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Exploration of design tradeoffs for aerodynamic surfaces requires solving of multi-objective optimization (MOO)

problems. The major bottleneck here is the time-consuming evaluations of the computational fluid dynamics (CFD)

model used to capture the nonlinear physics involved in designing aerodynamic surfaces. This, in conjunction with a

large number of simulations necessary to yield a set of designs representing the best possible tradeoffs between

conflicting objectives (referred to as a Pareto front),makesCFD-drivenMOOvery challenging.This paper presents a

computationally efficient methodology aimed at expediting theMOO process for aerodynamic design problems. The

extreme points of the Pareto front are obtained quickly using single-objective optimizations. Starting from these

extreme points, identification of an initial set of Pareto-optimal designs is carried out using a sequential domain

patching algorithm. Refinement of the Pareto front, originally obtained at the level of the low-fidelity CFD model, is

carried out using local response surface approximations and adaptive corrections. The proposed algorithm is

validated using a few multi-objective analytical problems and an aerodynamic problem involving MOO of two-

dimensional transonic airfoil shapes where the figures of interest are the drag and pitching moment coefficients.

Amultifidelity model is constructed using CFDmodel and control points parameterizing the shape of the airfoil. The

results demonstrate that an entire or a part of the Pareto front can be obtained at a low cost when considering up to

eight design variables.

Nomenclature

A = cross-sectional area, m2

a∞ = speed of sound, m∕s
Cd = drag coefficient, d∕�q∞c�
Cl = lift coefficient, l∕�q∞c�
Cm = pitching moment coefficient, M∕�q∞c2�
c = chord length, m
c = low-fidelity model output
d = drag force, N
d = trust-region radius, m
f = high-fidelity model output
H = objective function value
l = lower bound of x
j = single-objective optimization iteration
k = multi-objective optimization iteration
l = lift force, N
M = pitching moment
M∞ = Mach number, V∞∕a∞
N = total Pareto optimal solutions
Nc = number of low-fidelity model evaluations
Nf = number of high-fidelity model evaluations

n = number of design variables
q∞ = dynamic pressure, 1∕2ρ∞V2

∞
s = surrogate model output

u = upper bound of x
V∞ = flow speed, m∕s
x = design variables, m
δ = trust-region radius
εH = norm of H from last two iterations
εx = norm of x from last two iterations
εδ = norm of δ from last two iterations
ρ∞ = density, kg∕m3

I. Introduction

D ESIGNofmodern engineering systems often involves the use of
accurate physics-based computational models. The fidelity of

the simulations, for example, in terms of discretization density of the
structure at hand, increases when there is a need for higher accuracy
and capturing nonlinear physics and nonlinear interactions between
system disciplines, which is often required in the case of new or
unconventional systems [1]. Use of accurate physics-based computer
simulations for design purposes can pose significant challenges due to
1) their high computational cost (often ranging from a few hours to
days or even weeks on high-performance computing clusters); 2) a
large number of design variables, constraints, and objectives (which
may be conflicting); and 3) a large number of model evaluations
needed by state-of-the-art optimization techniques. In this paper, an
efficient approach is proposed to determine the best possible tradeoffs
between conflicting objectives for design exploration with accurate
simulations of the flowpast aerodynamic surfaces, such as thewings of
an aircraft or the rotor blades of helicopters and wind turbines.
In this paper, an efficient multifidelity framework is proposed for

multi-objective aerodynamic design exploration. Our algorithm
determines the entire Pareto quickly using two levels of physics-
based aerodynamics models. In particular, two single-objective
optimal designs are determined using a multifidelity trust-region
optimization algorithm with a low-fidelity model derived by a sim-
plified modeling method [2] and adaptation using output space
mapping (SM) [3]. The Pareto optimal solutions spanning between
the two single-objective optimal points are obtained by relocating
sequentially from one end of the front to another followed by a refine-
ment process. For this task, the sequential domain patching (SDP)
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technique is adopted here from the work by Koziel and Bekasiewicz
[4] in the area of electrical engineering and extended to aerodynamic
design exploration. In [4], surrogate-based optimization (SBO) is
performed using a local data-fitmodel [5], which is constructed based
on low-fidelity model evaluations that are sparsely sampled in the
vicinity of the current point on the Pareto front, and subsequently
corrected using a single high-fidelity model evaluation and an addi-
tive correction [3,6].
The distinct features of the novel aerodynamic design exploration

