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Abstract 

Design of modern antenna structures heavily depends on electromagnetic (EM) 

simulation tools. EM analysis provides reliable evaluation of increasingly complex 

designs but tends to be CPU intensive. When multiple simulations are needed (e.g., for 

parameters tuning), the aggregated simulation cost may become a serious bottleneck. As 

one possible way of mitigating the issue, the recent literature fosters utilization of faster 

representations, or surrogates, of the system at hand. Notwithstanding, conventional 

models are severely affected by the curse of dimensionality. In practice, modelling of 

antenna structures described by no more than a few parameters over narrow parameter 

ranges is possible. In the context of the structural complexity of modern antennas, this is 

hardly acceptable. This paper presents a novel technique for cost-efficient design-

oriented modelling of multi-band antennas. Our approach integrates a recently reported 

nested kriging framework and the response feature technology. This combination enables 

rendering of reliable surrogates valid within broad ranges of geometry parameters while 

using small training data sets. Benchmarking against conventional modelling methods 

demonstrates superiority of the proposed framework in terms of both the predictive 

power of the surrogate and its setup cost. Design applications for antenna optimization 

are discussed as well. 
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1. Introduction 

Recent years observed a steady increase of performance requirements imposed on 

antenna systems. These requirements are partially related to the emergence of new 

application areas, such as internet of things [1], [2], wearable devices [3], or tele-

medicine appliances [4] but also growing demands for additional functionalities, e.g., 

multi-functionality [5], multi-band operation [6], [7], circular polarization [8], [9], MIMO 

operation [10], [11], polarization/pattern diversity [12], or band notches in the case of 

ultra-wideband antennas [13]. Design of antennas meeting stringent specifications is a 

difficult endeavour, further aggravated by various constraints, related to physical size of 

the structure (miniaturization [14], [15]). Consequently, antenna geometries are becoming 

increasingly complex and described by more and more parameters. Due to the same 

complexity, EM-simulation tools are nowadays indispensable both for reliable 

characterization and for carrying out the design process. Unfortunately, common EM-

driven tasks such as parametric optimization [16,17], yield estimation [18], or tolerance-

aware design [19,20], typically involve massive simulations the computational cost of 

which may be of practical concern if not unmanageable.  

Utilization of faster representations (or surrogates) of full-wave simulation models 

is frequently recommended to alleviate the high CPU cost issue [21], [22]. The surrogates 

can be classified into two groups: physics-based (exploiting the system-specific 

knowledge, normally in the form of lower-fidelity models) and approximation (or data-

driven) ones [21]. One of the most recognized physics-based surrogate-assisted 

techniques in high-frequency electronics is space mapping (SM) [23], [24]. Other 

examples, more relevant to antenna design, include response correction algorithms [25], 
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feature-based optimization [26], or adaptive response scaling [27]. Yet, in the case of 

antennas, construction of reliable physics-based surrogates requires the employment of 

coarse-discretization EM simulations as the underlying low-fidelity models. These are 

relatively expensive in terms of the computational cost [28], which may limit the efficacy 

of the surrogate-based procedures. 

A potentially attractive alternative to physics-based models are data-driven 

surrogates, constructed by approximating sampled simulation data. Their popularity 

follows from some important advantages: no need for physical insight into the system of 

interest, transferability between application areas, low evaluation cost, and widespread 

access (e.g., DACE [29], SUMO [30], UQlab [31]). Commonly used data-driven 

modelling techniques include kriging [32],[33], radial basis functions (RBF) [34], 

Gaussian process regression (GPR) [35], neural networks [36],[37], support vector 

regression [38],[39], polynomial response surfaces [40], or fuzzy models [41]. 

Unfortunately, approximation surrogates are largely affected by the curse of 

dimensionality, i.e., a rapid growth of the number of training samples as a function of the 

system parameters and their ranges [42]. In particular, data-driven modelling of multi-

band antennas is seriously hindered beyond a few parameters of rather limited ranges. 

