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ABSTRACT Parametric optimization is a mandatory step in the design of contemporary antenna struc-
tures. Conceptual development can only provide rough initial designs that have to be further tuned, often
extensively. Given the topological complexity of modern antennas, the design closure necessarily involves
full-wave electromagnetic (EM) simulations and—in many cases—global search procedures. Both factors
make antenna optimization a computationally expensive endeavor: population-based metaheuristics, rou-
tinely used in this context, entail significant computational overhead. This letter proposes a novel approach
that interleaves trust-region gradient search with iterative parameter space exploration by means of local
kriging surrogate models. Dictated by efficiency, the latter are rendered in low-dimensional subspaces
spanned by the principal components of the antenna response Jacobian matrix, extracted to identify the
directions of the maximum (frequency-averaged) response variability. The aforementioned combination of
techniques enables quasi-global search at the cost comparable to local optimization. These features are
demonstrated using two antenna examples as well as benchmarking against multiple-start local tuning.

INDEX TERMS Antenna optimization, EM-driven design, gradient-based search, principal component
analysis, kriging

I. INTRODUCTION
Development of modern antennas necessarily involves
parameter tuning, typically being the last stage of the design
process. For reliability, it is executed at the level of full-wave
electromagnetic (EM) simulation models. This is to capture
the effects and phenomena (mutual coupling [1], the presence
of connectors and housing [2], feed radiation [3], etc.) that
affect the antenna performance but cannot be accounted for
using simpler methods, e.g., analytical or equivalent network
models. Although imperative, EM-driven design may entail
considerable computational expenses. In situations where
reasonably good initial design is not available or the prob-
lem is heavily multimodal [4], local optimization is insuf-
ficient and executing global search might be unavoidable.
Examples include pattern synthesis of antenna arrays [5],

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammed Bait-Suwailam .

design of compact antennas [6], or cases that require handling
of multiple objectives and constraints (circularly polarized
antennas [7], MIMO systems [8]).

Conventional approaches to global optimization are
largely based on population-based metaheuristics, where the
exchange of information between the search agents enables
comprehensive exploration of the design space and escaping
from local optima [9]. Popular techniques include evolution-
ary algorithms [10], particle swarm optimizers [11], differ-
ential evolution [12], harmony search [13], and many other
methods [14]–[16], essentially being slight variations of the
popular routines. Due to tremendous computational cost of
metaheuristics, direct handling of EM simulation models is
often prohibitive. One way of alleviating this difficulty are
machine learning approaches involving iterative construction
of fast surrogate models [17], [18]. These are typically asso-
ciated with sequential sampling [19], where the current surro-
gate, constructed from available EM simulation data, is used
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to identify the promising regions of the parameter space as
well as to allocate the infill samples, subsequently used to
update the model [19]. Other available techniques include
multiple-start local optimization, the Taguchi method involv-
ing experimental design by orthogonal arrays [20], as well
as combinations of metaheuristics with gradient-based proce-
dures (e.g., [21]) or variable-fidelity simulations (e.g., [22]),
both incorporated to speed up the convergence process. Yet,
these alternatives have gained limited popularity. Despite
their deficiencies, metaheuristics remain the dominant algo-
rithmic solutions in the context of global optimization.

This letter proposes a novel approach to quasi-global
optimization of antenna structures. Our methodology com-
bines the trust-region gradient search with the parameter
space exploration realized using local kriging metamod-
els. The surrogates are iteratively constructed within low-
dimensional subspaces spanned by the principal components
of the antenna response gradients. The latter are set up
to identify the directions corresponding to the maximum
(frequency-averaged) variability of antenna characteristics,
which enables traversing the design space at a low cost.
This idea has been adopted from [23], where the principal
component analysis (PCA) was used in the context of local
search, specifically, to identify directions subjected to finite-
differentiation updates of the Jacobian matrix. Interleaving
the trust-region algorithm and surrogate-assisted exploration
results in quasi-global search capabilities while maintaining
computational efficiency of the process. This is comprehen-
sively demonstrated using two antenna examples. At the same
time, benchmarking against multiple-start local optimization
corroborates the robustness of the proposed method.

II. QUASI-GLOBAL OPTIMIZATION BY PCA AND
METAMODELS
This section describes the proposed design optimization
framework. We start by highlighting the overall concept,
followed by the algorithm flow as well as detailed explana-
tions of the key components of the procedure. Demonstration
examples can be found in Section III.