approach presented in this paper include the following: 1) two
Pareto-optimal points spanning the portion of the Pareto front to be
explored are identified at low cost using multifidelity methods and a
single-objective optimization (SOO) algorithm; 2) depending on the
computational budget, either the entire Pareto or a part of it can be
explored; 3) the proposed approach does not use metaheuristic
algorithms (such as multi-objective genetic algorithms [MOGAs]
[7] and multi-objective evolutionary algorithms [MOEAs] [8]); and
4) gradient information is not used to determine the Pareto front.
This paper is organized as follows. The next section gives a broad

overviewofmulti-objective design optimization approaches, including
works in the area of aerodynamic design. The third section gives the
details of the proposed aerodynamic design exploration algorithm. In
the following section, the proposed approach is characterized using
analytical problems and the aerodynamic design exploration of tran-
sonic airfoil shapes in viscous flow. The paper ends with conclusion
and remarks on future work.

II. Background

Design exploration of aerodynamic surfaces with multiple con-
flicting objectives can be performed by 1) parametric search guided
by expert knowledge, 2) minimization of the aggregate objective
function using SOO algorithms, or 3) simultaneous minimization of
multiple objectives using multi-objective optimization (MOO) rou-
tines. The first usually fails to yield optimal designs; however, it is
frequently used to bypass difficulties pertinent to rigorous optimiza-
tion. In the SOO approach, the aggregated objective function is
typically formed by a linear combination of all objectives with the
weighting coefficients set to express the designer preferences (see,
e.g., [9–13]). If the objective and constraint gradients can be com-
puted using adjoint sensitivity information [14], the SOO problem
can be solved efficiently using the epsilon-constrained method [15].
The disadvantage is that only one Pareto-optimal design is found per
SOO algorithm run, and the location of this design with respect to the
overall Pareto front is unknown. Furthermore, themethod is unable to
identify nonconvex portions of the front.
In theMOO approach, the goal is to obtain designs representing the

best possible tradeoffs between conflicting objectives. It is typically
found in the form of a Pareto set (a discrete representation of the Pareto
front) [11]. Population-based metaheuristics are the most popular
solution approaches [7,8,16–20]. Examples include evolutionary algo-
rithms (EAs) [16],MOGAs [7], andMOEAs [8].Othermulti-objective
metaheuristic approaches include particle swarm optimization [17],
differential evolution [18], firefly [19], and cuckoo search [20]. Unlike
the SOO approach, these population-based techniques are capable of
generating the entire Pareto set in a single algorithm run.Unfortunately,
metaheuristics require numerousmodel evaluations, which limits their
use to aerodynamic design exploration problems of low complexity
(i.e., problems with a low number of designable parameters and
simulations with a low number of degrees of freedom).
Surrogate-based optimization (SBO) [5,21] techniques have

recently become popular as a means of addressing the high computa-
tional cost of the optimization process. The main steps of the SBO
procedure are 1) sampling the design space using a design of experi-
ments technique of choice (e.g., [22,23]), 2) acquiring the training
data through high-fidelity model simulations, 3) constructing the
surrogatemodel using the observations, and 4) updating the surrogate
through allocation of additional samples. Popular surrogatemodeling
approaches include response surface approximations [5], radial-
based function models [21], and kriging interpolation [21]. New
samples (so-called infill points) are assigned using appropriate infill

criteria [21], which may involve identification of approximated
optimal designs (such as Pareto-optimal solutions in case of MOO).
The SBO process plays a central role in surrogate-assisted MOO

algorithms. Examples of such algorithms include Pareto-based efficient
global optimization [24] (ParEGO), which uses the weighted-sum
approach, and the Pareto set pursuing (PSP) approach [25], which uses
global surrogate models for MOO. A global surrogate-assisted MOO
with constraints based on expected improvement of the objective func-
tions is described in [26]. The inexact pre-evaluation approach [27] is
extended in [28] for MOEAs. Locally constructed radial-basis function
models, adaptive sampling, and surrogate modeling are combined for
MOGAs in [29]. A global approximation-basedMOO for robust design
under interval uncertainty is described in [30]. Finally, surrogate-assisted
MOO using global and local models is introduced in [31].
Recent applications of surrogate-assisted MOO algorithms for