The latter is by no means sufficient in the design of antenna structures featuring complex 

topologies. The shortcomings of conventional approximation models stimulated the 

development of improved methods, e.g., high-dimensional model representation (HDMR) 

[43], feature-based modelling [44], or orthogonal matching pursuit (OMP) [45]. These 

address certain aspects of the modelling process and are applicable within particular 

scenarios, e.g., weak variable interaction (HDMR), or clearly dominating subsets of basis 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


functions (OMP). Other techniques work around computational complexity of training 

data acquisition by merging simulation data of various fidelities. The examples include 

space mapping [46],[47], Bayesian model fusion [48], co-kriging [49], or two-stage GPR 

[50]. Yet another option is domain confinement, where the surrogate is constructed 

within a parameter space region that contains high-quality designs (from the point of 

view of the relevant figures of interest) [51]-[54]. Approximation of such a subset is 

normally obtained from a set of pre-optimized reference designs with detailed 

formulation of the domain varying between implementations, e.g., [51]-[54]. 

Notwithstanding, domain confinement permits construction of reliable surrogates within 

wide ranges of parameters and operating conditions even in spaces of relatively high 

dimensionality. The technique of [54] has been further developed in [55] and [56] by 

enhancing the design of experiments procedure, leading to the improved predictive power 

of the surrogate without increasing the training data acquisition costs. 

In this paper, a novel modelling technique is proposed which incorporates a 

response feature methodology [44] into the nested kriging framework [54]. The primary 

purpose of the latter is to confine the surrogate model domain. The actual surrogate is 

constructed as the level of selected feature points of the antenna responses, which 

“flattens” the functional landscape to be approximated. Ultimately, a combination of both 

methodologies allows for setting up antenna models within broad parameter ranges using 

significantly reduced training data sets, both w.r.t. conventional models and the nested 

kriging operating on the entire responses. Here, frequency/level coordinates of the 

resonances as well as bandwidth-defining –10 dB levels of the reflection characteristic 

are employed as the response features. The benchmark set comprises a dual- and triple-
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band antenna. Our approach is favourably compared to the conventional data-driven 

models (kriging and RBF), as well as the nested kriging model, both in terms of the 

surrogate predictive power and the computational cost of training data acquisition. 

2. Nested Kriging Modelling with Response Features 

This section briefly recalls the nested kriging modelling technique (see [54] for 

more details), as well as provides an outline of the response feature methodology [44]. 

Subsequently, it formulates the proposed modelling framework, accommodating both 

aforementioned methods. 

2.1. Nested Kriging Modelling 

In the nested kriging technique [54], a confined surrogate model domain is 

determined based on a set of reference designs x(j) = [x1
(j) … xn

(j)]T, j = 1, …, p, pre-

optimized w.r.t. the selected performance vectors f(j) = [f1
(j) … fN(j)]. Here, fk, k = 1, …, N, 

are the performance figures of interest (e.g., target antenna operating frequencies in the 

case of multi-band antennas as considered in this paper). The objective space F is defined 

by the user-defined ranges for fk, fk.min  fk
(j)  fk.max, k = 1, …, N, that should be covered by 

the surrogate. It is advisable for {f(j)} to be distributed within F in a uniform manner [54]. 

f2

f1

f2.max

f2.min

f1.maxf1.min

F

f (k)

 
                                                      (a)                                                         (b) 

Fig. 1. The concept of nested kriging modelling illustrated for N = 2 and n = 3:  
(a) reference designs and the objective space F; (b) the image sI(F) of F and the normal vector 
v1

(k) at f(k), the manifolds M– and M+, along with the surrogate model domain XS (defined as the 
orthogonal extension of sI(F)). 
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The nested kriging technique utilizes two levels of models: the first one to 

establish the confined domain, and the second-level model being the actual surrogate. 

Both models are implemented using kriging interpolation [57]. The first-level model sI(f) 

maps the objective space F into the design space X, with {f(j),x(j)} being the training 

points (cf. Fig. 1). The image sI(F)  X of F delivers the first approximation of the region 

in which the surrogate is to be established. Because the first-level model is identified 

using limited information (in practice, only a small number of reference designs is 

available), it does not give a complete account for the location of the optimum designs 

corresponding to all f  F. In order to ensure that the domain contains these, sI(F) has to 

be expanded. This is achieved through its orthogonal extension. Let us define the 

following quantities: an orthonormal basis {vn
(k)(f)}, k = 1, …, n – N, of vectors normal to 

sI(F) at f, and the parameter variations xd = xmax – xmin within sI(F), where xmax = 

max{x(k), k = 1, …, p} and xmin = min{x(k), k = 1, …, p}. In addition, the vector of the 

coefficients of the extension is defined a 

(1) ( )
1( ) [ ( ) ... ( )] | ( ) | ... | ( ) |

2

TT n N
n N d n d n

D  
     α f f f x v f x v f                       (1) 

where D is a user-defined thickness parameter which sets the “span” of the extension 

