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Abstract

Hybrid nanotubes composed of carbon and boron-nitride nanotubes have manifested as innovative building blocks to
exploit the exceptional features of both structures simultaneously. On the other hand, by mixing with other types of
materials, the fabrication of relatively large nanotubes would be feasible in the case of macroscale applications. In the
current article, a nonlinear finite element formulation is employed to deal with the nonlocal vibrational behavior of
carbon/boron-nitride nano-hetero-tubes in the presence of magneto-thermal environment. Euler-Bernoulli beam model in
conjunction with the Eringen’s nonlocal theory of elasticity is adopted to derive the governing equation of motion. In order
to conduct a nonlinear frequency analysis, the von-Karman nonlinearity associated with moderate rotations is also
considered. It is well known that temperature gradients can significantly change the dynamic behavior of nanotubes. On
the other hand, the coefficients of thermal expansions of carbon and boron-nitride nanotubes are quite different that may
affect the structural stability of hybrid nanotubes. Hence, to explore the vibration characteristic of such composite
structures, the influence of magneto-thermal environment is also taken into account. Finally, the eigenvalue analysis is
performed to exhibit the nonlinear mode shapes and natural frequencies of the system due to initial displacement. It is
expected that the recognition of dynamic behavior of such hybrid nanotubes may open the doors to the creative design of
next-generation nano-devices.
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1. Introduction design of future nanoelectromechanical devices. From a struc-
tural point of view, boron-nitride nanotubes (BNNTSs) are sim-
ilar to their counterparts, carbon nanotubes (CNTs), in which
carbon atoms are alternately replaced by boron and nitrogen
atoms. Nevertheless, it was proved that hexagonal BNNTs are

Following the discovery of carbon and boron-nitride hetero-
nanotubes, several researches have been performed on explor-
ing different aspects of such nanocomposite materials in the
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much more chemically and thermally stable than CNTs. BNNTs
that are a result of wrapping a plate-like boron-nitride sheet
to a tubular structure, have different properties compared to
CNTs. For example, thanks to the arrangement of their tabu-
lar patterns, CNTs may be regarded as a metal or semiconduc-
tor material and on the other hand, BNNTSs are usually consid-
ered as a non-conductive medium. It is well-established that the
uniform CNTs have superior magnetic/mechanical/electronic
properties that make them a suitable material to be utilized in
high-sensitive nanoelectronic devices. BN nanotubes have re-
markable thermal properties that make them efficiently applica-
ble in high-temperature mediums as well as biological environ-
ments. Such exceptional features of the mentioned nanotubes,
i.e. carbon and BNNTSs, have encouraged researchers to work on
a new class of composites exploiting the properties of both ma-
terials, namely carbon/boron-nitride CNTs (C/BNNTs) (Nozaki &
Itho, 1996; Stephan et al., 1994).

Inspired by this idea, many engineers and scientists thought
of synthesizing C/BN hetero-nanotubes to produce the next-
generation of smart/intelligent nano-devices. Moreover, very of-
ten they are encouraged to employ this kind of nanocompos-
ite material in different environmental and physical conditions.
Rodriguez Judrez, Anota, Cocoletzi, Sdnchez Ramirez, and Castro
(2017) reported the mechanical, magnetic and electronic prop-
erties of different combinations of C-BNNTs and proposed them
for utilizing in drug delivery systems as well as nano-vehicles.
The transport features and conductance of a hetero-structure
made up of carbon and BNNTs were investigated by Xiao, Zhang,
Zhang, Sun, and Zhong (2013). In another work, on the basis
of molecular dynamics (MD) simulations and continuum elas-
ticity theory, the occurrence of a beat phenomenon in ana-
lyzing the natural frequencies of a BN-CNT was reported by
Zhang and Wang (2017). They emphasized that the essential dif-
ficulties in producing mass detectors for atomic-scale measur-
ing may be resolved by the interaction between two vibration
modes of the hetero-nanotubes. Based on the non-equilibrium
Green’s function assumptions, a theoretical investigation on
the C-BN-C nanotubes was performed by Vedaei and Nadimi
(2019) where the tendency of NO, and O, molecules toward a
chemical attachment with the surface of the hetero-nanotube
was demonstrated. Within the framework of molecular mechan-
ics theory, Chen et al. (2019) theoretically identified the promi-
nent thermal rectification (TR) impacts of a rectifier-based C/BN
nanotube and investigated the thermal transport across its in-
terface. Moreover, it was demonstrated that when the system
is subjected to a high-temperature bias, the armchair hetero-
nanotubes have less TR ratio than that of zigzag C/BN ones. With
the help of MD simulations, Badjian and Setoodeh (2017) uti-
lized a boron nitride nanotube to coat a defected CNT and en-
hanced the tensile and buckling behavior of the homogenous
nanotube. They demonstrated that while atom vacancies con-
siderably affect the buckling behavior of CNTs, the presence of
BNNT coating results in improving the mechanical strength of
such nanotubes. On the basis of Morse and cosine potential
functions, Genoese, Genoese, and Salerno (2019) analyzed the
nanoscale behavior of single-walled silicon carbide (SiC), boron-
nitride (BN), and carbon (C) nanotubes using MD. Both armchair
and zigzag patterns were considered and the elastic properties
of the studied nanotubes were evaluated by means of Donnell
thin shell theory. With the aid of MD simulations, the modal
participation of a doubly-clamped single-walled CNTs in the
presence of vacancies was studied by Eltaher, Almalki, Almi-
tani, Ahmed, and Abdraboh (2019). In another investigation, on
the basis of continuum mechanics, Eltaher, Omar, Abdalla, and
Gad (2019) presented the nonlocal static bending and vibrational