aerodynamic shape optimization involve various combinations of
metaheuristics and surrogate modeling methods. Zhang et al. [32]
used computational fluid dynamics (CFD) models and kriging sur-
rogate models along with the NSGA-II algorithm to perform MOO
on high-speed train head shapes. Wang et al. [33] performed an
aerodynamic MOO to maximize the pressure ratio and adiabatic
efficiency of compressor rotors using response surface models and
MOGA [7]. Leusink et al. [34] performed aerodynamicMOO design
of helicopter blades with MOGA using Gaussian process regression
techniques [21] to construct the surrogate models. Amrit et al. [8] and
Leifsson et al. [35,36] used MOEAs, kriging surrogate models, and
design space confinement strategies to perform MOO of transonic
airfoil shapes. Fincham and Friswell [37] used MOGA and radial-
basis functions models [5,21] to represent aerodynamic surfaces and
performed a multi-objective aerodynamic shape optimization of
camber morphing airfoil shapes.
Multifidelity methods [21,38] use information from models of

varying degree of fidelity to leverage the computational speed-up
of the low-fidelity models and the accuracy of the high-fidelity ones.
A typical approach is to use the fast low-fidelity models to accelerate
the design optimization process and yield initial approximations of
the optimum designs, which is followed by (usually) iterative refer-
ences to the high-fidelity models (through various model manage-
ment strategies) aimed at refinement of the solution accuracy.
Low-fidelity modeling approaches include simplified modeling

methods (e.g., simplified governing equations [39] and coarse dis-
cretization [2]), projection-based methods (e.g., proper orthogonal
decomposition [40] and reduced basis method [41]), and data-fit
methods (e.g., radial basis functions [5], kriging [21], and support
vector regression [42]).
Model management strategies include adaptation, fusion, and filter-

ing. Adaptation approaches can be divided into global methods (e.g.,
efficient global optimization [EGO] using global data-fit models and
infill criteria based on expected improvement to balance exploitation
and exploration [21]) or local methods (e.g., SBOmethods using local
data-fit models [21] and multifidelity trust-region methods using cor-
rected low-fidelity models with the corrections classified as additive
[6], multiplicative [43], comprehensive [44], or SM [3]). Fusion
approaches evaluate the low- and high-fidelity models on a given set
of samples and subsequently combine the outputs in one model (e.g.,
cokriging [45] and Bayesian regression [46]). In filtering methods, the
high-fidelity model is invoked following the evaluation of a low-
fidelity filter (e.g., the multifidelity stochastic collocation approach
[47]). Multifidelity methods have been applied successfully to single-
objective aerodynamic design problems (see, e.g., [2,39,43]). The use
of multifidelity models for multi-objective aerodynamic design prob-
lems, however, is not as well studied. This work presents the applica-
tion and extension of the SDP technique [4] to aerodynamic design
exploration.

III. Methodology

This section describes design exploration using SDP for Pareto set
identification and gives the details of the MOO framework as well as
multifidelity modeling.
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A. Definition of the Pareto Front

Here, the concept of Pareto front is explained using a specific

example of an aerodynamic design problem. The goal is to find a

tradeoff between various aerodynamic forces, such as lift, drag, and

pitchingmoment coefficients, denoted asCl:f,Cd:f, andCm:f , respec-

tively. Let an accurate high-fidelity aerodynamics simulation model

be denoted as f�x� � �Cl:f�x� Cd:f�x� Cm:f�x� �T , where x is the
n × 1 vector of design variables.
LetFk�x�, k � 1; : : : ; Nobj, be a kth design objective of interest. If

Nobj > 1 then any two designs, x�1� and x�2� for which Fk�x�1�� <
Fk�x�2�� and Fl�x�2�� < Fl�x�1�� for at least one pair k ≠ l, are not

commensurable; that is, none is better than the other in the multi-

objective sense.We define a Pareto dominance relation≺, saying that
for the two designs x and y, we have x ≺ y (x dominates y) ifFk�x� ≤
Fk�y� for all k � 1; : : : ; Nobj, and Fk�x� < Fk�y� for at least one k
[48]. The goal of the MOO is to find a representation of a so-called

Pareto front (of Pareto-optimal set) XP of the design space X, such
that for any x ∈ XP, there is no y ∈ X for which y ≺ x.

