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•  Plastic buckling of a curved carbon nanotube is analyzed on the basis of Euler–Bernoulli beam theory.
•  The equations are found using the nonlinear Lagrangian strains and solved on the basis of Rayleigh–Ritz solution technique for various
boundary conditions.
•  Both deformation and flow theories of plasticity are taken into consideration based on the Ramberg–Osgood criteria.
•  The increase of curvature leads to increasing the values of critical buckling loads in the elastoplastic region. And for a large curvature the
effect of boundary conditions increased.
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This research,  for  the first  time,  predicts  theoretically  static  stability  response of  a  curved carbon
nanotube (CCNT) under an elastoplastic behavior with several boundary conditions. The CCNT is
exposed  to  axial  compressive  loads.  The  equilibrium  equations  are  extracted  regarding  the
Euler–Bernoulli displacement field by means of the principle of minimizing total potential energy.
The elastoplastic stress-strain is concerned with Ramberg–Osgood law on the basis of deformation
and flow theories of plasticity. To seize the nano-mechanical behavior of the CCNT, the nonlocal
strain  gradient  elasticity  theory  is  taken  into  account.  The  obtained  differential  equations  are
solved using the Rayleigh–Ritz method based on a new admissible shape function which is able to
analyze  stability  problems.  To  authorize  the  solution,  some  comparisons  are  illustrated  which
show a very good agreement with the published works. Conclusively, the best findings confirm that
a plastic analysis is crucial in predicting the mechanical strength of CCNTs.

 

©2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
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A  decade  ago,  an  ever-increasing  trend  has  been  witnessed
in  the  application  of  the  mechanics  of  plastic  deformation  of
structures  in  different  engineering  discussions  and  industrial
processes  [1].  Indeed,  it  has  been  generalized  that  engineering
materials should not be analyzed and designed only in a perfect
elastic  situation.  In reality,  most  of  the structures enter  into the
plastic region due to unpredictable conditions such as high tem-
peratures, high loads and mistake manufacturing leading to dis-
tortion.  In  the  analysis  of  distorted  (non-straight,  twisted  or
bent)  nanomaterials,  it  is  important  to  take  into  consideration

the plastic  deformation in the material  behavior.  As a matter  of
fact, a deformed material with a steady deformation exceeds the
elastoplastic and plastic regions.

Among the nanostructures, carbon nanotubes (CNTs) play a
significant role  in  the  reinforcement  of  nanocomposite  struc-
tures [2]. Thus, in order to develop CNT-based composite mater-
ials, an exact knowledge of the CNTs’ mechanical deformation is
required  crucially.  Obviously,  some  nanotubes  do  not  retain
their initial regularity when using, and they distort. These abnor-
malities  may  occur  during  the  manufacturing  process  or  after
that as a result of the matrix effect. Accordingly, the modeling of
this type of nanostructure, in the form of a shell or beam without
curvature, may involve a significant error with the results. Some

 

 
 

* Corresponding author.
E-mail address: mohammad.malikan@yahoo.com.

Theoretical & Applied Mechanics Letters 10 (2020) 46-56

 

Contents lists available at ScienceDirect

Theoretical & Applied Mechanics Letters

journal homepage: www.elsevier.com/locate/taml

 

http://dx.doi.org/10.1016/j.taml.2020.01.004
2095-0349/© 2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mohammad.malikan@yahoo.com
http://dx.doi.org/10.1016/j.taml.2020.01.004
http://www.elsevier.com/locate/taml
http://www.elsevier.com/locate/taml
http://dx.doi.org/10.1016/j.taml.2020.01.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.taml.2020.01.004&domain=pdf


researchers have  analyzed  mechanically  the  CNTs  with  an  ini-
tial  curvature  in  a  perfect  elastic  condition  (temporary
curvature)  [3–13].  Some  researchers,  on  the  other  hand,  have
generally studied the elastoplastic  mechanical  behavior  of  vari-
ous  materials  [14–27].  Whereas  studies  on  the  mechanics  of
plastic of CNTs are very limited and have resulted in a few stud-
ies [28–30].