analysis of a nanobeam assuming the effects of piezoelectric-
ity and surface energies, employed the finite element formu-
lation to discretize the governing equations, and obtained the
numerical solution of the problem. The nonlocal natural fre-
quencies of a hinged-hinged hybrid nanotube were studied by
Cheng et al. (2019). They found the numerical solution of the
harvested equations by means of dynamic stiffness technique
and exhibited that the considered nanotube becomes more un-
stable at larger values of nonlocal and length ratio parameters.
Plenty of research works have been recently conducted in the
case of hybrid/homogeneous nanostructures that are not re-
ported here, for the sake of brevity (Agwa & Eltaher, 2016; Ansari,
Gholami, & Ajori, 2013; Barretta, éanadija, & Marotti de Scia-
rra, 2016, 2019; Barretta, Faghidian, Marotti de Sciarra, & Pin-
nola, 2019; Barretta & Marotti de Sciarra, 2019; Chang, 2017;
Choyal, Choyal, Nevhal, Bergaley, & Kundalwal, 2019; Eltaher,
Abdraboh, & Almitani, 2018; Eltaher & Agwa, 2016; Eltaher, Al-
malki, Ahmed, & Almitani, 2019; Eltaher, Almalki, Almitani, &
Ahmed, 2019; Eltaher, El-Borgi, & Reddy, 2016; Eltaher, Khater,
Abdel-Rahman, & Yavuz, 2014; Eltaher, Khater, & Emam, 2016;
Eltaher, Mohamed, Mohamed, & Seddek, 2019; Emam, Eltaher,
Khater, & Abdalla, 2018; Ghalambaz, Ghalambaz, & Edalatifar,
2015, 2016; Hamed, Sadoun & Eltaher, 2019; Jena, Chakraverty, &
Malikan, 2019; Jena, Chakraverty, Malikan, & Tornabene, 2019;
Malikan, 2017, 2018, 2019a, 2019b; Malikan, Dimitri, & Torn-
abene, 2019; Malikan & Nguyen, 2018a; Malikan, Nguyen, Dim-
itri, & Tornabene, 2019; Malikan, Nguyen, & Tornabene, 2018a,
2018b; Mohamed, Eltaher, Mohamed, & Seddek, 2019; Noghre-
habadi, Eslami, & Ghalambaz, 2013; Noghrehabadi, Ghalambaz,
& Ghanbarzadeh, 2012; Ouakad & Sedighi, 2016; Ramezannejad
Azarboni, 2019; Sedighi, 2014; Sedighi & Bozorgmehri, 2016; Yaz-
danpanahi, Noghrehabadi, & Ghalambaz, 2014; Yazdanpanahi,
Noghrehabadi, & Ghanbarzadeh, 2013; Zhao, Zhang, & Lie, 2018;
Zhen, Wen, & Tang, 2019; Zhu, Chen, Dong, & Li, 2019).

It is demonstrated that the homogenous nanotubes such
as CNTs and BNNTs, could be solely utilized in miniature
electronic/magnetic devices. As mentioned above, however,
the inspiring idea is to exploit the advantages of both ma-
terials at the same time by producing an innovative nano-
hetero-structure composed of CNTs/BNNTs for the next-
generation nanotubes. Following this concept, the present
study deals with the nonlinear vibrational behavior of a size-
dependent carbon/boron-nitride hetero-nanotube incorporating
Euler-Bernoulli (EB) beam model and Eringen’s nonlocal the-
ory of elasticity. As the dimensions of a structure diminish to
sub-micron scales, size-dependent elasticity theories should be
taken into consideration to predict more precise behavior of
such structures. To this end, the nonlocal elasticity theory is
included in the governing equation of motion. The magneto-
thermal environment surrounds the hetero-nanotube and the
effects of nonlocality, initial amplitude and length ratio param-
eter are investigated here through a nonlinear finite element
analysis. The obtained results are justified in comparison with
those reported in the literature.

Figure 1 illustrates a doubly clamped nano-hetero-structure
made of two kinds of tubular materials. The first part of the
considered composite (hybrid) nanotube is a homogenous CNT
and the second part is a BNNT. It is assumed that two parts
possess identical geometrical properties with different mate-
rial constants. The total length of the hetero-nanotube is L
while the lengths of the two segments are L; =&L, 0<& <1,
and L, = (1 -¢)L, as shown in Fig. 1. Adopting Maxwell’s law
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w(0) =0
dw/dx(0) = 0

Figure 1: The schematic configuration of a doubly clamped nano-hetero-structure made of a C/BN nanotubes.

assumptions, the presence of a magnetic field in the space in-
duces a force whose direction is perpendicular to the magnetic
field. Thereby, an axial magnetic field Hy generates a transver-
sal membrane force called Lorentz force. It is assumed that the
whole system here is exposed to the axial magnetic field Hy to-
gether with a thermal environment.