(i.e., the ratio of the lateral to the tangential size of the surrogate model domain). The 

confined domain XS is located between the manifolds M+ and M– determined using the 

coefficients k as (see Fig. 1(b)) 

  ( )

1
: ( ) ( )

n N k
I k nk

M X 

 
   x x s f f v f                          (2) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The second-level model, being the actual surrogate, is constructed within the 

domain XS. The training set comprises pairs {xB
(k),R(xB

(k))}k = 1, …, NB, with R being the 

EM-simulation model of the antenna at hand.  

The important advantage of the above formulation is that it facilitates uniform 

sampling, as well as surrogate model optimization through an auxiliary mapping from the 

n-dimensional unit interval [0,1]n onto XS. The mapping is a composition of the following 

transformations: h1 from [0,1]n onto a Cartesian product F  [–1,1]n–N defined as 

1 1 1 1.min 1 1.max 1.min

.min .max .min 1

( ) ([ ... ] ) [ ( ) ...

... ( )] [ 1 2 ... 1 2 ]

T
n

N N N N N n

h h z z f z f f

f z f f z z

    

      

y z
                         (3) 

where z = [z1 … zn]T  [0,1]n, and h2 from F  [–1,1]n–N onto XS, defined as 

 

2 2 1 1

( )
1 1

1

( ) ([ ... ] ) ([ ... ] )

([ ... ] ) ([ ... ] )

T T
n I N

n N
T k T

N k k N n N
k

h h y y y y

y y y y y





   



x y s

v
                         (4) 

The overall transformation H from [0,1]n onto XS  is then a composition of h1 and h2 

2 1( ) ( ( ))H h h x z z                                            (5) 

As mentioned before, the mapping H facilitates uniform sampling in XS as a set of 

uniformly distributed samples {xB
(k)} in XS can be obtained as {H(zB

(k))}, where {zB
(k)} is 

the uniform data set in [0,1]n. Furthermore, it is possible to optimize the surrogate model 

in XS by operating within the unit hypercube and then employing the mapping H (cf. 

Section 2.4). Finally, a good initial point for parametric optimization within XS can be 

conveniently generated using the first-level model as x0 = sI(ft). 
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                                       (a)                                                                     (b) 

Fig. 2. Example input characteristics and the feature points (here, corresponding to antenna 
resonances and –10 dB reflection levels): (a) dual-band antenna, (b) triple-band antenna. 

 

2.2. Response Features 

The response feature approach [26], [58], reformulates the design problem in terms 

of the characteristic points (features) of the system response. The points are selected so as 

to be sufficient to evaluate the design quality. The underlying rationale is that the 

dependence of the feature point coordinates on design variables is normally only weakly 

nonlinear in comparison to the nonlinearity of the entire responses. In many cases, 

especially multi-band antennas [58], this can make a significant difference in terms of the 

computational cost of both modelling process and design optimization. 

In the design of multi-band antennas, the frequency locations of the antenna 

resonances and the points corresponding to –10 dB level of reflection are of interest. 

These points can be extracted from the EM simulation results and then employed to 

allocate the resonances at the required operating frequencies and/or optimize the antenna 

for maximum bandwidth (see Fig. 2). 
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EM 
Solver

Calculate extension coefficients
 a (f ) = D |dxVn (f)|

T

Acquire reference designs x(j)   Uf (f)

Identify first-level surrogate model 
sI (f) : F  X

Define surrogate model domain XS 

by manifolds M– and M+ 

Design of experiment:
Allocate samples uniformly onto XS

Acquire training data : xB
(k)

Identify the final, second-level 
surrogate model

Final surrogate model 
set up in XS 

Thickness 
parameter D

Optimize 
antenna 
for f (j) 

expressed 
w.r.t. RF

(j)

Training set 
{f(j) x(j)},  

j = 1, …, p

Training set 
{xB

(k) RF(xB
(k)) }, 

k = 1, …, NB 

Define the objective space F

Extract response features RF(xB
(k))  

EM-simulated 
data  

{ fB
(k)(xB

(k))}, 
k = 1, …, NB 

 

Fig. 3. Flow diagram of the feature-based nested kriging modelling methodology. 
 