A. DESIGN CLOSURE PROBLEM FORMULATION
Let R(x) stand for the output of the EM simulation model of
the antenna under design (e.g., reflection or gain versus fre-
quency) with x= [x1 . . .xn]T ∈ X being a vector of adjustable
variables. Typically, the parameter space X is defined by the
lower and upper bounds l = [l1 . . . ln]T and u = [u1 . . . un]T

so that lk ≤ xk ≤ uk , k = 1, . . . , n. Given the scalar merit
function U quantifying the design utility, the optimization
task can be defined as

x∗ = argmin
x∈X

U (R(x)) (1)

A representative example is optimization for minimum
reflection over a specified frequency range F , where the
merit function can be defined as U (R(x)) = U (S11(x, f )) =
max{f ∈ F : |S11(x, f )|}. This makes (1) a minimax problem.

B. ALGORITHM FLOW
The goal of the optimization framework is to enable a quasi-
global search while maintaining low computational complex-
ity. A prerequisite is an implementation of some sort of
parameter space exploration. Here, low cost of the process
is ensured by predominantly employing local search mech-
anisms as well as restricting the space dimensionality at the
exploration stages.

The operation of the proposed algorithm is outlined below,
whereas the details concerning its most important compo-
nents are provided in Sections II.B through II.D (here, N0,
N1, and Nmax are the control parameters, whereas card (Y )
stands for the cardinality of the set Y ):

1. Uniformly allocate N0 random samples x(k)I ∈ X ;
2. Assign x(0) = min{k = 1, . . . ,N0: U (R(x(k)I ))};
3. Set the iteration index i = 0;
4. Evaluate Jacobian JR(x(i));
5. Use JR(x(i)) to identify the subspace S(i) of maximum

antenna response variability (cf. Section II.C);
6. Allocate N1 samples x(i.k), k = 1, . . . ,N1, within S(i) ∩

X ;
7. Build kriging surrogate R(i)

s therein using {x(i.k),
R(x(i.k))} as the training set (cf. Section II.D);

8. Find the candidate design xtmp by (globally) optimizing
the surrogate R(i)

s :

xtmp = arg min
x∈S(i)∩X

U (R(i)
s (x)) (2)

9. Starting from xtmp, find the new design x(i1) through
local optimization of the EM model R (cf. Section II.E)

x(i+1) = argmin
x∈X

U (R(x)) (3)

10. If U (R(x(i+1))) < U (R(x(i))) then
Accept x(i+1) and set i = i+ 1;

else
If card({x(i.k)}) ≤ Nmax

Allocate N2 additional (infill) samples within
S(i) ∩ X ; go to 7;

else
Return x∗ = x(i).

end
end

11. If the termination condition is not satisfied, go to 4;
else return x∗ = x(i).

The algorithm starts by rough exploration of the param-
eter space and initialization of the main algorithm from
the best point x(0) found at that stage of the process. Each
iteration consists of establishing the subspace S(i) spanned
by the principal components of the Jacobian matrix, calcu-
lated to determine the directions of the maximum antenna
response variability (Steps 4 and 5). The subspace is of
low dimension (typically, two), which permits a construction
of reliable surrogate in S(i) ∩ X using a small number of
samples N1 (Steps 6 and 7). The surrogate is subsequently
used as a predictor to identify the best design within S(i) ∩ X
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FIGURE 1. Basic steps of the proposed quasi-global optimization
procedure (illustrated for a three-dimensional case): (a) parameter space
X , initial sampling, and the best design x (0) over the sample set
(Steps 1 and 2), (b) first iteration: subspace S(0) spanned by the first two
principal directions (Steps 4 and 5), (c) sampling of S(0) ∩ X (Step 6),
construction of the surrogate (Step 7), subsequently optimized to find
xtmp (Step 8), and the follow-up gradient-based refinement yielding the
next design x (1) (Step 9).

(Step 8) which is followed by low-cost EM-driven local opti-
mization (Step 9). Upon finding a better design, the iteration
is repeated. In the case of failure, the surrogate model is
refined by adding infill samples (Step 10). The termination
condition is based on the maximum computational budget
and the convergence in argument. Figure 1 provides a graph-
ical illustration of the essential algorithm stages. Note that
Steps 1 and 2 can be replaced by employing a user-supplied
initial design.

C. PRINCIPAL COMPONENTS AND SUBSPACE
DEFINITION
Given the current design x(i), the goal is to define the
directions corresponding to the maximum variability of
the antenna responses using the Jacobian matrix JR(x(i)).
If R(x(i)) represents a frequency characteristic (e.g., antenna
reflection) over a discrete set of frequencies fk , k = 1, . . . , m,

we have R(x(i)) = [R(x(i), f1) . . .R(x(i), fm)]T and

JR(x(i)) =
[
∇1(x(i)) . . .∇m(x(i))

]T
(4)

where the gradients are

∇
T
k (x

(i)) =
[
∂R(x(i), fk )

∂x1
. . .