2.1. Lorentz force

As mentioned earlier, the existence of a magnetic field in the
space results in inducing the corresponding Lorentz force on
the structures in that space. It is aimed to present the differen-
tial form of Maxwell’s equations and then derive the associated
Lorentz force from the longitudinal magnetic field. Maxwell’s re-
lations for a conducting elastic body are developed as (Narendar,
Gupta, & Gopalakrishnan, 2012)

] =V xh, (1)

oh
VXE:_ME’ 2
V-h=0, (3)
E:—;L(Z—?XH), (@)
h=V x (U x H) (5)

in which U, E, h, and J stand for the displacement vector, the
strength vectors of the electric field, the disturbing vectors of
the magnetic field, and the current density, respectively. Addi-
tionally, V = 3/3x ex + 3/dy ey + 3/3z e, is the Nabla operator and
w denotes the magnetic field permeability. Applying the unidi-
rectional magnetic field H = (Hy, 0, 0) through the longitudinal
axis of nanotube and describing the displacement vector of any
point in the elastic body by U = (0, v, w), the current density and
the disturbing vectors of the magnetic field are written by

v ow '\ ~ ov ~ ow ~

h=V x (U x H) = —Hy <8—y + E) ex + Hxaey + Hxﬁez, (6)

9%v 2w\ ~ 9%v 2w Pw) ~

=Vxh=-Hy|— — —— - —t—+— |&

J * X(axaz 8x8y> * X<3y8z o T 822) 4
v % %w ) -~

Hy| — + — e;. 7

i <3x2 + 9y? + 8y82> § @)

Thereby, the induced Lorentz force, denoted by Fi, which is ap-
plied as a body force is given by:

Fi = u( x H)

— Hz &4,8271)4,321” 8+ 827w+(927w+ BZU 8 (8)
= \ax2 T ay? Tayez) Y \ox2 T ay? T ayez) Y-

The only component of the displacement vector is assumed
to be the lateral one, ie. w=w(x,t), and the studied prob-
lem is considered as axisymmetric. As a consequence, the z-
component of Lorentz force per unit length of the nanotube is
given by

~ 92
Fp =F2Lez=ﬂAH27eZ’ (9)

where A stands for the cross-sectional area of the nanotube.

2.2. Continuum nonlocal theory

In the context of Eringen’s nonlocal theory of elasticity frame-
work (Eringen, 1972a, 1972b, 1983), it is stated that the field of
stress at any point x in an elastic body does not only depend on
the field of strain at that point but also on strains at all other
neighboring points of the continuum media. Eringen found this
conclusion by experimental observations and also an atomic
theory. Hence, the nonlocal stress tensor ojj as a function of the
local stress tensor of a continuum domain is defined as

oij :va (|x— x|, e0a) t(x)dV (10)

in which the kernel function K(|x — x|, epa) represents the mod-
ulus of nonlocality, epa shows a material constant depended on
external and internal characteristic lengths, |x — x’| denotes the
distance (in Euclidean norm) and t(x) is the tensor of local stress
at point x. At a point x, the local stress tensor t(x) (assuming a
Hookean solid) is related to the strain tensor ¢(x) at the point by
the generalized Hooke’s law as follows:

t(x)=C(x):e(x) (11)

“,”

in which C illustrates an elasticity tensor with fourth-order (*:
represents the “double-dot” (tensor) product operator). To give
the nonlocal behavior of a Hookean solid medium, equations (10)
and (11) should be considered simultaneously. At a point of
an elastic domain, the average of the local strain field to the

0202 Iudy 0} uo 1senb Aq $0581.85/1 ¥0BEMb/OPIl/EE0L 0 1/10P/AVEISqE-B]0IIE-80UBAPE/OPOI/LI0Y"dNO"OILLISPEDE//:SAY WO PAPEOUMOQ


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

AN\ MOST

stress field over a predefined finite domain is presented by equa-
tion (10). A solution for this integral cannot be simply found. But,
by assuming the integral ranges from negative infinity to pos-
itive one results in a gradient approximation (Eringen, 1972a,
1972b, 1983; Liu & Jeffers, 2019) based on an equivalent differ-
ential formulation as

t =0 — (e0a)’ Vs (12)

in which a and ey are the internal characteristic lengths (e.g.
the lattice spacing and wavelength) and material constant (for
calibration between the mathematical modeling and empirical
data), respectively. The parameter e, is vital for the validity of
nonlocal models. This parameter can be determined by match-
ing the dispersion curves based on atomistic models.

Based on equations (11) and (12), the components of stress
resultant, as a function of the scale factor, can be readily for-
mulated. By applying the operator V2 on the stress resultants
in the local domain, the nonlocal theory leads to the differen-
tial equations containing the nonlocal stress and strain resul-
tants. Thereby, the nonlocal equilibrium equation is described as
follows (Golmakani, Ahmadpour, & Malikan, 2019; Golmakani,
Malikan, Sadraee Far, & Majidi, 2018; Malikan & Nguyen, 2018b;
Malikan, Jabbarzadeh, & Dastjerdi, 2017; Malikan & Sadraee Far,
2018; Malikan, Tornabene, & Dimitri, 2018):

2
2 0%0xx
ax2

Eexx = oxx — (€00) (13)
In the above equation, the axial strain ey is defined by
—z3%?w/8x? and thereby the following relationship between the
flexural displacement w and the bending moment M of the nan-

otube can be obtained:
82w

2
7EIB? = M — (eoq)

92M
e a4

where I = [ 72dA is the second moment of area (inertia) of the
A
nanotube.