Dealing with  the  literature,  there  are  hitherto  no  publica-
tions  on  the  elastoplastic  stability  of  curved  carbon  nanotubes
(CCNTs). Thus, this paper aims to fill such the gap. In this paper,
it  is  assumed  that  the  CNT  involves  an  initial  stable  curvature
and  such  an  irregularity  may  bring  the  material  into  an
elastoplastic region and beyond. CNTs typically fail  at 6% strain
in light of structural defects [28].  Therefore,  the material  can be
predictably in an elastoplastic behavior if the curvature value in
a CNT goes up as high as the material  fail.  To model  the CCNT
mathematically,  the Euler–Bernoulli  beam model  is  used in the
energy method  via  a  generalized  variational  principle  by  em-
ploying  nonlinear  Lagrangian  strains.  In  order  to  investigate
small-scale  effects,  nonlocal  strain gradient  theory is  taken into
account  which  involves  microstructural  size-dependent  effects
and  a  second  stress  gradient  factor.  To  solve  the  mathematical
relation of  buckling,  the  Rayleigh–Ritz  solution  method  is  ap-
plied. This method is adopted based on a new shape function by
which  the  critical  buckling  load  can  be  calculated  for  several
boundary conditions,  in  particular,  free  edges.  Thereafter,  nu-
merical results  are sketched graphically  by variation in the fun-
damental and key criteria.

Figure  1 demonstrates schematically  a  CCNT in  a  rectangu-
lar  coordinate  system  for  both  two-dimensional  and  three-di-
mensional  pictures.  The  geometrical  symbols  are  respectively,
uniform thickness (h), exterior radius (R), internal radius (r), and
length of the tube (L) and also the size of curvature (e).

The curved geometry of the CCNT can be formulated math-
ematically as below (Fig. 1(a)) [13]

γ (x) = e sin
(πx

L

)
. (1)

To define  plasticity  behavior,  there  are  two  plasticity  theor-
ies, i.e. deformation theory of plasticity (DTP) and flow theory of
plasticity (FTP) [20, 21]. The deformation or total stress theory of
plasticity described total  strains related to the total  stresses and
no  stress  history  effects  exist.  This  theory  applies  to  problems
with proportional loading. On the other hand, in the flow theory,
there is a possibility to decompose the total strain of material in
a sum or multiplication of an elastic and a plastic section. In fact,
the  material  before  the  plastic  area  also  has  a  linear  elastic
range. The  elastic  strain  section  can  be  calculated  through  lin-
ear or hyperelastic models.  However,  to determine the strain of
the plastic section, a flow law and a hardening model should be
used. In FTP, the stress increments are related to the stress ones
which  mean  the  stress  history  effects  exist.  Undoubtedly,  this
concept is more general and applicable than DTP.

DTP containing constitutive equation of Hencky as

σi j = 2Gεi j +λδi jεkk −3(Gs −G t )
Si j Sklεkl

σ2
eq

. (2)

FTP involving constitutive equation of Prandtl–Reuss as

σi j = 2Gεi j +λδi jεkk −3(G −G t )
Si j Sklεkl

σ2
eq

, (3)

in  which Sij  denotes  components  of  the  stress  deviator, Gt

represents  the  tangent  shear  modulus,  and  Lamè  (Gs, λs )  and
elastic (G, λ) coefficients. Furthermore, σeq depicts an equivalent
stress  factor  with  the  assumption  that  the  material  follows  the
yield criterion of von Mises as below

σMisses
eq = (

σ2
1 −σ1σ2 +σ2

2

) 1
2 , σ1 = ξP, σ2 = ηP, (4)

in  which  the σ1  and  σ2  are  the  stress  on  the  edges  for  a  plate
along x- and y-axes, and the values of η and ξ determine the type
of loading. In this paper, the values are 0 and 1 respectively, for a
CCNT under axial compression.

The  in-plane  stress-strain  constitutive  equation  can  be
defined as

σxx = Eαxxεxx , (5)

where

αxx = 1

ρ
cy y czz . (6)

The parameters in Eq. (6) are

cy y = 1−3

(
1− E t

E

)
S2

x

4
,

cx y =−1

2

[
1− (1−2ν)

E t

E

]
,

czz = E t

G
, (7)

ρ = E

E t

czz

(
cy y − c2

x y

)
, (8)
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Fig. 1.   a Two-dimensional and b three-dimensional models of the
curved carbon nanotube (e shows the curvature and L depicts the
length of the curved nanotube).
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Sx =−ξ(ξ2 −ξη+η2
)− 1

2 , (9)

in  Eqs. (5)  and  (6),  E  and  Et  are  the  Young’s  and  Tangent
elasticity  moduli,  respectively, αxx  is  the  instantaneous  moduli.
This  modulus  depends  on  the  theory  of  plasticity  by  which  the
material behavior can be modeled. Moreover, in FTP, the elastic
components are as

E = E , G =G = E

2(1+ν)
. (10)

In  DTP,  secant  values  are  assumed  for  Young’s  and  shear
moduli as

E = Es , G =Gs = E

2(1+ν)+3
(

E
Es
−1

) . (11)

This research adopts the Ramberg–Osgood elastoplastic rela-
tion in the form [31]

