)} \tag{3}$$ Fig. 5 The estimated total volume of sorted pine logs assessed with three sorting scenarios. Despite the fact that the certified grading expert measures logs dimensions and determines their volume with similar accuracy as the optical scanner, the automatic system realizes the sorting process four times faster. Tab. 3 Technical characteristics of pine logs assessed during sorting with three alternative scenarios. | | unexperie | nced worker | | grading ex | rpert | | in-line sca | nner | | |------------|------------|-------------|----------------|------------|----------|------------------------|-------------|----------|----------------| | Number | Length | Top | Volume | Length | Тор | Volume | Length | Top | Volume | | of wood | of log | diameter | of log | of log | diameter | of log | of log | diameter | of log | | log | (cm) | of log | (m^3) | (cm) | of log | (m^3) | (cm) | of log | (m^3) | | | , , | (cm) | | ` ′ | (cm) | | | (cm) | , , | | 1 | 410 | 26 | 0.218 | 410 | 25 | 0.225 | 411 | 27 | 0.212 | | 13 | 409
409 | 24 23.5 | 0.185
0.177 | 409
409 | 24 | 0.208
0.192 | 408
408 | 26
23 | 0.229
0.181 | | 14 | 411 | 25.5 | 0.177 | 410 | 25 | 0.192 | 408 | 26 | 0.181 | | 16 | 410 | 22.5 | 0.202 | 410 | 22 | 0.223 | 409 | 22 | 0.229 | | 17 | 412 | 24 | 0.186 | 409 | 24 | 0.208 | 412 | 25 | 0.212 | | 19 | 411 | 25 | 0.202 | 410 | 24 | 0.208 | 409 | 25 | 0.212 | | 20 | 412 | 32 | 0.331 | 411 | 32 | 0.361 | 412 | 33 | 0.342 | | 21 | 410 | 25 | 0.201 | 409 | 24 | 0.208 | 409 | 26 | 0.212 | | 22 | 415 | 24 | 0.188 | 415 | 23 | 0.195 | 413 | 23 | 0.196 | | 25 | 409 | 31 | 0.309 | 407 | 31 | 0.336 | 407 | 31 | 0.322 | | 28 | 410 | 27.5 | 0.244 | 409 | 27 | 0.260 | 409 | 26 | 0.229 | | 30 | 410
410 | 24.5 | 0.193
0.142 | 409
407 | 24 | 0.208
0.147 | 409
406 | 25
23 | 0.196
0.181 | | 35 | 410 | 26 | 0.142 | 412 | 25 | 0.147 | 411 | 25 | 0.181 | | 38 | 410 | 28 | 0.219 | 410 | 27 | 0.220 | 410 | 29 | 0.240 | | 39 | 409 | 30 | 0.289 | 409 | 29 | 0.297 | 408 | 32 | 0.342 | | 41 | 410 | 22 | 0.156 | 410 | 22 | 0.177 | 409 | 23 | 0.166 | | 43 | 410 | 29 | 0.271 | 409 | 29 | 0.297 | 409 | 29 | 0.302 | | 46 | 414 | 28.5 | 0.264 | 413 | 27 | 0.262 | 413 | 29 | 0.283 | | 47 | 412 | 22 | 0.157 | 411 | 22 | 0.177 | 411 | 22 | 0.166 | | 51 | 413 | 25.5 | 0.211 | 413 | 25 | 0.227 | 414 | 26 | 0.235 | | 53 | 411 | 28 | 0.253 | 410 | 28 | 0.279 | 410 | 28 | 0.264 | | 54
55 | 411 | 26.5
26 | 0.227
0.218 | 411 410 | 25
25 | 0.226
0.225 | 410
411 | 26
26 | 0.229
0.229 | | 59 | 410 | 26 | 0.218 | 410 | 25 | 0.225 | 411 | 26 | 0.229 | | 63 | 411 | 26.5 | 0.219 | 410 | 26 | 0.242 | 407 | 26 | 0.229 | | 64 | 408 | 26 | 0.217 | 409 | 26 | 0.242 | 407 | 27 | 0.264 | | 65 | 410 | 22.5 | 0.163 | 411 | 21 | 0.163 | 409 | 22 | 0.166 | | 68 | 408 | 23 | 0.170 | 410 | 22 | 0.177 | 410 | 23 | 0.181 | | 69 | 412 | 25 | 0.202 | 411 | 25 | 0.226 | 411 | 25 | 0.229 | | 72 | 408 | 22 | 0.155 | 407 | 22 | 0.175 | 405 | 22 | 0.181 | | 77 | 411 | 24.5 | 0.194 | 410 | 24 | 0.208 | 410 | 24 | 0.212 | | 78
79 | 411 | 23 24 | 0.171 | 410 | 23
23 | 0.192
0.192 | 410
409 | 23 24 | 0.181 | | 81 | 412 | 24 | 0.186
0.186 | 410 | 23 | 0.192 | 410 | 23 | 0.181
0.196 | | 84 | 412 | 22 | 0.157 | 410 | 21 | 0.209 | 410 | 22 | 0.196 | | 85 | 411 | 22 | 0.156 | 411 | 22 | 0.177 | 410 | 23 | 0.181 | | 87 | 409 | 27 | 0.234 | 409 | 27 | 0.260 | 408 | 27 | 0.264 | | 89 | 409 | 29 | 0.270 | 409 | 27 | 0.260 | 409 | 29 | 0.283 | | 90 | 408 | 27 | 0.234 | 409 | 26 | 0.242 | 409 | 27 | 0.264 | | 92 | 409 | 26 | 0.217 | 408 | 25 | 0.224 | 409 | 27 | 0.246 | | 93 | 409 | 23 | 0.170 | 408 | 22 | 0.176 | 408 | 22 | 0.196 | | 95