EB beam theory is adopted here to efficiently model the nonlin-
ear dynamic behavior of hetero-nanotube. In the case of mod-
erate rotations, the von-Karman nonlinear strains should be in-
cluded in the theoretical study. According to the EB elastic beam
theory, the nonlinear governing equation of motion takes the
following form:

32M 2w (1EA (L /ow\?, \ 0%w

T ami 2= = 22 _F 1

T (2 L /0 <Bx) dx) 5z ~Fer  (13)
where M is the resultant bending moment and m is the mass per
unit length of the nanotube. Moreover, Fey: is the external force

in z-direction due to the magnetic field effect that can be written
as follows:

Fext = FzL~ (16)

In the context of the thermal elasticity theory framework (Liu
& Jeffers, 2018; Liu, Plucinsky, & Jeffers, 2017; Wang, Ni, Li, & Qia,
2008), the temperature gradient in the elastic body leads to the
following axial force N; as

EA

Ne= -t
t 1-2v

AT, (17)

where AT stands for the change in temperature, oy depicts the
coefficient of thermal expansion along the nanotube axis, and v

symbolizes the Poisson’s ratio of the nanotube. Taking into ac-
count the effect of temperature change, the equation of motion
governing the nonlinear dynamic behavior of the nanotube is
re-formulated as

32M 2w [1EA (L /ow)? 2w 32w
(154 ) ax) 22 N EY _Fy (18
9 I (2 L /o (ax> X) oz “Negig ~Fa- (18)

The boundary conditions (BCs) for the doubly clamped nan-
otube are

ow (0, t) _ dw (L.,t)

w(0,t)=w(L,t)= i 0

—o. (19)

Taking into account the different conditions stated in the pre-
vious sections, the nonlinear governing equation of motion for
a C/BT hetero-nanotube including the effects of the magnetic
field and the nonlocality in the domain will now be developed.
By considering the prescribed relations for the external forces
and according to equation (18), the dynamic behavior of the nan-
otube based on the classical EB beam model is governed by

2M 2w (1 EA/L aw\2, \ 02w
—=m— — | = — ) dx| —
ax2 ot2 2 L Jo \ox x?
E Auy AT 9%w %W

X

o A

1-2v 09x? (20)

Assuming the nonlocal elasticity theory and using equa-
tion (14) one can achieve the following:

EI@+(M)@, }E/L dw 2dx @+EMXAT@

ax* ot2 2 L Jo \9x ax2 1-2v 9x2
92w 92w 1EA (L /ow)\? %w
—uAH2Z — — (eoa)? - _ 77/ ) dx| —
naH o~ Ea | (M 5 (2 L Jo \ox) ¥ ox

a4 4

7E1AfX2AUT ‘;T'f ﬂ;AHfZTIf =0. (21)

In this article, it is presumed that the two segments of the
structure, i.e. carbon and boron-nitride sections, have similar ge-
ometrical parameters and different material properties. There-
fore, by assuming equation (21) for two segments of the hetero-
nanotube and adding the subscript “C” for carbon and “BN” for
boron-nitride, two governing equations can be obtained as

Ecl el
¢ 2 L

ax* e B ax x? 1-2v  9x?

F*w 92w (1 ECA/L <6w)2d) 32w EcAuxcAT 82w
at? A

92w 92w 1ECA [* [ow 2 tw
_uwAH2Z T 2 o (et Ohle 7)) ax) 22
nAHy o~ @d) Moo (2 L J (ax> *) o

Ec Aayc AT *w *w
— & _uAH?— | =0 for O0<x<&L, 22
1—20 oxd Mg - § (22)
a4 a2 L P 2 a2 a2
) 1 EgNA E AT
EBNI() w erBNd w (1Epn / ow 3w n BN AXxBN “w
x4 at2 2 L o \ ax 9x2 1-2v 9x2

92w 22w 1 EgnA [Low\2, )\ o%w
—paH2 Y o a? gy 2 (L [ W) ax) v
nAHy == (e0q) |:mBN X202 (2 t ) U ) &) 5
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EpnAaygNAT %w 2 %w
+WW7MAHXQ =0 for ¢L <x<L. (23)
In order to generalize the outcomes of the present study, the
following dimensionless parameters are introduced:

% X W w t EcI e eopa EBN MBN
= —, = —, T= _— = —, a1 =— oy = —,
L L meLd VT L YTEC P T me
- _ C(chT L2 axBNAT L2 _ [LAH)%LZ (24)
oxCc = 1_ 20 r2 s OXxBN = 1_20 12’ 3x = Ecl s

in which r symbolizes the nanotube radius of gyration. By em-
ploying the above-mentioned variables, one can obtain:

92 w 2wy
(%) dx) axc ax2 —hsx 5z

4wy 32\A/1 1
ax4

2| o*wp Mw o, - 0t wr |
—€n ax2972 fO (()x) PE] + axc Prs +—h3XT>_{4 =0,

for 0<x<¢

(25)
azw o 2w 32 W
0(1 3x4 7 ( 3 fO (3 ) dX) ° +a1aXBN 8x2 _h 3x 35622
AW
2 W) (1 W ] _
—én [az ax2972 ( fo (d\g,) ) xE 7 +onden ot ax4 h3x ax* =0.

for e<x<1
(26)

The equations of motion can be simultaneously simulated
with the associated boundary/continuity conditions as follows:

dWi (0,7)  aWA(1,7)
x  x

essential boundaryconditions  (27)

Wi (0,7) =W (1, 7) = =0,

Wi (. T)|5<=g =W (%, T)|5<:g
oWi (x,7)| AWh(X. 1)
0 et (L, continuity conditions
2WL (R, T 2Ws (X, T . (28)
1-(2 ) =a 2-(2 ) atthe junctionof X = &
X P X et
Wi (X, 7) 3°Ws (&, 7)
= = =
ax3 e 1 %3 -

It is worth mentioning that equations (27) and (28) are imposed
on the governing equations defined in equations (25) and (26) in
the Galerkin-based finite element method.