∂R(x(i), fk )
∂xn

]
(5)

The vector ∇k (x(i)) determines the direction of the maximum
antenna response variability at the frequency fk . Consider
the set {∇k (x(i))}k=1,...,m and its covariance matrix C =
(m − 1)−1STS, where S = |JR| − 1µT is a mean-subtracted
matrix with |JR| being a matrix of the gradient moduli, µ =
[µ1 . . . µn]T being the means gradient moduli, and 1 being
the m× 1 vector of all ones. We have [23]

C = VEV−1 (6)

where V = [v1 . . . vn] is a matrix of eigenvectors and E is
a diagonal matrix of the corresponding eigenvalues λi, here
assumed to be arranged in a descending order λ1 ≥ . . . ≥ λn.
The eigenvalues represent the variances of the observable set
{∇k (x(i))}k=1,...,m projected onto one-dimensional subspaces
spanned by the corresponding eigenvectors. In other words,
the eigenvectors vk determine (in the descending order) the
directions of the maximum antenna response variability aver-
aged over the frequency range of interest.

The affine subspace S(i) of Step 5 of the optimization
algorithm of Section II.B is then defined as

S(i) = x(i) +
∑Ns

j=1
ajvj (7)

where aj are real coefficients. In practice, we use Ns = 2
to facilitate the construction of the surrogate model and its
optimization.

D. SURROGATE MODEL CONSTRUCTION
The surrogate model R(i)

s is constructed within S(i) ∩ X
using kriging interpolation [24]. The design of experiments
is arranged using sequential sampling oriented towards the
improvement of the model predictive power. The sampling
flow is as follows:
1. Allocate the initial set of Ninit training samples x(k)t using

Latin Hypercube Sampling [25];
2. If card({x(k)t }) < N1, find a new sample that maximizes

the mean square error (MSE) [26] of the current surrogate
and add it to the training data set.
MSE maximization is carried out in the global sense;

however, it is an inexpensive process due to low dimen-
sionality of S(i). The surrogate optimization (2) (Step 8 of
the algorithm) is also performed globally. In practice, it is
arranged as the exhaustive search over the dense structured
grid superimposed on S(i) ∩X , followed by a local (gradient-
based) refinement. The computational cost of this process is
negligible because R(i)

s is fast and the dimensionality of S(i)

is low.
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FIGURE 2. Geometries of the benchmark antennas: (a) wideband
monopole [29] (ground plane shown using light-shade gray), (b)
triple-band uniplanar dipole [30].

E. LOCAL OPTIMIZATION
A local design refinement of Step 9 of the algorithm of
Section II.B is realized using the trust-region gradient-based
algorithm yielding a series of approximations x(i+1.j) to x(i+1)

as [27]

x(i+1.j+1) = arg min
x; −d(j)≤x−x(i+1.j)≤d(j)

U (L(j)(x)) (8)

where

L(j)(x) = R(x(i+1.j))+ JR(x(i+1.j)) · (x− x(i+1.j)) (9)

The Jacobian matrix in (9) is estimated at x(i+1.0) = xtmp
of (2) using finite differentiation, then updated using the rank-
one Broyden formula [28] in subsequent iterations. This lim-
its the cost of the algorithm (8) to one EM antenna simulation
per iteration. The search process in (8) is restricted to the
vicinity x(i+1.j)−d(j) ≤ x≤ x(i+1.j)+d(j) of the current design,
where d(j) is the trust region size vector adaptively adjusted
in each iteration [27].

III. DEMONSTRATION EXAMPLES
This section discusses validation of the proposed optimiza-
tion strategy. We compare the result statistics obtained for
several runs of the algorithm and the results of multiple-start
gradient search. This is to verify the quasi-global search capa-
bilities of the procedure. Our benchmark set includes a wide-
band monopole antenna and a triple-band uniplanar dipole.

A. CASE I: WIDEBAND MONOPOLE ANTENNA
The first test case is a wideband monopole antenna with
quasi-circular radiator and a modified ground plane for band-
width enhancement [29], see Fig. 2(a). The design variables
are x = [L0 dR Rrrel dL dw LgL1R1 dr crel]T . The structure
is implemented on Rogers RO4350 substrate (εr = 3.5,
tanδ = 0.0027, h = 0.76 mm). The computational model is
implemented in CST Microwave Studio and evaluated using

FIGURE 3. Reflection responses at x (0) (- - -) and at the optimized design
(—) for the selected runs of the proposed algorithm: (a) Wideband
monopole, horizontal line indicates the design specifications.
(b) Triple-band dipole, vertical lines indicate target operating frequencies.