98 | 408
409 | 29
27 | 0.269
0.234 | 407
408 | 28 | 0.277
0.259 | 407 | 29
27 | 0.264
0.246 | | 99 | 411 | 23.5 | 0.234 | 408 | 23 | 0.239 | 410 | 23 | 0.246 | | 101 | 412 | 26 | 0.219 | 412 | 25 | 0.172 | 411 | 26 | 0.229 | | 103 | 412 | 21.5 | 0.150 | 411 | 22 | 0.177 | 411 | 22 | 0.181 | | 105 | 410 | 26 | 0.218 | 410 | 26 | 0.242 | 410 | 27 | 0.229 | | 111 | 409 | 32 | 0.329 | 409 | 31 | 0.338 | 408 | 31 | 0.322 | | 112 | 410 | 25 | 0.201 | 409 | 24 | 0.208 | 409 | 24 | 0.212 | | 114 | 413 | 23 | 0.172 | 411 | 23 | 0.193 | 411 | 24 | 0.181 | | 115 | 411 | 22 | 0.156 | 410 | 22 | 0.177 | 409 | 23 | 0.181 | | 117 | 411 | 29
32 | 0.271 | 410 | 29
27 | 0.298 | 410 | 30
28 | 0.283 | | 119
124 | 411
409 | 24 | 0.331
0.185 | 410 | 21 | 0.260
0.162 | 410
408 | 28 | 0.246
0.166 | | 135 | 412 | 22 | 0.163 | 412 | 22 | 0.102 | 411 | 22 | 0.166 | | 137 | 410 | 23 | 0.170 | 409 | 23 | 0.192 | 408 | 24 | 0.196 | | | | 26 | 0.219 | 412 | 25 | 0.226 | 409 | 27 | 0.229 | | 139 | 412 | 20 | 0.217 | | | | | | | | 139
140 | 412 | 26 | 0.219 | 410 | 26 | 0.242
13.410 | 412 | 25 | 0.212 | Fig. 6 Log sorting rate LSR of pine logs assessed with three sorting scenarios. The optimal sawing patterns for each log quality-dimension combination as determined for logs with diameter d_{top} in the range from 20.0 to 29.5 cm are summarized in Table 4. The upper part of the table includes recommended boards distribution for the best quality logs (class A), while bottom part to moderate quality logs (class B and C). The list of cross sections for sawn boards corresponds to those in the Sylva sawmill portfolio frequently used in down-stream production or direct sells to clients. Tab. 4 Optimized sawing patterns for pine logs in relation to the log diameter and its quality class. | cross section | number of boards at the log cross section | | | | | | | | | |---------------|---|--------------------------------|--------------------------------|--|--------------------------------|--|--|--|--| | of board | quality class A | | | | | | | | | | (mm × mm) | $20.0 < d_{\text{top}} < 21.5$ | $22.0 < d_{\text{top}} < 23.5$ | $24.0 < d_{\text{top}} < 25.5$ | 26.0 <dtop<27.5< td=""><td colspan="2">$28.0 < d_{\text{top}} < 29.5$</td></dtop<27.5<> | $28.0 < d_{\text{top}} < 29.5$ | | | | | | 27 × 78 | 2 | - | - | - | 2 | | | | | | 27 × 105 | - | - | 2 | - | - | | | | | | 27 × 131 | - | 2 | - | 2 | = | | | | | | 27 × 157 | 2 | - | = | = | = | | | | | | 27 × 178 | - | 2 | 2 | - | 2 | | | | | | 27 × 190 | 2 | - | - | - | - | | | | | | 27 × 205 | - | - | - | 2 | - | | | | | | 27 × 210 | - | 2 | - | - | - | | | | | | 27 × 215 | - | - | 3 | - | - | | | | | | 27 × 240 | - | - | - | 3 | 2 | | | | | | 27 × 260 | - | - | - | - | 3 | | | | | | | quality class B and | d <i>C</i> | | | | | | | | | 52 × 103 | - | - | 2 | - | - | | | | | | 52 × 110 | 2 | - | - | - | - | | | | | | 52 × 140 | - | 2 | - | 2 | - | | | | | | 52 × 178 | - | - | - | - | 2 | | | | | | 52 × 190 | 1 | - | - | - | - | | | | | | 52 × 215 | - | 1 | 2 | = | = | | | | | | 52 × 235 | = | - | = | 2 | = | | | | | | 52 × 260 | - | - | - | - | 2 | | | | | Even if the volume of logs estimated by the grading expert and in-line scanner are similar, the differences due to assigned quality class are noticeable (Table 5). The expert identified only 2 logs as fulfilling requirements for assignment to the superior quality class A. Conversely, in-line scanner graded 51 logs as belonging to