3. Solution Methodology

As mentioned before, the vibrational governing equation of C-
BN hybrid nanotube subjected to the magnetic fluid in a thermal
environment given by equations (25) and (26) with the associated
boundary/continuity conditions described in equations (27) and
(28) can be decomposed using the finite element method. In this
study, the elements have two nodes and four degrees of freedom
represent the deflection and slope at both ends as follows:
E-W(®=0), &= 10| | d-WE=l).d= 22| (29

0X |3,—0 0X |5,

in which I, is the length of 1D element. Since each nanotube ele-
ment has four degrees of freedom, it is convenient to define the
following cubic displacement function for each element as

W, (%) = a1 + GoX + a3 %> + au%° (30)

and thereby the nodal displacements of that element at two end
nodes are defined by

{de}” = [df d df df] (31)

substituting conditions in equation (29) into the displacement
function defined by equation (30), yields the following displace-
ment function for each element as

W; (%) = [Ny Ny N3 Na](de), (32
where
2%3 — 3821, + 12 31, — 28212 + %13
N, = % N, = W,
—2%3 4+ 3%2] 31, — X212
Ny — %, N, = %‘ (33)

Assuming the displacement function in equation (32), the
Galerkin weighted residuals method (GWRM) with the interpola-
tion function N; (as the weight function) can then be applied on
equations (25) and (26). Moreover, the solution of the considered
problem is written by the following form:

W (%, 7) = W (X) exp (o7), i=1,2 (34)

Thereby, by presuming the weak form of the differential
equations, the governing equations of motion can be expressed
in matrix form given by

[M]S Wi + [K]S Wi — Ng [Kne ]S Wa =0, (35)
[MIEN W + [KIZN Wh — New [Kne 2N Wa =0, (36)

where [Kyn.|¢ and [Kn BN are the nonlinear stiffness matrices
for carbon and boron-nitride segments. The above-mentioned
matrices are defined by

Ie Lo
M = / NTNdz + €2 / (N)TN' dx,
0 0
I L le
(KIS = / (N)TN" d% — éxc / (N)TN'd% + hay / ()N dx
0 0 0

I L
_ e% |:&XC / (N//)T N” di*h’gx/ (N//)TN// d)-{l ,
0

0

le
[KNL]EC :[ (N’)TN’dS(, 37)
)
Le le
MPY = o / NTN d& + e2a / ()N dx,
0 0
L l, I

K™ = o / (N")'N" A% — a1 @xen / (NYTN' d% + hay / (NN’ dz

0 0 0
le le
—e? |:a15tng / (N"Y'N” dx—hs, / (N”)TN”dR],
0 0
I
[Kne]BN = / (N)'N’ dx (38)
0

in which the matrices [K] and [M] represent stiffness and
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Table 1: Properties of CNT and BNNT sections of hybrid nanotube.

Properties CNT BNNT
Young’s modulus (E) (TPa) (Cheng et al., 2019) 1 1.8
Density (p) (g/cm?) 2.3 2.18
Outer radius (nm) 3.5 3.5
Aspect ratio (L/2Rout) 100 100
Thickness (h) (nm) 0.34 0.34
Coefficient of thermal expansion (room temperature) (K1) —1.6 x 10°® —0.3 x 10°°
Coefficient of thermal expansion (high temperature) (K1) 1.1 x 10°° 0.2 x 107°

Table 2: Comparison of the nonlinear natural frequencies of clamped-clamped homogeneous beam with different initial displacement Wpax.

(on1 for)?
Winax/T GFEM* (Bhashyam & Prathap, 1980) RGFEM? (Bhashyam & Prathap, 1980) ASMC (Evensen, 1968) Present analysis
0.1 1.0006 1.0006 1.0006 1.0006
0.2 1.0024 1.0024 1.0024 1.0024
0.4 1.0096 1.0096 1.0096 1.0096
0.6 1.0216 1.0216 1.0216 1.0216
0.8 1.0383 1.0384 1.0384 1.0383
1 1.0598 1.0599 1.0600 1.0598
15 1.1343 1.1349 1.1349 1.1343
2 1.2381 1.2398 1.2398 1.2382
3 1.5319 1.5395 1.539% 1.5320
4 1.9376 1.9591 1.9592 1.9377
5 2.4520 2.4986 2.4988 2.4522

r = radius of gyration; Wmax = maximum initial amplitude.
2Generalized finite element method (GFEM).

PReduced GFEM (RGFEM).