εx =
σeq

E
+k

σ0

E

(
σeq

σ0

)n

, (12)

where k and n describe the status of the elastoplastic curve of the
stress–strain  diagram  and σ0  shows  nominally  the  yield  stress.
Note  that  when n,  k→∞  the  model  is  in  a  fully  plastic  behavior
and when n, k→0 the material behavior of the model is perfectly
elastic. In the Ramberg–Osgood hypothesis, the secant elasticity
modulus (Es) and the tangent one (Et) can be indicated as below

E

Es

= 1+k

(
σeq

σ0

)n−1

, (13)

E

E t

= 1+nk

(
σeq

σ0

)n−1

. (14)

The  kinematic  model  is  here  operated  in  the  framework  of
the Euler–Bernoulli beam approach as [32, 33]

{
u1 (x, z)

u3 (x, z)

}
=

 u (x)− z
dw (x)

dx
w (x)

 . (15)

The  components w(x )  and u(x )  introduce  the  kinematic  of
the mid-plane points and u1(x,  z) and u3(x,  z) are the kinematic
of  the  domain  along x -  and z -axes. In  addition,  a  thickness  co-
ordinate is symbolized with z.

The following expression obtained from Eq. (15) is the non-
linear  axial  component  of  Lagrangian  strain  on  the  basis  of  the
strain–displacement of von Kármán for the CCNT

εxx = du

dx
− z

d2w

dx2
+ dγ

dx

dw

dx
+ 1

2

(
dw

dx

)2

. (16)

The resultants which describe the axial and moment stresses
in the CCNT can be used by means of the following relations{

Nx

Mx

}
=

∫
A

{
σx

σx z

}
dA, (17)

where Nx  and  Mx  represent  the  moment  and  axial  stress
resultants,  respectively.  Hence,  based  on  the  Eqs. (5)  and  (17),

we obtain

{
Nx

Mx

}
=


Eαxx A

[
du

dx
+ dγ

dx

dw

dx
+ 1

2

(
dw

dx

)2]
−Eαxx Ic

d2w

dx2

 , (18)

where Ic = π(R4−r4)/4 represents the moment of area of the cross
section and also A indicates the cross-section area of the CCNT.

To  determine  the  effect  of  tension  which  is  because  of
curvature in the CCNT, the following process would be done

Nx = Eαxx A

[
du

dx
+ dγ

dx

dw

dx
+ 1

2

(
dw

dx

)2]
=C1 =C te. (19)

Integrating Eq. (19) would calculate the parameter C1 as

u =
∫ L

0

[
−dγ

dx

dw

dx
− 1

2

(
dw

dx

)2]
dx + C1

Eαxx A
x +C2, (20)

u (0) = u (L) = 0
in  which C2  defines  a  constant  of  integration.  Afterwards,
applying  on the Eq. (20), we have

u |x=0 =
∫ x

0

[
−dγ

dx

dw

dx
− 1

2

(
dw

dx

)2]
dx

∣∣∣∣
x=0

+ C1

Eαxx A
×0+C2,

u |x=L =
∫ x

0

[
−dγ

dx

dw

dx
− 1

2

(
dw

dx

)2]
dx

∣∣∣∣
x=L

+ C1

Eαxx A
×L+C2. (21)

Rearrangement gives

C1 = Eαxx A

L

∫ L

0

[
dγ

dx

dw

dx
+ 1

2

(
dw

dx

)2]
dx,

C2 = 0. (22)

The generalized variational principle is here invoked to seek
the equilibrium state as

δΠ=
∫ t2

t1

(δW −δU )dt = 0, (23)

in which δ means variation δW and δU are work done by external
objects  and virtual  strain  energy  (This  paper  ignores  the  effects
external  objects,  e.g.  foundation),  respectively.  The  variation  of
strain energy can be presented as

δU =
∫ L

0

∫
A

σxxδεxx dAdx. (24)

Imposing δΠ  =  0,  the equation of  the equilibrium state for  a
CCNT can be obtained as

δu = 0 :
dNx

dx
= 0, (25)

δw = 0 : −d2Mx

dx2
+ d

dx

(
Nx

dw

dx

)
+ d

dx

(
Nx

dγ

dx

)
= 0. (26)

Among the theories which probe the effects of size into a mi-
cro/nanoscale schema, the nonlocal strain gradient theory (NS-
GT)  has  been  widely  employed  by  which  the  influences  of  the
microstructural  size  dependency  and  nonlocality  can  be  got  as
below [34]
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(
1−µ

d2

dx2

)
σxx = Eαxx

(
1− l 2 d2

dx2

)
εxx , (27)

where l  displays  a  length  scale  coefficient  and μ  is  a  nonlocal
parameter that is  equal to (e0a)2.  Moreover, e0  shows a physical
constant and a  = 0.142 nm is the bond length of carbon-carbon
atoms.  It  is  worth  mentioning  that  the  nonlocal  parameter  and
the  length  scale  coefficient  should  possess  variable  values  and
cannot be constant.  As a matter of  fact,  such factors depend on
the  various  conditions,  for  example,  different  boundary
conditions.  In  order  to  have  reasonable  values  for  the  small-
scale  parameters,  some  experiment  tests  or  molecular
mechanics analysis can help [35, 36].