2.3. Incorporation of Response Features into Nested Modelling Framework 

Let us denote the feature points referring to p antenna resonances as RF(x) = [f1(x) 

 f2(x) … fp(x)  l1(x)  l2(x) … lp(x)]T, where fk and lk stand for their frequency and level 

coordinates, k = 1, …, p, respectively. In feature-based nested kriging, both the first-level 

surrogate and the domain definition are identical to that presented in Section 2.4. Whereas 

the training set for the second-level surrogate consists of the pairs of the response feature 

vectors RF(xB
(k)) (rather than the original responses) and the corresponding training 

designs {xB
(k), RF(xB

(k))}k = 1, …, NB. Assuming that the design objectives can be uniquely 
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quantified using the selected feature points (the surrogate merely provides a prediction 

about the feature coordinates at the design of interest x  XS) modelling of RF rather than 

R does not lead to any loss of information from design purposes point of view.  

The steps undertaken to construct the surrogate model within the feature-based 

nested kriging framework are the following (see also Fig. 3). First, the objective space F is 

defined, e.g., by the ranges of the antenna operating frequencies to be covered by the model 

(cf. Section 2.1). Subsequently, the reference designs x(j), j = 1, …, p, are obtained and 

utilized for setting up the first-level surrogate sI.  

Next, the surrogate model domain is established (cf. (3)) with the use of the normal 

vectors vn
(k), k = 1, …, n – N, and the expansion coefficients k. Within that domain, the 

training data {xB
(k)}k = 1, …, NB, is allocated by transforming the normalized training data 

samples {zB
(k)}k = 1, …, NB, from the unit hypercube [0,1]n  through the mapping H (6). Here, the 

normalized samples are obtained using Latin Hypercube Sampling [59]. Subsequently, the 

EM model data R(xB
(k)), k = 1, …, NB, is acquired and the response features RF(xB

(k)), k = 1, 

…, NB, are extracted. Finally, the surrogate is identified based on the training set 

{xB
(k),RF(xB

(k))}k = 1, …, NB. The surrogate model yields the feature point coordinates of the 

antenna response corresponding to any design x from the constrained domain XS. 

3. Results 

This section provides a numerical verification of the modelling framework of 

Section 2, as well as comparisons with benchmark procedures: the conventional 

approximation models (kriging and RBF) and the nested kriging model [54]. Table 1 

reports the modelling errors (average relative RMS), estimated based on 100 independent 
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random test points. It should be noted that in the case of the feature-based nested kriging, 

the errors of the frequency coordinates of the characteristic points are presented.  

The proposed methodology has been demonstrated using multiband antennas: a dual- 

(Antenna I) and triple-band antenna (Antenna II), shown in Fig. 4(a) and Fig. 6(a), 

respectively. Both antennas are implemented on the RO4350 substrate (r = 3.48, h = 0.762 

mm) and fed by a coplanar waveguide.  

Antenna I [60] is described by the following design variables: x = [l1 l2 l3 w1 w2 

w3]T, with l0 = 30, w0 = 3, s0 = 0.15 and o = 5 being fixed (all dimensions in mm). The 

geometry parameters of Antenna II [61] are: x = [l1 l2 l3 l4 l5 w1 w2 w3 w4 w5]T; where l0 = 

30, w0 = 3, s0 = 0.15 and o = 5 are fixed (all dimensions in mm). Antenna. The 

computational models of both structures are implemented in CST Microwave Studio and 

simulated using its time-domain solver.  

The surrogate models have been constructed using the following sizes of training data 

sets: 20, 50, 100, 200, 400, and 800 samples (the adopted value of the thickness parameter 

was D = 0.05).  

l0

w0

s0

w1

w2

w3

l1

l2

l3

o

2 2.5 3
f
1

[GHz]

4

4.5

5

5.5

f 2 [
G

H
z]

 
                                                (a)                                                                  (b) 

 

Fig. 4. Uniplanar dual-band dipole antenna [60]: (a) geometry, (b) allocation of the reference 
designs in the objective space. 
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3.1. Dual-Band Antenna 

The goal is to construct the surrogate model valid for the following ranges of 

operating frequencies: 2.0 GHz ≤ f1 ≤ 3.0 GHz (lower band), and 4.0 GHz ≤ f2 ≤ 5.5 GHz 

(upper band). The reference designs x(j), j = 1, …, 10, are allocated as shown in Fig. 4(b). 