B. Pareto Front Exploration Using Sequential Domain Patching

The proposed Pareto front exploration approach is based on the

SDP algorithm proposed by Koziel and Bekasiewicz [4], and it is

adopted and applied in this work for the multifidelity aerodynamic

design. The approach proposed in this paper is formulated in terms of

two scalar design objectives, F1 and F2, and produces a sequence of

designs, x�k��, k � 1; 2; : : : ; N, where x�1�� and x�N�� are the two

ends of the Pareto front to be explored and N is the total number

of Pareto optimal points. To obtain the entire Pareto set, initially,

two points representing the extreme Pareto-optimal solutions are

obtained byminimizing individual objectives, one at a time, as shown

in Fig. 1a. If, instead of the entire front, only its part needs to be

explored, then two SOOs are carried out for one of the objective

functions while subjecting the second objective function into a non-

linear constraint to obtain two target points on the front, as indicated

in Fig. 1b. An alternative method is a weighted-sum approach [13]

that can be used to obtain two points on the Pareto front per the

designer preferences encoded in the weighting factors.

Once the extreme ends of the Pareto front to be explored are

obtained, the SDP-based MOO algorithm is executed, as explained

in Sec. II.C, to obtain an initial Pareto set (see Fig. 2). The optimal

solutions in the initial Pareto are explored within the patches con-

structed in the vicinity of the starting points as shown in Fig. 2a. The

procedure continues until the entire distance between x�1�� and x�N��
has been traversed. Because of the high cost of the high-fidelity

model involved in the multi-objective aerodynamic problem, the

algorithm is designed so as to obtain the initial Pareto set at the level

of an auxiliary low-fidelity model. Subsequently, refinement of the

initial Pareto set is performed using a limited number of high-fidelity

model evaluations and response surface approximation models to

leverage the accuracy of the final Pareto set (Fig. 2a). This process is

explained in detail in Secs. II.C–II.E.

C. Multifidelity, Multi-Objective Aerodynamic Sequential Domain

Patching Algorithm

This section describes the proposed SDP-based aerodynamic

MOO algorithm in detail. The first extreme end of the Pareto front

is a solution to the SOO problem of the form

x�1�� � arg min
l≤x≤u

F1�x� (1)

subject to

g�x� ≤ 0

where g�x� stands for the inequality constraints for the problem at

hand. x�N�� is obtained in a similar manner by minimizing F2 sub-

jected to appropriate inequality constraint.
The cost of solvingEq. (1) can be high depending on the dimension

of the problem and the cost of the model evaluations. To expedite the

process of solving Eq. (1), a trust-region-based multifidelity optimi-

zation algorithm [39] is executed. The multifidelity model is con-

structed using output SM [49] in this work. A combination of the

accurate high-fidelity model f and a model c, which is of lower

fidelity than f and computationally faster to evaluate, is exploited by
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Fig. 1 Exploration of a) the entire Pareto front and b) only part of the Pareto front.
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Fig. 2 Pictorial representation of the sequential domain patching method: a) patches in the design space; b) refinement of the Pareto front in the
objective space.
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the output SM. Here, the low-fidelity model c is based on coarse-
discretization CFD simulations (see, e.g., [39] for a discussion on
approaches for low-fidelity modeling). The output SM algorithm

produces a sequence x�1;j�, j � 0; 1; : : : , of approximate solutions
to Eq. (1) as [49]

x�1;j�1� � arg min
x;kx�1;j�−x�1;j−1�k≤δ�j�

F1�s�1;j��x�� (2)

where s�1;j��x� � �
C�1;j�
l:s �x� C�1;j�

d:s �x� C�1;j�
m:s �x�

�
T is the surro-

gate model at iteration j. The output SM surrogate model is

s�1;j��x� � A�1;j� ∘ c�x� �D�1;j� (3)

where ∘ denotes componentwise multiplication, and the multiplica-

tive and additive terms,A�1;j� andD�1;j�, respectively, are calculated
analytically. For the drag coefficient Cd the terms are calculated as2