In  the  following,  by  applying  Eq. (27)  into  Eq. (18) , the  mo-
ment stress resultant can be rewritten as below [37–45]

Mx −µ
d2Mx

dx2
=−Eαxx Ic

(
1− l 2 d2

dx2

)
d2w

dx2
. (28)

Based on substituting Eq. (28) into Eq. (26), we get

Mx =µNx

(
d2w

dx2
+ d2γ

dx2

)
−Eαxx Ic

(
1− l 2 d2

dx2

)
d2w

dx2
. (29)

Here, as a result of prebuckling compressive axial forces, we
have

Nx =−N 0. (30)

Then, by inserting Eqs. (22),  (29),  and (30) into Eq. (26),  the
following  relation  can  be  achieved  which  is  the  elastoplastic
buckling relation of a CCNT

Eαxx Ic

(
d4w

dx4
− l 2 d6w

dx6

)
+

{
Eαxx A

L

∫ L

0

[
dγ

dx

dw

dx
+ 1

2

(
dw

dx

)2]
dx −N 0

}
×

[(
d2w

dx2
+ d2γ

dx2

)
−µ

(
d4w

dx4
+ d4γ

dx4

)]
= 0. (31)

In order to solve the eigenvalue problems, the Rayleigh–Ritz
solution  technique  can  be  a  good  choice  [46–49]  owing  to  its
capability to give high accurate numerical outcomes. The meth-
od  is  a  semi-analytical  one  and  satisfies  eigenvalue  problems,
many of which should be solved linearly for which the numeric-
al solutions  can  be  employed.  However,  such  numerical  meth-
ods have larger solution time [50–53] and cannot be cost-effect-
ive.  Hence,  semi-analytical  methods  can  be  a  better  suggestion
to  solve  eigenvalue  problems.  The  transverse  displacement  in
the Rayleigh–Ritz method was presented as [49]

w (x, t ) =
N∑

i=1

aiφi (x, t )exp
(
ωt

p−1
)
, (32)

φi (x, t ) ωin  which  is  fundamental  mode  shapes  and  is  natural
frequency  in  vibrational  analyses  based  on  time, ai  represents
the unknown variable which should be calculated

φi (x, t ) = fφTi (x, t ) = fφx i−1. (33)

The only difficult thing in the semi-analytical solution meth-
ods,  like  the  Rayleigh–Ritz  one,  might  be  determining  mode
shapes which  should  satisfy  boundary  conditions.  In  this  re-
search,  a  new  mode  shape  is  assumed  by  which  a  very  good
agreement  has  been  obtained  when  comparing  the  numerical

outcomes with Refs.  [46–49]. The mode shape determining sev-
eral boundary conditions is innovatively derived as below

fφ =
( x

L

)λ
×

(
1− x

L

)ζ
, (34)

in which λ and ζ define several boundary conditions as shown by
Table 1.

The  conditions  mentioned  in Table  1 can satisfy  the  essen-
tial boundary conditions given in Table 2.

To  use  the  semi-analytical  polynomial  methods  like  the
Rayleigh–Ritz  one,  first,  the  convergence  rate  of  the  solution
method should be investigated. To this, Fig.  2 is  presented with
which  it  is  observed  that  a  suitable  rate  for  convergence  of  the
solution can be chosen as N = 5. By choosing this, the numerical
outcomes would be acquired correctly. Moreover, due to solving
a  symmetrical  problem  and  being  the  beam  an  isotropic  one,
naturally,  the  behavior  of  the  SC  should  be  as  same  as  the  CS
boundary  conditions.  Note  that  this  claim  can  be  right  for  CF

Table 1   Admissible quantities for several boundary conditions

Boundary
conditions

λ (x=0) ζ (x=L)