The lower and upper bounds for design variables, derived from x(j), are l = [27 5.0 16.5 

0.22 1.8 0.5]T, and u = [40 12 23.5 0.6 4.3 2.7]T.  

The results presented in Table 1 reveal that the feature-based surrogate is far more 

accurate than the other benchmark models. A remark should be made that the model 

predictive power fluctuates for training data set sizes comprising more than 100 samples. 

This is due to the fact that the variance of the model error estimation and the error itself, here, 

around a fraction of percent, are at a similar level. 

In the following, the examples of design applications of the feature-based nested 

kriging model for antenna optimization are presented. Table 2 and Fig. 5 show the results 

obtained for the surrogate set up with 50 training samples and four selected pairs of the 

target operating frequencies. It should be emphasized that the predictions yielded by the 

surrogate are indeed very accurate. As a matter of fact, even the initial designs obtained for 

the target vector ft with the first level model as x(0) = sI(ft) are of high quality (see Fig. 5). 

3.2. Triple-Band Antenna 

In the case of Antenna II, we aim at constructing the surrogate valid for the 

operating frequencies fk, k = 1, 2, 3, f2 = f1k1, f3 = f2k2, within the following ranges: 1.5 

GHz ≤ f1 ≤ 2.5 GHz, 1.2 ≤ k1 ≤ 1.6, and 1.2 ≤ k2 ≤ 1.6. Here, the objective space consists 

of the vectors [f1 k1 k2]T, and the operating frequencies are recalculated as above. Figure 

6(b) shows the allocation of the reference designs (detailed data can be found in [61]). 
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The lower and upper bounds for design variables are: l = [30 5.0 20 5.0 15 0.2 0.2 0.2 0.2 

0.2]T, and u = [50 15 30 15 21 2.2 4.2 2.2 4.2 2.2]T. Table 3 reports the modelling errors 

(average relative RMS), calculated based on 100 independent random test points. 

Table 1 Modelling Results for Antenna I 

Number 
of 

Training 
Samples 

Relative RMS Error 

Conventional 
Kriging 
Model 

Conventional 
RBF 

Nested 
Kriging 

Model [54] 

Feature-based 
Nested Kriging 

[this work] 

20 24.5 % 26.3% 19.0 % 1.43% 

50 21.7 % 24.9 % 9.9 % 0.51% 

100 17.3 % 19.8 % 6.4 % 0.39% 

200 12.6 % 14.3 % 4.4 % 0.56% 

400 9.3 % 10.5 % 3.8 % 0.43% 

800 7.2 % 8.7 % 3.4 % 0.46% 

 

 
                                                 (a)                                                         (b) 

 
                                                 (c)                                                         (d) 

Fig. 5. Optimization results for Antenna I using feature-based nested kriging: EM-
simulated antenna responses at the initial designs (…..) obtained with the surrogate, and 
the optimized responses (—). Required operating frequencies are marked using vertical 
lines: (a) f1 = 2.45 GHz, f2 = 5.3 GHz, (b) f1 = 2.2 GHz, f2 = 4.5 GHz, (c) f1 = 3.0 GHz, f2 
= 5.0 GHz, and (d) f1 = 2.1 GHz, f2 = 4.2 GHz.  

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 2 Optimization Results for Antenna I 

Target Operating 
Conditions 

Geometry Parameter Values [mm] 

f1 [GHz] f2 [GHz] l1 l2 l3 w1 w2 w3 

2.45 5.30 33.78 8.63 18.16 0.30 2.11 1.50 

2.20 4.50 34.99 6.62 18.60 0.44 3.89 1.83 

3.00 5.00 28.69 9.75 19.80 0.37 2.75 1.09 

2.10 4.20 36.42 6.32 19.79 0.45 3.97 1.81 

 

l1

l2

l3

l4

l5

w1

w2

w3

w4

w5

l0

w0

s0

o

  
                                              (a)                                                                           (b) 
Fig. 6. Uniplanar triple-band dipole antenna [52]: (a) geometry, (b) allocation of the reference 
designs in the objective space. 