the quality class A, though none to class C. The discrepancy is related to different grading rules used for the sorting decision. These codified by standards are more rigorous than the expert system rules implemented in the optical scanner. Another source of divergence is inability for detailed identification of knots by the scanner, combined with subjective evaluation of the scanner operator that have very limited time to rectify suggestion of the automatic grading system. Presence and excessive size of knots was the most frequent criteria that forced the expert to downgrade the log quality class. Tab. 5 Quality classes of graded logs and forecasted total volume of produced timber. | | number of assigned logs | | | |-------|--|----------------|-----------------| | | (pcs) | | | | | unexperienced worker | grading expert | in-line scanner | | A | 0 | 2 | 51 | | В | 0 | 19 | 9 | | C | 60 | 39 | 0 | | | total volume of timber with specified thickness (m³) | | | | | unexperienced worker | grading expert | in-line scanner | | 27 mm | 0.000 | 0.392 | 7.855 | | 52 mm | 8.572 | 7.756 | 1.177 | | Σ | 8.572 | 8.148 | 9.032 | Both, the number of logs as well as the total volume of timber forecasted to be produced from logs sorted according to three studied scenarios differed noticeably (Table 5). The lack of quality information assessed by the unexperienced worker results in downgrading of all logs to the quality class C. As a consequence, all these logs should be processed in the sawmill to thick (52 mm) boards considering only the small-end diameter of $\log d_{top}$ as a criteria for the selection of optimal sawing pattern. Even that, the total volume of the produced timber was higher than of elements sawed according to sorting decisions provided by the grading expert. It was an unexpected result, as according to the adopted sawmill procedures, both quality class B and C are considered as an equivalent resource and follow the same transformation path. Therefore, 58 (of 60) logs defined by the grading expert as not superior class A should be processed same way as logs assessed by unexperienced worker. The observed discrepancy in the total volume may be therefore caused by the measurement faults introduced by the unexperienced worker. The erroneous measurement of the log's small diameter substantially affects the selection of the sawing pattern and consequently total volume of derived timber. Quality sorting of studied logs by the in-line scanner resulted in a high number of logs considered as superior quality. As a consequence, these were processed as more valuable timber components of the smaller board thickness (27 mm). It resulted in the overall yield increase of ~0.9 m³, compare to yield obtained from logs sorted by the grading expert. This difference was caused by a higher recovery of timber products of smaller thickness. The waste area, corresponding to material losses, is considerably smaller in case of sawing 27 mm thick boards than that of 52mm, as can be noticed in Figure 4. Another advantage of thinner boards is a higher variety of allowed board widths accepted by the sawmill managers for sawing. It was doubled compare to boards of 52 mm thickness (Table 4). It permits even better optimization of the sawing pattern and further reduction of the wasted wood, despite greater losses on kerfs of saw blades. The material yield recovered from logs after sawing process is an important quantifier of the production efficiency. However, it is the monetary value that determines economic