SS 1 1

SC 1 2

CS 2 1

CC 2 2

CF 2 0

FC 0 2

Table 2   Essential boundary conditions

Configurations Conditions

S w(0, L)=0

C w(0, L)=0, w'(0, L)=0

F w(0, L)≠0
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Fig. 2.   Convergence rate of the Rayleigh–Ritz results for different
boundary conditions for a straight single-walled carbon nanotube (l
= 0, e0a = 0, L = 20d, E = 1 TPa, ν = 0.19, d = 1 nm).
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and FC boundaries.
The  numerical  results  and  the  related  discussion  would  be

begun with the formulation’s validation. To do this, according to
Tables 3–6 taken from Refs.  [54, 55],  the critical  elastic buckling
load of  a  nanobeam is  evaluated whilst  the  elasticity  properties
were chosen as E = 1 TPa, υ = 0.19, and diameter of the beam was
selected as d= 1 nm. The numerical results within the Tables are
for Euler–Bernoulli  beam  equation  solved  with  an  explicit  ana-
lytical  solution  [54]  and  the  differential  transform  method
(DTM)  [55].  As  it  is  found,  in  the  three  cases  (µ =  0  nm2, µ  =  1

nm2, and µ = 2 nm2), the results of the references and the present
work are close to each other and reveal  an excellent  agreement
into clamped-clamped (CC), hinged-hinged (HH) and clamped-
free  (CF)  boundary  conditions.  Although  the  results  of  CH
boundary  conditions  are  slightly  farther  from  the  literature,  it
can be acceptable.  These Tables  approve the efficiency and ac-
curacy  of  the  present  admissible  function  for  various  boundary
conditions.

In  addition  to  the  above  validation  of  the  present  solution’s
shape  function,  we  can  use  Ref.  [56]  in  which  some  admissible

Table 3   Comparison of elastic critical loads originated from literature for a HH beam

PCr (nN)

L (nm)
µ=0 nm2 µ=1 nm2 µ=4 nm2

Ref. [54], EB, Explicit Ref. [55], EB, DTM Present-EB, Rayleigh–Ritz Ref. [54] Ref. [55] Present Ref. [54] Ref. [55] Present

10 4.8447 4.8447 4.84473 4.4095 4.4095 4.40953 3.4735 3.4735 3.47346

12 3.3644 3.3644 3.36439 3.1486 3.1486 3.14859 2.6405 2.6405 2.64049

14 2.4718 2.4718 2.47180 2.3533 2.3533 2.35330 2.0574 2.0574 2.05739

16 1.8925 1.8925 1.89247 1.8222 1.8222 1.82222 1.6396 1.6396 1.63962

18 1.4953 1.4953 1.49529 1.4511 1.4511 1.45109 1.3329 1.3329 1.33288

20 1.2112 1.2112 1.21118 1.182 1.182 1.18201 1.1024 1.1024 1.10238

Table 4   Comparison of elastic critical loads originated from literature for a CH beam.

PCr (nN)

L (nm)
µ=0 nm2 µ=1 nm2 µ=2 nm2

Ref. [54], EB, Explicit Ref. [55], EB, DTM Present-EB, Rayleigh–Ritz Ref. [54] Ref. [55] Present Ref. [54] Ref. [55] Present

10 9.887 9.887 9.91111 8.2295 8.2295 8.24614 7.048 7.048 7.06015

12 6.886 6.886 6.88271 6.0235 6.0235 6.03631 5.3651 5.3651 5.37530

14 5.044 5.044 5.05668 4.5744 4.5744 4.58441 4.1844 4.1844 4.19285

16 3.8621 3.8621 3.87152 3.5804 3.5804 3.58849 3.337 3.337 3.34403

18 3.0516 3.0516 3.05898 2.873 2.873 2.87954 2.7141 2.7141 2.71998

20 2.4718 2.4718 2.47777 2.3533 2.3533 2.35871 2.2456 2.2456 2.25057

Table 5   Comparison of elastic critical loads originated from literature for a CC beam.

PCr (nN)

L (nm)
µ=0 nm2 µ=1 nm2 µ=2 nm2

Ref. [54], EB, Explicit Ref. [55], EB, DTM Present-EB, Rayleigh–Ritz Ref. [54] Ref. [55] Present Ref. [54] Ref. [55] Present

10 19.379 19.379 19.37895 13.8939 13.8939 13.89386 10.828 10.828 10.8288

12 13.458 13.458 13.45760 10.652 10.652 10.56197 8.6917 8.6917 8.69178

14 9.877 9.877 9.88721 8.2296 8.2296 8.22960 7.0479 7.0479 7.04799

16 7.4699 7.4699 7.56990 6.5585 6.5585 6.55849 5.7854 5.7854 5.78550

18 5.9811 5.9811 5.98115 5.3375 5.3375 5.33153 4.8091 4.8091 4.80918

20 4.8447 4.8447 4.84473 4.4095 4.4095 4.40953 4.046 4.046 4.04607
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functions  were  employed  (Table  7) which  had  appropriate  res-
ults.  As  can  be  seen, Fig.  3 shows  an  excellent  agreement
between  the  results  of  the  present  admissible  function  with
those obtained from Ref. [56]. The superiority of the present ad-
missible function versus those mentioned in Table 7 can be the
possibility of applying free edges and also simpler utilization and
application.