 

Table 3 Modelling Results for Antenna II 

Number of 
Training 
Samples 

Relative RMS Error 

Conventional 
Kriging Model 

Conventional 
RBF 

Nested Kriging 
Model [54] 

Feature-based 
Nested Kriging  

[this work] 

20 28.5 % 30.1 % 38.9 % 2.65 % 

50 22.7 % 23.5 % 16.0 % 0.25 % 

100 19.9 % 19.8 % 11.2 % 0.22 % 

200 18.6 % 19.2 % 9.9 % 0.19 % 

400 17.2 % 18.8 % 9.7 % 0.14 % 

800 16.8 % 17.4 % 7.8 % 0.20 % 
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Table 4 Optimization Results for Antenna II 

Target Operating  
Frequencies  

[GHz] 

Geometry Parameters  

[mm] 

f1 f2 f3 l1 l2 l3 l4 l5 w1 w2 w3 w4 w5 

1.6 2.56 4.09 39.97 5.40 32.19 8.56 21.82 0.22 0.70 0.37 1.42 0.83 

1.8 2.34 3.51 39.98 7.12 33.85 7.00 23.45 0.74 1.49 0.21 1.82 0.75 

2.1 2.94 4.12 37.61 10.36 31.03 10.73 22.85 051 1.43 1.17 1.26 0.41 

2.4 3.36 5.04 36.20 12.06 28.39 11.83 21.34 0.59 1.15 1.15 0.75 0.39 

 

1 2 3 4
Frequency [GHz]

-30

-20

-10

0

1 2 3 4
Frequency [GHz]

-30

-20

-10

0

 
       (a)                                                         (b) 

2 3 4
Frequency [GHz]

-30

-20

-10

0

2 3 4 5
Frequency [GHz]

-30

-20

-10

0

 
       (c)                                                         (d) 

Fig. 7. Optimization results for Antenna II using feature-based nested kriging: EM-
simulated antenna responses at the initial designs (…..) obtained with the surrogate, and 
the optimized responses (—). Required operating frequencies are marked using vertical 
lines: (a) f1 = 1.6 GHz, k1 = 1.6, k2 = 1.6 (f2 = 2.56 GHz, f3 = 4.09 GHz), (b) f1 = 1.8 GHz, k1 = 1.3, k2 = 
1.5 (f2 = 2.34 GHz, f3 = 3.51 GHz), (c) f1 = 2.1 GHz, k1 = 1.4, k2 = 1.4 (f2 = 2.94 GHz, f3 = 4.12 GHz),  
(d) f1 = 2.4 GHz, k1 = 1.4, k2 = 1.5 (f2 = 3.36 GHz, f3 = 5.04 GHz). 

  
The results obtained for both antennas are consistent: modelling the feature-point 

coordinates instead of the complete responses allows for achieving a considerably better 

predictive power of the surrogate. At the same time, a very small number of training 

samples is required to set up an accurate model. 
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The results of antenna optimization, carried out for the sake of supplemental 

verification, have been shown in Table 4 and Fig. 7. The process was executed for four 

selected pairs of the target operating frequencies, using the feature-based nested kriging 

surrogate set up with 50 training samples. Here, the quality of the initial designs x(0) = sI(ft) 

is not as good as in the case of Antenna I. Nevertheless, the operating frequencies of the 

optimized designs are allocated as required.  

3. Conclusions 

The paper proposed a framework for low-cost surrogate modelling of multi-band 

antennas. Our methodology employs the nested kriging technique and the response 

feature approach. A combination of domain confinement with restricting the modelling 

process to the selected characteristic points of the antenna responses permits rendering 

reliable surrogates using very small training data sets. Our methodology is validated 

through dual- and triple-band antennas and favourably compared to the benchmark 

techniques, conventional data-driven models and the nested kriging operating on the 

entire antenna responses.  

The surrogates constructed at the level of selected feature points do not carry full 

information about the relevant antenna characteristics. On the other hand, focusing the 

scope of the model on the coordinates of important portions of the responses (here, 

resonance allocation) leads to a dramatic reduction of the EM simulation data that needs to 

be acquired to secure the appropriate predictive power of the surrogate. The adequacy of 

such a model depends on its intended use. Having in mind that parametric optimization is 

one of the most commonly executed tasks, the provided application examples do 

demonstrate that the presented framework might be a useful antenna design tool. 
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