sustainability of the sawmill. Tab. 6 Quality class, expected timber volume and its value simulated for all experimental logs and three alternative sorting scenarios. | | unexperienced worker | | | grading expert | | | in-line scanner | | | |-------------|----------------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|-----------------| | , | | expected | expected | | expected | expected | | expected | expected | | numbe | quality | lumber | lumber | quality | lumber | lumber | quality | lumber | lumber | | r of log | class of | volume | value | class of | volume | value | class of | volume | value | | | log | (m^3) | (PLN) | log | (m^3) | (PLN) | log | (m^3) | (PLN) | | 1 | С | 0.160 | 85.71 | С | 0.136 | 72.68 | A | 0.154 | 99.32 | | 3 | С | 0.135 | 72.50 | С | 0.135 | 72.50 | A | 0.153 | 98.60 | | 13 | С | 0.105 | 56.43 | С | 0.105 | 56.43 | A | 0.137 | 88.40 | | 14 | С | 0.136 | 72.86 | C | 0.136 | 72.68 | A | 0.154 | 98.84 | | 16 | C | 0.106 | 56.57 | C | 0.106 | 56.57 | A | 0.138 | 88.62 | | 17 | С | 0.136 | 73.03 | С | 0.135 | 72.50 | A | 0.135 | 86.62 | | 19 | С | 0.136 | 72.86 | В | 0.136 | 72.68 | A | 0.134 | 85.99 | | 20 | С | 0.188 | 100.59 | A | 0.197 | 126.44 | A | 0.197 | 126.75 | | 21 | С | 0.136 | 72.68 | С | 0.135 | 72.50 | A | 0.154 | 98.84 | | 22 | C | 0.137 | 73.57 | В | 0.107 | 57.26 | A | 0.138 | 88.62 | | 25 | С | 0.186 | 99.86 | C | 0.185 | 99.37 | В | 0.185 | 99.37 | | 28 | C | 0.160 | 85.71 | C | 0.160 | 85.50 | A | 0.154 | 98.84 | | 29 | C
C | 0.136 | 72.68 | В | 0.135 | 72.50 | A
B | 0.134 | 85.99 | | 30 | | 0.087 | 46.85 | С | 0.087 | 46.51 | | 0.087 | 46.40 | | 35 | C
C | 0.161 | 86.12 | В | 0.136 | 73.03 | A | 0.134 | 86.41 | | 38 | | 0.187 | 100.11 | B
B | 0.160 | 85.71 | A | 0.196 | 126.13 | | 39
41 | C
C | 0.186
0.106 | 99.86
56.57 | С | 0.186
0.106 | 99.86
56.57 | A | 0.195
0.138 | 125.52
88.62 | | 43 | C | 0.100 | 100.11 | В | 0.106 | 99.86 | A | 0.138 | 125.82 | | 46 | C | 0.189 | 100.11 | В | 0.161 | 86.33 | A | 0.198 | 123.82 | | 47 | C | 0.106 | 56.84 | С | 0.101 | 56.70 | A | 0.138 | 89.05 | | 51 | C | 0.100 | 73.21 | В | 0.100 | 73.21 | A | 0.156 | 100.05 | | 53 | C | 0.137 | 100.35 | В | 0.137 | 100.11 | A | 0.196 | 126.13 | | 54 | C | 0.160 | 85.92 | В | 0.136 | 72.86 | A | 0.154 | 99.08 | | 55 | C | 0.160 | 85.71 | В | 0.136 | 72.68 | A | 0.154 | 99.32 | | 59 | C | 0.161 | 86.12 | C | 0.136 | 72.86 | A | 0.154 | 99.32 | | 63 | C | 0.160 | 85.92 | C | 0.160 | 85.71 | A | 0.153 | 98.36 | | 64 | C | 0.159 | 85.29 | C | 0.160 | 85.50 | В | 0.159 | 85.08 | | 65 | C | 0.106 | 56.57 | C | 0.088 | 46.97 | A | 0.138 | 88.62 | | 68 | С | 0.105 | 56.29 | С | 0.106 | 56.57 | A | 0.138 | 88.83 | | 69 | С | 0.136 | 73.03 | С | 0.136 | 72.86 | A | 0.134 | 86.41 | | 72 | С | 0.105 | 56.29 | С | 0.105 | 56.15 | A | 0.136 | 87.75 | | 77 | С | 0.136 | 72.86 | С | 0.136 | 72.68 | A | 0.134 | 86.20 | | 78 | C | 0.106 | 56.70 | C | 0.106 | 56.57 | В | 0.106 | 56.57 | | 79 | C | 0.136 | 73.03 | C | 0.106 | 56.57 | A | 0.134 | 85.99 | | 81 | C | 0.136 | 72.86 | С | 0.136 | 72.86 | A | 0.138 | 88.83 | | 84 | C | 0.106 | 56.84 | С | 0.087 | 46.85 | A | 0.138 | 88.83 | | 85 | С | 0.106 | 56.70 | С | 0.106 | 56.70 | В | 0.106 | 56.57 | | 87 | С | 0.160 | 85.50 | В | 0.160 | 85.50 | A | 0.153 | 98.60 | | 89 | C | 0.186 | 99.86 | В | 0.160 | 85.50 | A | 0.196 | 125.82 | | 90 | C | 0.159 | 85.29 | C | 0.160 | 85.50 | В | 0.160 | 85.50 | | 92 | С | 0.160 | 85.50 | С | 0.135 | 72.32 | В | 0.135 | 72.50 | | 93 | C
C | 0.105 | 56.43