¢Assumed space mode (ASM).

mass coefficients, respectively. After applying the bound-
ary/continuity conditions, using the assumed solution and per-
forming the usual assemblage process, the characteristic equa-
tion for the hybrid C/BN nanotube is extracted as

and this strategy is repeated until the selected convergence cri-
terion is satisfied.

4. Results and Discussion

2 _
(o [M]+ [K] + N [Kn]) {Ac} = 0. (39) In this section, at first, some comparative studies are performed

with the results of published works in the literature to verify
the soundness of the present analysis. Then, the nonlinear vi-
brational characteristics of hetero-nanotube are exhibited by
conducting some numerical examples and studying the vari-
ations of the natural frequencies and mode shapes of C/BN
nanotube.

where w and A, are the eigenvalue and eigenvector of the prob-
lem. Moreover, the non-dimensional nonlinear force N can be
computed as the summation of the axial forces for two segments
given by

18 k 2 o1 & ke 2
N = Nc¢+ Ngny = = W2, dx 4+ — W2 dx
c + Nen 2;/0 1% +2;/0 2%

4.1. Integrity of present analysis

1
58T K] (Ae) + AT [Kna™ (e (40)
To justify the integrity of our analysis, the following material and
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In order to solve the nonlinear eigenvalue problem described in
equation (39), one can try to compute the exact nonlinear mode
shape and the value of nonlinear frequency wy; corresponding
to this mode can then be calculated. First, the initial amplitude
of vibration is selected — here we assume that the initial ampli-
tude of the hybrid nanotube is the first mode shape of the lin-
ear system. Then the linear mode shape should be normalized
to attain the maximum desired amplitude Wpax. Thereby, the
nonlinear stiffness matrix for the whole nanotube [Kyy] is calcu-
lated. The linearized eigenvalue problem (39) leads to a modified
nonlinear mode shape A, as well as the corresponding nonlinear
frequency wni.. The obtained mode shape should be normalized
to get the desired maximum amplitude of the hybrid nanotube

geometrical properties for carbon and boron-nitride sections are
used in the simulations (see Table 1).

Since there is no research work on the nonlinear vibration
analysis of a doubly-clamped C/BN nanotube in the mag-
netic/thermal environment, in order to validate the results of
the current study, the natural frequencies of a homogenous
beam in comparison with the results obtained in the literature
are tabulated in Table 2. The comparison of the numerical values
presented in Table 2 shows the excellent agreement between our
analysis and those reported in Bhashyam and Prathap (1980) and
Evensen (1968). Although the obtained results are getting grad-
ually far from the references after Wnax/r = 2, their diversity is
insignificant and originates from different numerical
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Figure 2: Dimensionless frequency ratio (wnxi/wi) vs. the maximum deflection for (a) hsx = 0.5, AT = 200, room temperature, £ = 0.3, and e, = 0; (b) hsx = 0.5, AT = 200,
room temperature, ¢ = 0.3, and e, = 0.5; and (c) hsx = 0.5, AT = 200, room temperature, ¢§ = 0.8, and e, = 0.5.

algorithms. It is clearly obvious that the results computed
by the present analysis tend to be closer to the GFEM
results.

In this section, the nonlinear vibration analysis of hybrid nan-
otube made of carbon and boron-nitride segments is investi-
gated through plotting the variations of the first three natural
frequencies and mode shapes of the nanostructure. To this end,
Fig. 2a—c presents the ratio of nonlinear to linear frequencies
of the system vs. the maximum initial deflection of the nan-
otube. It is obvious that as initial deflection increases, the ratio
of nonlinear to linear frequencies is remarkably increased that
demonstrates the significant influence of the amplitude of vi-
bration on the nonlinear natural frequencies. According to the
plotted curves in Fig 2a, for the classical nanotube, the first non-
linear frequency is more sensitive to the initial condition of the
nanotube denoted by Wrax. In other words, the variations of the
first nonlinear frequency are more than the second and third
one for specific values of Wrax. It is clearly demonstrated that
the hetero-nanotube exhibits hardening behavior with respect

to the initial deflection. In the second part of this figure, Fig. 2b,
the effect of nonlocality of the nanotube is taken into account. It
is important to find that the frequency ratio (wni/w.) is dropped
in the case of the nonlocal theory compared to the classical one.
For a more in-depth investigation, Fig. 2c is presented, in which
& takes the value of 0.8 and the other parameters remain con-
stant compared to Fig. 2b. In Fig. 2b, the hybrid nanotube had
30% of the CNT length, and in Fig. 2c its percentage is 80%. It is
revealed that the difference between the values of the first and
second modes slightly increase. On the other hand, one can con-
clude that by increasing the contribution of the CNT in hetero-
nanotube the values of the frequency ratio will decrease for the
first natural frequencies.