In generating  the  numerical  outcomes,  the  CCNT  is  ana-
lyzed  by  the  mechanical  properties  [56–66],  0.5  nm  < e0a  <  0.8
nm [57], 0 < e0a ≤ 2 nm [35, 58], E = 1000 GPa, ν = 0.19, h = 3.4 Å,
R = 5 Å.

The critical load of elastoplastic buckling is given in terms of
different variables. It is necessary to affirm that in this study, ac-
cording to the elastoplastic analysis,  it  is assumed that the nan-
otube because of  the curvature is  at  the point  of  material  yield-
ing (i.e., the maximum stress is equal to the yield stress). So, the
Ramberg–Osgood  curve  is  in  the  elastoplastic  state,  but  not  in
the  elastic-perfectly  plastic  (n =  ∞ ).  For  this  purpose, Fig.  4(a)
and  (b)  shows  the  critical  elastic  load  beside  the  critical  plastic
load  for  two  theories  of  flow  and  deformation  with  the  small-
scale parameters variations. In the first figure, the boundaries of
the nanotube are modeled as the pivot condition, and the Ram-
berg–Osgood parameters are also chosen in the assumed sizes. It
is  evident  from  the  figure  that  increasing  the  strain  gradient
parameter  leads  to  an  increase  in  the  critical  load  of  plastic.
However, the critical load of nanotube in the elastic region is far
more than its value in the yield point. In fact, the yielded materi-
al  will  be less stable.  It  is  interesting to note that  the amount of
the  critical  plastic  load  obtained  for  the  theory  of  flow  is  more
than the theory of deformation. The second figure, on the other
hand,  has  plotted  the  effects  of  the  nonlocality  parameter  with
the same  values  of  the  other  parameters  as  in  the  previous  fig-
ure. The increase of the nonlocal parameter decreases the critic-
al  load of the plastic.  The two figures prove that the nonlocality

and the effect of size in plastic conditions, as same as the elastic
conditions,  give  the  nanotube  the  effects  of  stiffness-softening
and stiffness-hardening, respectively.

In order to investigate the elastoplastic state for both the the-
ory of  flow and plastic deformation, Fig.  5 is  presented with the
results  of  several  boundary  conditions.  In  fact,  the  path  to  this
figure is a complete elastic state to the plastic regime. The yield
stress to the current stress ratio is considered to be from 0.2 to 2.
It is quite clear that the nanotube has a much lower resistivity in
the case of the yield point in contrast to elasticity case. Addition-
ally, the clamped boundary condition has a much higher critical
load  than  the  hinge  and  free  edges.  It  should  be  noted  that  the
plastic buckling will occur in two states: in the first case, the ma-
terial will first be loaded and the load will be increased gradually
so much that  the material  is  yielded due to the plastic  buckling
load. In this case, an elastic buckling will first occur and if we re-
move the load, the material is completely reversible to its origin-
al state before deformation. But if  we hold the load and raise it,
we will  reach the yield point.  Naturally,  in  this  case,  the critical
load of plastic should be greater than the critical load of elastic of
the material.  To  analyze  this  plastic  buckling  model,  relation-
ships  should  be  in  the  post-plastic  buckling  state.  The  second
manner  of  plastic  buckling  is  a  condition  where  the  material  is
yielded for a variety of reasons (high temperature, bending, dis-
tortion, etc.), or is in an elastoplastic state, and loaded onto it to

Table 6   Comparison of elastic critical loads originated from literature for a CF beam.

PCr (nN)

L (nm)
µ=0 nm2 µ=1 nm2 µ=2 nm2

Ref. [54], EB, Explicit Ref. [55], EB, DTM Present-EB, Rayleigh–Ritz Ref. [54] Ref. [55] Present Ref. [54] Ref. [55] Present

10 1.2112 1.2112 1.21118 1.1820 1.1820 1.18201 1.1542 1.1542 1.15422

12 0.8411 0.8411 0.84109 0.8269 0.8269 0.82693 0.8132 0.8132 0.81323

14 0.6179 0.6179 0.61795 0.6103 0.6103 0.61026 0.6027 0.6027 0.60277

16 0.4731 0.4731 0.47311 0.4686 0.4686 0.46860 0.4641 0.4641 0.46417

18 0.3738 0.3738 0.37382 0.3710 0.3710 0.37099 0.3682 0.3682 0.36821

20 0.3028 0.3028 0.30279 0.3009 0.3009 0.30094 0.2991 0.2991 0.29910

Table 7   Admissible functions

Boundary conditions Suitable functions

SS sin(πx/L)

CC 0.5[1–cos(2πx/L)] or sin2(πx/L)