99.62 | C | 0.105 | 56.29 | В | 0.105 | 56.29 | | 95
98 | C | 0.186 | 85.50 | C | 0.185
0.159 | 99.37
85.29 | A | 0.195
0.153 | 125.21
98.36 | | 98 | C | 0.100 | 56.70 | В | 0.139 | 56.43 | A | 0.138 | 98.36
88.83 | | 101 | C | 0.161 | 86.12 | В | 0.105 | 73.03 | A | 0.154 | 99.32 | | 103 | C | 0.101 | 47.08 | С | 0.136 | 56.70 | A | 0.134 | 89.05 | | 105 | C | 0.160 | 85.71 | C | 0.160 | 85.71 | A | 0.154 | 99.08 | | 111 | C | 0.186 | 99.86 | A | 0.196 | 125.82 | A | 0.195 | 125.52 | | 112 | C | 0.136 | 72.68 | В | 0.135 | 72.50 | A | 0.134 | 85.99 | | 114 | C | 0.106 | 56.98 | В | 0.106 | 56.70 | A | 0.134 | 86.41 | | 115 | C | 0.106 | 56.70 | C | 0.106 | 56.57 | A | 0.138 | 88.62 | | 117 | C | 0.187 | 100.35 | C | 0.187 | 100.11 | A | 0.196 | 126.13 | | 119 | C | 0.187 | 100.35 | В | 0.160 | 85.71 | A | 0.196 | 126.13 | | 124 | C | 0.135 | 72.50 | С | 0.087 | 46.74 | A | 0.137 | 88.40 | | 135 | С | 0.106 | 56.84 | С | 0.106 | 56.84 | A | 0.138 | 89.05 | | 137 | С | 0.106 | 56.57 | С | 0.105 | 56.43 | A | 0.133 | 85.78 | | 139 | С | 0.161 | 86.12 | С | 0.136 | 73.03 | В | 0.135 | 72.50 | | 140 | C | 0.160 | 85.92 | С | 0.160 | 85.71 | A | 0.135 | 86.62 | | total value | of timber (PL | N) | 4594.43 | | | 4409.65 | | | 5681.44 | A detailed simulation of the hypothetical market value of timber products obtained from logs sorted according to three investigated scenario was performed within framework of this research. As mentioned before, thinner boards have higher commercial value that corresponded to 643 PLN/m³. Conversely, the value of thicker boards (52 mm) was 536 PLN/m³. It is expected therefore that higher price of products combined with the greater predicted volume of timber derived from logs sorted by in-line scanner results in higher value of the produced timber. It is confirmed in Figure 7, where the predicted economic gain is ~30% higher for logs sorted by the in-line scanner, compare to logs graded manually by workers. This is in agreement with other technical reports where implementation of triangulation scanners resulted in considerable increase of the sawmill sorting capacity and improvement in supply of logs with quality properly adjusted for production of floorboards (SIEKANSKI *et al.* 2019). The commercial value of timber obtained after sawing logs sorted by the grading expert was slightly less than of unexperienced worker. It is a consequence of both, the adopted sawmill strategy to not differentiate quality classes B or C, and the overestimation of overall logs volume as predicted by the worker. It is important to emphasize that this economic simulation reflects only a hypothetical case representing particular perspective of the Sylva sawmill. The actual value of timber can be only determined after proper log sawing and following quality grading of boards resulted by that process. The summary of quality, expected timber volume and estimated value of derived products for all simulated logs is presented in Table 6. Fig. 7 The market value of assortments produced by the sawmill when implementing three diverse log sorting scenarios. The exchange rate of Euro (1 $EUR = 4.30 \ PLN$) according to the National Bank of Poland as at 26th November 2019. ## CONCLUSIONS The log sorting strategy has a tremendous impact on the sawmill efficiency. Three diverse approaches were investigated here to determine optimal solution for upgrading the current log sorting routines in the middle size sawmill in Poland. It was clearly demonstrated that in-line scanner equipped with triangulation sensors