TABLE 1. Optimization Results for Antennas I And II.

its time-domain solver. The parameter space X is defined by
the lower bounds l = [4.0 0.0 3.0 0.1 0.0 0.0 4.0 0.0 2.0 0.2
0.2]T and the upper bounds u= [15.0 6.0 8.0 0.9 5.0 8.0 15.0
6.0 5.0 1.0 0.9]T . The design objective is to minimize |S11|
within the UWB frequency range of 3.1 GHz to 10.6 GHz.
The control parameters N0, N1, and N2 were set to 100, 50,
and 10, respectively, for both verification cases.

The numerical experiments have been executed as follows:

• 20 runs of the proposed algorithm using new set of
samples x(k)I for each run. The computational budget set
to 300 EM simulations of the antenna;

• (benchmark) 20 runs of local search using the
trust-region algorithm with numerical derivatives. Ran-
dom initial points employed at each run.

Table 1 shows the result statistics. It can be observed that
the proposed method yields satisfactory results in each run,
whereas the success rate for the benchmark algorithm is only
about forty percent. At the same time, the computational
cost of the proposed procedure is practically acceptable:
higher than local search but considerably less expensive than
any conceivable population-based metaheuristic algorithm.
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FIGURE 4. Photographs of the fabricated antenna prototypes: (a)
wideband monopole, (b) triple-band dipole.

FIGURE 5. Wideband monopole: (a) reflection, (b) realized gain,
(c) H-plane patterns at 4 GHz, 6 GHz, and 8 GHz; simulation (gray) and
measurement (black).

Figure 3(a) shows the antenna reflection responses at the
design x(0) (cf. Step 2, Section II.B) and upon optimization
for a selected algorithm run.

FIGURE 6. Triple-band dipole: (a) reflection, (b) realized gain, (c) H-plane
patterns at 2.45 GHz, 3.6 GHz, and 5.3 GHz; simulation (gray) and
measurement (black).

B. CASE II: UNIPLANAR DIPOLE ANTENNA
The second test case is a triple-band uniplanar dipole antenna
shown in Fig. 2(b), based on the design of [30]. The structure
is also implemented on RO4350 substrate, and fed through a
50 ohm coplanar waveguide (CPW).

The design variables are x = [l1 l2l3l4l5 w1w2w3w4 w5]T ;
l0 = 30,w0 = 3, s0 = 0.15 and o = 5 are fixed (all dimensions
in mm). The parameter space X is defined by l= [35 10 25 10
18 0.5 0.5 0.5 0.5 0.5]T and u = [40 15 30 15 22 2 1 1 1 1]T .
Here, the goal is tominimize |S11|within the following bands:
2.4 GHz to 2.5 GHz, 3.55 GHz to 3.65 GHz, and 5.25 GHz
to 5.35 GHz.

The experimental setup is the same as for the first test
case. The numerical results are shown in Table 1. The results
are consistent with those obtained for the first example. The
proposed method yields satisfactory results in almost each
run; the success rate for the benchmark algorithm is only
about 25 percent, which demonstrates the need for global
search. Figure 3(b) shows the reflection responses at x(0) and
at the optimized design for a selected algorithm run.
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C. DISCUSSION
The results reported in Section III.A and III.B indicate that
the proposed algorithm dramatically improves reliability of
the optimization process as compared to the local routines
while retaining low computational cost of the process. The
success rate is hundred percent for Antenna I and almost as
much for Antenna II, which demonstrates the global search
capability. Furthermore, the standard deviation of the final
objective function values (last column of Table 1) is very
small which confirms good repeatability of the results, i.e.,
robustness of the procedure.

D. EXPERIMENTAL VALIDATION
The selected optimized designs of both antennas have
been fabricated and measured for additional validation.
Figures 4 through 6 show the antenna prototypes as well as
the reflection, realized gain, and radiation patterns. In both
cases, the agreement between the simulated and measured
data is satisfactory.

IV. CONCLUSION
This letter proposed a novel approach to quasi-global and
computationally efficient design optimization of antenna
structures. Our methodology combines surrogate-assisted
space exploration and fast gradient-based local design refine-
ment, integrated into an iterative procedure. To speed up
the search process, the exploration stage is restricted to
low-dimensional affine subspaces spanned by the directions
corresponding to the maximum variability of antenna charac-
teristics, extracted using principal component analysis. Com-
prehensive numerical validation demonstrates the efficacy of
the method with satisfactory designs produced in almost each
run of the algorithm and good result repeatability. This is
in contrast to multiple-run local search the success rate of
which is forty and twenty five percent for the two considered
test cases, respectively. The additional advantages of the pre-
sented approach are algorithmic simplicity and low computa-
tional cost as compared to population-based metaheuristics.
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