Figure 3a-g depicts different configurations of the first three
nonlinear modes of the hybrid nanotube in different conditions.
In the first and second diagrams, the homogenous CNT and the
hybrid nanotube with ¢ = 0.3 are illustrated in the context of the
classical beam framework and in Fig. 3c, the hybrid nanotube
with & = 0.3 is plotted with the same parameters as the sec-
ond figure, but for the case of a nonlocal model with e, = 0.5.
In Fig. 3d, a larger value for the nonlocal parameter e, = 1 is as-
sumed. It is important to note that for the local beam model of a

020z Iudy 0} uo 3senb Aq 10G8185/L FOEEMb/POl/EE0L 0 L/10P/IOBIISGB-D[0ILIE-80UBADE/EPOl/WO0"dNO"dIUSPEOE/:SAJY WO} PEPEOJUMO(


http://mostwiedzy.pl

/\/\\ MOST WIEDZY Downloaded from mostwiedzy.pl

8 | Nonlocal vibration of carbon/boron-nitride nano-hetero-structure in thermal and magnetic fields

(a) 2 (d) 0.5{— 15t mode shape
— 1st mode shape ——2nd mode shape —
L5 —2nd mode shape 0.4 = 3rd mode shape

A= i

; \ , )4 Vo \

FLAIF IR LY, (. L

AN \V/ ] . //
B

15 ~ > -0.2 \

e
w

=
9

(4
-
N\

Dimensionless Displacement
>
~—

Dimensionless Displacement

0 0.2 0.4 0.6 0.8 1 ] 0.2 0.4 0.6 0.8 1
Dimensionless length Dimensionless length
b e
( ) 2 ( ) 0.6
= 1st mode shape = 1st mode shape
15 =—2nd mode shape 04 —2nd mode shape

// \ /\ —3rd mode shape

7/ =3rd mode shape
P k) X

1/ Pl N\ _/
NS N7 N\
/A AN

2 0.2 0.4 0.6 0.8 i =0 0.2 0.4 0.6 0.8 1
Dimensionless length Dimensionless length
(c) ()
o 1st mode shape 0. — 1st mode shape
“?['|=2nd mode shape “"||=2nd mode shape
=—3rd mode shape \ ——3rd mode shape \

0.6 0.6 /-
g / \ g / \
£ 04 £ 04
§ / /\\\ g / /\\
= =S
& 02 202
=] =}
= 0 2 0
=] =3
2 z
£-02 E-02
A / / a \ /

NG, B Y

g 0.2 0.4 0.6 0.8 1 09 0.2 0.4 0.6 0.8 1

Dimensionless length Dimensionless length
—— 1st mode shape
(9) . p

SN
Vi Vi
A
by i
1N/

-

= =
- )

=
9

=)

Dimensionless Displacement

0.2 0.4 0.6 0.8 1
Dimensionless length

Figure 3: Dimensionless displacement vs. dimensionless length of a CNT in several nonlinear vibrational modes for (a) hax = 0.5, Wiax/r = 5, AT = 0, room temperature,
&=1,e,=0;(b) hax = 0.5, Wrax/r = 5, AT = 200, room temperature, § = 0.3, e, = 0; (c) h3x = 0.5, Wiax/r = 5, AT = 200, room temperature, & = 0.3, e, = 0.5; (d) hsx = 0.5,
Wmax/T =5, AT = 200, room temperature, £ = 0.3, e, = 1; (€) h3x = 0.5, Wmax/r = 5, AT = 200, room temperature, & = 0.8, e, = 0.5; (f) hsx = 0, Wiax/r = 5, AT = 200, room
temperature, § = 0.3, e, = 0.5; and (g) hsx = 1, Wpax/r = 5, AT = 200, room temperature, £ = 0.3, e, = 0.5.

0202 Iudy 0} uo 1senb Aq $0581.85/1 ¥0BEMb/OPIl/EE0L 0 1/10P/AVEISqE-B]0IIE-80UBAPE/OPOI/LI0Y"dNO"OILLISPEDE//:SAY WO PAPEOUMOQ


http://mostwiedzy.pl

/\/\\ MOST WIEDZY Downloaded from mostwiedzy.pl

J——

(@) 4 : : ; : d) 15 5 | : ;

: : = 1st mode shape
= 1st mode //\ —2nd mode shape |

=—2nd mode . \[\ —3rd mode shape

=3rd mode

Dimensionless Displacement

' | ! i
10 1 2 3 4 5 & 0.2 D‘OA il ?.6 : 0.8 1
Wmax imensionless length
(b) 7 T T T T (e) O 1st mode shape

{ : : : = 2nd mode shape
— 15t mode i ' =—3rd mode shape

I S SO b S 5 —
6 ——2nd mode i i i TN
=3rd mode ) 1

E
N
g 1 \
: }\\\
it
Zo0s N\
: /[ N\
<
= 0
: \/ /
: /
E-0s \
= ot
------------ . /
1 i y i
0 1 2 3 4 5 &= 0.2 0.4 0.6 08 1
Wmax Dimensionless length

°
n

(c) 40 :f r :f :f =
O T s e S— A7 N
—2nd mode i i A / /
/

W]

=

Dimensionless Displacement

-0.5 J
= 1st mode shape
-1 \\/ ——2nd mode shape| |
—3rd mode shape
0 1 1 1 1 18 i j
0 1 2 3 4 5 -0 0.2 0.4 0.6 0.8 1
Wmax Dimensionless length

Figure 4: (a) Dimensionless frequency ratio (wn./wi) vs. the maximum deflection for h3, = 0.1, AT = 200, high temperature, £ = 0.3, e, = 0.1). (b) Dimensionless frequency
ratio (wni/wi) vs. the maximum deflection for hsy = 0.1, AT = 200, high temperature, § = 0.8, e, = 0.1. (c) Dimensionless frequency ratio (wni/w) vs. the maximum
deflection for hsx = 0.1, AT = 400, high temperature, £ = 0.3, e, = 0.1. (d) Dimensionless displacement vs. dimensionless length of a CNT in several nonlinear vibrational
modes for hsy = 0.1, Wnax/r = 5, AT = 200, high temperature, £ = 0.3, e, = 0.1. (¢) Dimensionless displacement vs. dimensionless length of a CNT in several nonlinear
vibrational modes for hsyx = 0.1, Wax/r = 5, AT = 200, high temperature, § = 0.8, e, = 0.1. (f) Dimensionless displacement vs. dimensionless length of a CNT in several
nonlinear vibrational modes for h3y = 0.1, Wiax/r = 5, AT = 400, high temperature, £ = 0.3, e, = 0.1.