for the external log geometry assessment allows most accurate prediction of the log volumes as well as improves overall reliability of the quality grading. The automatic sorting system increased productivity by a factor of four. An integration of the scanner with the production process in Sylva sawmill was identified as the most profitable solution recommended for advancing current manufacturing process. The quality sorting of logs by unexperienced worker is not an optimal solution as it results in biased volume estimation as well as low sorting rate. A full advantage of the grading expert involvement in the routine sorting of logs was not properly explored due to the simulation constrains. There was not defined in the Sylva company any specific path to explore a moderate quality logs (such as class *B*). That class was a frequent grade assigned by the expert to investigated logs. The direct comparison with the other sorting strategies was very limited as a set of grading rules defined in standards is very conservative and strict. As a consequence the sorting results are hardly comparable between three sorting strategies investigated. #### REFERENCES EN1927-2:2008. Qualitative classification of softwood round timber - Part 2: Pines. FELD, M. 2003. Basics of designing technological processes of typical machine parts (In Polish: Podstawy projektowania procesów technologicznych typowych części maszyn). Warsaw: Wydawnictwo Naukowo Techniczne, 2003, 2nd Edition, 708 s. ISBN 83-204-2841-6 FREDRIKSSON, M., JOHANSSON, E., BERGLUND, A. 2014. Rotating *Pinus sylvestris* sawlogs by projecting knots from X-ray computed tomography images onto a plane. In BioResources, 9(1), 816–827. GEJDOŠ, M., GERGEĽ, T., BUCHA, T., VYHNÁLIKOVÁ, Z. 2019. Possibilities of image analysis for quality wood sorting. In Central European Forestry Journal, 65 DOI: 10.2478/forj-2019-0015 GM-900-7/2013. Ordinance of General Director of State Forests in Poland no 74: Temporary rules for the receipt and recording of needle wood produced in logs. (In Polish: Zarządzenie nr 74 z dnia 27.09.2013 r.: Tymczasowe zasady odbioru i ewidencji drewna iglastego wyrabianego w kłodach.). GOTYCH, V., WIERUSZEWSKI, M., HRUZIK, G. 2009. Production of solid beams intended for wood engineering purposes. In VII Conference: Wood and wood-based materials in engineering structures, Szczecin (Stettin), Poland. Pp 63–72. GÖRGÜN, H.V., DÜNDAR, T. 2018. Strength grading of Turkish black pine structural timber by visual evaluation and nondestructive testing. In Maderas. Ciencia y Tecnología 20(1): 57–66. DOI: 10.4067/S0718-221X2018005001501 GUTZEIT, E., VOSKAMP, J. 2012. Automatic Segmentation of Wood Logs by Combining Detection and Segmentation: Illumination, Modeling, and Segmentation (Chapter In Advanced Virtual Computing). Heidelberg Dordrecht London NewYork: Springer, 2012, 769 s. ISBN 978-3-642-33178-7. DOI: 10.1007/978-3-642-33179-4 HAN, H.-S., BILEK, E.M., DRAMM, J., LOEFFLER, D., CLAKIN, D. 2011. Financial feasibility of a log sort yard handling small-diameter logs: A preliminary study. In Western Journal of Applied Forestry, 26(4), 174–182. KOLB, H., GRUBER, R. 1981. Radiometrisches Verfahren für die Holzsortierung. In Holz als Roh – und Werkstoff, 39, 367–377. KROHN, H., PALM K. 1981. Radiometrisches Verfahren für die maschinelle. Holzsortierung. Teil 1: Entwicklung und Beschreibung des Verfahrens. In Holz als Roh – und Werkstoff, 39, 207–210. KRZOSEK, S. 2011. Timber strength grading of *Pinus sylvestris* L. using a visual method