CS
0.1709382933{sin(k1x)– k1Lcos(k1x)+

k1L[1–(x/L)]}k1=1.4318π/L
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Fig. 3.   Comparison of elastic buckling loads for several boundary
conditions vs. Ref. [56] for a straight single-walled carbon nanotube
(l = 0, e0a = 0, E = 1 TPa, ν = 0.19, d = 1 nm).
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calculate  its  stability.  Logically,  in  this  case,  the  critical  load  of
plastic should be less than the critical elastic load of the material.
This study investigates this plastic stability state of the nanotube

which is in the yield point because of the distortion and irrevers-
ible curvature due to wrong manufacturing. Figure 5 represents
explicitly  that  the  greatest  impact  and  difference  in  results  are
about the clamped boundary condition. In fact, it should be said
that  if  the  CCNT  is  in  the  condition  of  completely  fixed  both
ends, it is very important to know that the CCNT is in the elastic
or  plastic  region.  But  while  the  nanotube  has  more  flexible
boundaries, the difference in the elastic and plastic stability will
be markedly reduced.

To study the importance of the value of curvature of the nan-
otube in the state of the yield of the material, Fig. 6 is produced
for each plasticity theory also for different boundary conditions.
It  is  interesting to know if  nanotubes are more deformed in the
plastic  region,  its  stability  will  be  grown.  Of  course,  the  fixed
boundary  condition  is  more  sensitive  to  curvature  than  other
ones. On the other hand, it is evident from the figure that, in the
large bends of the nanotube, the effects of boundary conditions
are gone up and the results of different types of boundary condi-
tions are getting far from one another. It is germane to note that
with  enlarging  the  initial  deflection,  the  difference  between  the
results  of  FT  and  DT  would  be  further  noticeable,  in  particular
for CC edge conditions.

In order to study the parameters n and k in the Ramberg–Os-
good relationship, Figure 7(a) and (b) is demonstrated. Both dia-
grams  are  provided  for  the  flow  theory  in  the  case  of  clamped
edges.  In  the  first  figure,  it  can  be  seen  that  with  zeroing  the
value  of  the  parameter n ,  the  variation  of  the  ratio  of  the  yield
stress  to  the  current  stress  does  not  change  the  critical  loads.
This  is  because  in n  =  0  the  tangent  modulus  and  the  elastic
modulus are equal in size and the material  will  be placed in an
elastic  region,  and it  presents  the  problem of  the  critical  elastic
load.  But  as n  increases  and  when  the  material  reaches  the  full
plasticity,  results  of  the  critical  load  for  different  values  of  the
parameter n get great differences, and as a result, this parameter
becomes very important. But in the second diagram, the effect of
the variations of both parameters n and k is investigated directly
against  each  other.  It  is  known  that  when k  becomes  equal  to
zero,  it  gives  the  full  elastic  region.  As  we  know  of  the
Ramberg–Osgood relationship, increasing the amount of n to in-
finite  amounts will  result  in the perfect  plasticity,  and therefore
the  critical  load  and  the  strength  of  the  material  will  be  greatly
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Fig. 4.   a Variation effect of the length scale coefficient vs. the three
defined (a perfect elastic, flow theory (FT) of plasticity and deforma-
tion theory (DT) of plasticity) on the buckling loads for pivot-pivot
boundary conditions (L/d = 10, l* = l/h, μ = 1 nm2, e = 0.15L, σ0 = N0,
k = 0.25, n = 2). b Variation effect of the nonlocal parameter vs. the
three cases (a perfect elastic, FT of plasticity and DT of plasticity) on
the buckling loads for pivot-pivot boundary conditions (L/d = 10, l* =
1, e = 0.15L, σ0 = N0, k = 0.25, n = 2).
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Fig. 5.   Variation effect of yield stress vs. different boundary condi-
tions on the plastic buckling loads (L/d  = 10, l  = h,  μ  = 1 nm2,  e  =
0.15L, k = 0.25, n = 2)
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Fig.  6.     Variation effect  of  the curvature parameter  vs.  different
boundary conditions on the plastic buckling loads (L/d = 10, l = h, μ
= 1 nm2, e*=e/L, σ0 = N0, k = 0.25, n = 2)
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reduced. This claim is fully approved by means of Fig. 7(b). Also,
the  more  the  parameter k , the  weaker  the  stability  of  the  nan-
otubes in the plastic region. As a review of Fig.  7(b),  it  is  vividly
seen that the increase of the k  parameter leads to nonlinear be-
havior for the curves of results.