020z Iudy 0} uo 3senb Aq 10G8185/L FOEEMb/POl/EE0L 0 L/10P/IOBIISGB-D[0ILIE-80UBADE/EPOl/WO0"dNO"dIUSPEOE/:SAJY WO} PEPEOJUMO(


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

AN\ MOST

homogeneous nanotube (Fig. 3a) and in the first mode, the max-
imum deflection occurs at the center of the nanotube, however,
as illustrated in Fig. 3b, the position of the maximum deflection
is slightly deviated from the center of the nanotube because of
the difference between the modulus of elasticity of the two seg-
ments. Moreover, in the nonlocal analysis and in the first mode,
the maximum deflection does not occur at the nanotube cen-
ter and the deviation is also significant for the second and third
modes of the third graph compared to the second one. For exam-
ple, in the third mode of the nonlocal analysis, the maximum
deflection does not take place in the center of the nanotube,
whereas for the classical beam theory the maximum deflection
is located at the center of the nanotube. By comparing the third
mode configurations for the classical and nonlocal analysis, it is
also worth mentioning that the third mode shape in the nonlocal
theory is quite different compared to the results obtained from
the classical beam theory. This means that taking into account
the influence of nonlocal elasticity has an evident effect on the
configuration of the mode shapes of the hetero-nanotube.

In order to better understand the effect of nonlocality, in
Fig. 3d, a higher value of the nonlocal parameter is considered.
As it can be seen, the shape of the modes does not significantly
change against the previous one in the first and second modes,
however, it has a meaningful effect of the configuration of the
third mode. It is obviously inferred that the greater values of the
nonlocal parameter have much more influence on the higher
mode shapes of the nanotube. Moreover, Fig. 3e is plotted by
considering the same parameters as in Fig. 3c but with a dif-
ference in the value of the length ratio &£. By comparing Fig. 3c
and e, one concludes that the configuration of the mode shapes,
especially in the case of the second and third one, might be re-
markably changed. In fact, it can be stated that the variation of
length ratio § may fundamentally alter the vibrational modes
of the hetero-nanotube in comparison with the homogenous
one.

Finally, in Fig. 3f and g, the effect of magnetic field on the vi-
brational modes of the system are investigated. It is observed
that the shapes of the vibrational modes do not appreciably
change and therefore the magnetic field has no meaningful ef-
fect on the configuration of nonlinear mode shapes.

Figure 4a—f presents the influence of high-temperature en-
vironment on the nonlinear natural frequencies as well as the
mode shapes of hetero-nanotubes. In Fig. 4a and b, the selected
parameters have the same values except for the length ratio that
is & = 0.3 for the first diagram and ¢ = 0.8 for the second one. It
can be clearly seen how the length ratio would affect the fre-
quency ratio (owni/wi) of the hybrid nanotubes and in particu-
lar how significantly it would increase the nonlinear to linear
frequency ratio of the first mode. Additionally, it is evident that
the frequency ratio shifts upward by increasing the contribution
of carbon segment in the hetero-nanotube. On the other hand,
Fig. 4c depicts the impact of the higher temperature change on
the variation of the nonlinear natural frequencies. According to
the obtained results, it is concluded that the higher tempera-
ture gradient dramatically increases the natural frequencies of
the system, especially for the first vibrational mode. Moreover,
it can be deduced that the nonlinear frequency of the hetero-
nanotube is more sensitive to the variation of the initial ampli-
tudes in a high-temperature environment. The current discus-
sion can be supplemented by further examinations based on the
results of Fig. 4d—f. As can be seen, the location of the maximum
amplitude will move to the left by considering higher tempera-
ture gradients when the contribution of the boron-nitride sec-
tion is dominant.

The simultaneous effects of the length ratio, size dependency,
magnetic field, and thermal environment on the nonlinear vi-
brational characteristics of a composite CNT/BNNT were eluci-
dated. The governing equations were derived within the con-
text of the EB beam theory framework in the presence of Erin-
gen’s nonlocal elasticity. The numerical results were extracted
by assuming the initial deflection similar to the first mode
shape of the linear problem. A nonlinear finite element formu-
lation was applied to discretize the governing differential equa-
tions. According to the findings of this study, it is concluded
that

1. the initial amplitude increases the nonlinear natural fre-
quencies of the nanotube, and especially in the case of the
fundamental frequency, its effect is much more meaningful,

2. the vibrational mode shapes might be very different when
the nonlocal parameter is included in the simulations. As a
result, the nonlocal analysis will lead to a deviation in the
location of maximum deflections;

3. high-temperature environment strongly affects the configu-
ration of the nonlinear mode shapes;

4. the location of the maximum amplitude will move to the left
by considering higher temperature gradients when the con-
tribution of the boron-nitride section is dominant.
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