according to Polish standard PN-82/D-94021 and German standard DIN 4074. In Wood Research, 56 (3), 435–440. PN-92/D-95017. Wood raw material. Large-size coniferous wood. Common requirements and tests (In Polish: Surowiec drzewny. Drewno wielkowymiarowe iglaste. Wspólne wymagania i badania). PN-D-95000:2002. Wood raw material. Measurement. Volume calculation and calibration (In Polish: Surowiec drzewny. Pomiar. obliczanie miąższości i cechowanie). RAIS, A., URSELLA, E., VICARIO, E., GIUDICEANDREA, F. 2017. The use of the first industrial X-ray CT scanner increases the lumber recovery value: case study on visually strength-graded Douglas-fir timber. In Annals of Forest Science 74, 28 (2017) doi:10.1007/s13595-017-0630-5 RIDOUTT, B.G., WEALLEANS, K.R., BOOKER, R.E., MCCONCHIE, D.L., BALL, R.D. 1999. Comparison of log segregation methods for structural lumber yield improvement. In Forest Products Journal, 49(11/12): 63–66. SANDAK, J. 2009. Scanners in the modern wood industry: potentials and limits. In Conference "Forestry, Wildlife and Wood Sciences for Society Development", Prague, Czech Republic, ISBN 987-80-213-2019-2:489-495, 16-18 April 2009 SANDAK, J., SANDAK, A., MARRAZZA, S. PICCHI, G. 2019. Development of a Sensorized Timber Processor Head Prototype – Part 1: Sensors Description and Hardware Integration. In Croatian Journal of Forest Engineering, 40 (1), 25–37. Preuzeto s https://hrcak.srce.hr/217392 SANDAK, J., SANDAK, A. 2017. Using various infrared techniques for assessing timber structures. In International Journal of Computational Methods and Experimental Measurements, 5(6), 865–871. DOI: 10.2495/CMEM-V5-N6-858-871 SIEKAŃSKI, P., MAGDA, K., MALOWANY, K., RUTKIEWICZ, J., STYK, A., KRZESŁOWSKI, J., KOWALUK, T., ZAGÓRSKI, A. 2019. On-line laser triangulation scanner for wood logs surface geometry measurement. In Sensors, 19, 1074. DOI: 10.3390/s19051074 TSEHAYE, A., BUCHANAN, A. H., WALKER, J. C. F. 2000. Sorting of logs using acoustics. In Wood Science and Technology, 34, 337–344. WEB SOURCE 1. 2019. https://je-gmbh.de/en/products/joro-3d#nav-c46 Accessed October. 2019 WIERUSZEWSKI, M., MIKOŁAJCZAK, E., WANAT, L. 2019. Dilemmas of technological innovations on the example of selected products based on oak wood. In: Digitalisation and circular economy: forestry and forestry based industry implications. In 12th WoodEMA Annual International Scientific Conference on Digitalisation and Circular Economy: Forestry and Forestry Based Industry Implications. Varna, SEP 11–13, pp. 39–44. ## **ACKNOWLEDGEMENTS** The authors are grateful for the support of the Ministry of Science and Higher Education of Poland under the Implementation Doctorate program (Agreement No 0059/DW/2018). Furthermore, the authors gratefully acknowledge the European Commission for funding the InnoRenew CoE project (Grant Agreement #739574) under the Horizon2020 Widespread-Teaming program and the Republic of Slovenia (Investment funding of the Republic of Slovenia and the European Union of the European Regional Development Fund). ## **AUTHORS ADDRESSES** Kazimierz Orlowski (ORCID id: 0000-0003-1998-521X) Daniel Chuchala (ORCID id: 0000-0001-6368-6810) Gdansk University of Technology Faculty of Mechanical Engineering Narutowicza 11/12. 80-233 Gdansk Poland Piotr Taube SYLVA Ltd.. Co.. 2 Koscierska Street. 83-441 Wiele Poland Jakub Sandak (ORCID id: 0000-0001-9190-677X) InnoRenew CoE Livade 6. 6310 Izola Slovenia University University of Primorska Andrej Marušič Institute Titov trg 4. 6000 Koper Slovenia