Figure  8 considers  the  effect  of  changes  in  the  ratio  of  yield
stress to the current stress of the material  against the variations
of  the  nanotube’s  curvature.  In  the  figure,  both  the  flow  theory
and deformation approach are studied,  while  both edges of  the
nanotube are completely fixed. It is noticeable that in the plastic
region  the  differences  in  the  results  of  critical  loads  for  various
curvatures are less than the differences in the total elastic region.
This means that the curvature in a complete elastic state is more
important  than its  amount in the perfect  plasticity.  Perhaps the
concept is that in elastic and reversible situations, the curvature
value is important, and in the case where the curvature leads to
the plasticity of the material, the importance of the bending rate
after the  yield  of  the  material  is  lesser.  Of  course,  only  the  im-
portance of the degree of curvature after the plasticity of the ma-
terial  is  arriving  the  material  at  the  ultimate  stress  and  then  its
fracture. It is important to note that in the plastic region, the dif-
ference  between  the  results  of  different  curvature  when  using
the flow theory is greater than when using the theory of deforma-
tion.  In  other  words,  whenever  the  material  is  going  into  full

plasticity  the  difference  between  the  numerical  outcomes  of
both theories of plasticity shows the difference between both hy-
pothesizes.

Figure 9 presents the aspect ratio in the flow plasticity theory
for a variety of boundary conditions. The figure is provided to be
examined in the yield point. That is, the material is neither per-
fectly elastic nor completely plastic. It is observed that the longer
the nanotube’s length, the lower the stability. Also, whatever the
nanotube’s length growths, the results of the different boundary
conditions are  closer  to  each  other.  So  that  we  obtain  the  im-
portant result that the boundary condition becomes less import-
ant  in  the  nanotubes  with  very  long  lengths.  On  the  other  side,
the  effect  of  changing  the  length  of  the  nanotube  for  the  fixed
boundary  condition  is  much  greater  than  the  other  boundary
conditions.  This  is  due  to  the  steep  slope  of  the  results  of  the
fixed  boundary  condition  with  the  increase  of  the  aspect  ratio
(L/d).

This paper discussed the elastoplastic stability of  CCNT in a
nanoscale  domain  concerning  both  plasticity  theories,  namely,
flow  and  deformation  plasticity  concepts.  Accordingly,  to
demonstrate  CCNT  in  nanoscale,  the  model  of  nonlocal  strain
gradient theory was captured. The semi-analytical procedure re-
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Fig. 7.   a Variation effect of the yield stress vs. n parameter on the
elastoplastic buckling loads by the flow theory for simply-supported
boundary conditions (L/d = 10, l = h, μ = 1 nm2, e = 0.15L, k = 0.25).
b  Variation  effect  of  the  n  parameter  vs.  k  parameter  on  the
elastoplastic buckling loads by the flow theory for simply-supported
boundary conditions (L/d = 10, l = h, μ = 1 nm2, e = 0.15L, σ0 = N0)
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Fig. 8.   Variation effect of the yield stress vs. different curvature on
the elastoplastic  buckling loads for  clamped-clamped boundary
conditions (L/d = 10, l = h, μ = 1 nm2, k = 0.25, n = 2)
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Fig. 9.   Variation effect of the aspect ratio (L/d) vs. different bound-
ary conditions on the plastic buckling loads by the flow theory (l = h,
μ = 1 nm2, e = 0.15L, σ0 = N0, k = 0.25, n = 2)

M. Malikan / Theoretical & Applied Mechanics Letters 10 (2020) 46-56 53

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


garding  the  Rayleigh–Ritz  solution  technique  was  adopted  for
which  a  new  admissible  function  was  also  derived.  The  study
performed  on  the  plotted  outcomes  and  several  considerations
were  shown  on  the  determination  of  elastoplastic  and  plastic
buckling loads of  CCNTs.  The highlighted results  are  briefed as
below.

•    It  was  importantly  shown  that  as  the  plastic  stability  of
CNTs is less than elastic one, the structure should also be taken
in  a  plastic  analysis.  Because  the  structure  can  be  failed  by
stresses lower than elasticity modulus in a plastic region and an
elastoplastic  or  even  plastic  behavior  may  be  unpredictable  in
light of the working environment of the material.

•  The  CCNT  has  further  resistance  in  an  elastic  region
against a plastic one.

•  The  variation  of  nonlocal  and  strain  gradient  parameters
lead to  softening  and  hardening  into  both  elasticity  and  plasti-
city regions.

•  The  elastoplastic  and  plastic  buckling  loads  for  FT  are
greater than DT.

•  The increase of curvature leads to increasing the values of
critical buckling loads in the elastoplastic region. And for a large
curvature, the  effect  of  boundary  conditions  increased  funda-
mentally.

•  The effect of boundary conditions for FT is more than DT.
•  Increasing the yield stress of the CCNT makes the results of

FT and DT in various boundary conditions as same as each oth-
er.

•  When the value of yield stress is more than the maximum
stress,  the  curvature  is  more  significant.  In  other  words,  the
value of curvature in an elastic region (recoverable curvature) is
more important than a plastic one.
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