4 a�1;j�d

d�1;j�d

3
5 � �CT

dCd�−1CT
dFd (4)

Cd �
"
Cd:c�x�1;0�� Cd:c�x�1;1�� : : : Cd:c�x�1;j��

1 1 : : : 1

#
T

(5)

Fd �
h
Cd:f�x�1;0��Cd:f�x�1;1�� : : : Cd:f�x�1;j��

i
T

(6)

whereCd:c andCd:f represent the drag coefficient values obtained by

evaluations of the low- and high-fidelity models, respectively. Sim-
ilar models are constructed for Cm and Cl.
Using the SOO points, the MOO algorithm for the initial Pareto

front representation is executed and can be formally summarized as
follows [4]:
1) Patch size d � �d1; : : : ; dn�T is set using the procedure of

Sec. II.D.
2) Current points are set as xc1 � x�1�� and xcN � x�N��.
3) n perturbations of the size d are evaluated around xc1 (toward

xcN only), and the one that brings the largest improvement with
respect to the second objective F2 is selected.
4) The patch is relocated so that it is centered at the best perturba-

tion selected in step 3; xc1 is updated.
5) n perturbations of the size d are evaluated around xcN (toward

xc1 only), and the one that brings the largest improvement with
respect to the second objective F1 is selected.
6) The patch is relocated so that it is centered at the best perturba-

tion selected in step 5; xcN is updated.
7) If the path between x�1�� and x�N�� is not complete, go to step 3.
The flowchart shown in Fig. 3 outlines the Pareto front exploration

procedure using the SDP algorithm and multifidelity aerodynamic
models. The major differences of the proposed algorithm and the one
presented in [4] lie in a) the use of the multifidelity modeling (3–6),
due the highly nonlinear aerodynamic models, used for solving the
problem (2) and obtaining the SOO points, and b) the exploration of
designs outside the design space enclosed within the patches of the
SOO points (cf. Fig. 2).
The algorithm yields a set of patches, covering a part of design

space that contains the initial approximation of the set of Pareto-
optimal solutions. The total computational cost of the algorithm
depends on n and on the total number of patches. The net cost can
be computed as �M − 1� ⋅ �n − 1�, which excludes the cost of solving
Eq. (1), where M � P

k�1;: : : ;n mk and is the number of intervals in

the direction j. However, in practice, the cost can be lower as some
perturbations may not be evaluated due to the imposed constraints.
Here, we describe in detail the step-by-step procedure of obtaining
the Pareto front:
Step 1: Before the algorithm is initialized, two SOOs are per-

formed from some random design within the design bounds. The
SOO problems are solved using the trust-region, multifidelity algo-
rithm, and the SMmodel [49]. The solutions from the SOO problems

are used as input to the automated domain patching algorithm
explained in Sec. II.D to obtain the patch size d.
Step 2:Solutions of the SOOproblemsare used as the starting points

for the algorithm as marked in Fig. 2a as x�1�� and x�N��. The next
points are searched for in the vicinity of these starting points while

moving in either direction, that is, from x�1�� to x�N�� or vice versa.
Step 3:Apatch is constructedwithn perturbations of sized around

x�1��. Each perturbation is evaluated on the low-fidelity model to
obtain objective functions and constraints values. The design brings
the largest improvement with respect to the objective F1. The search
for largest improvement in F1 is performed with a given condition
that the designs arewell within the global bounds and also they satisfy
the constraints. The algorithm is designed specifically for a design
space that has all feasible designs. However, to satisfy the constraints,
a surrogate model similar to Eq. (2) can be used.
Step 4: The best perturbation result obtained from step 3 is used to

update step 2; that is, xc1 is updated. The patch is relocated so that the
center of the patch is the updated xc1.
Step 5:Apatch is constructedwithn perturbations of sized around

x�N��. Each perturbation is evaluated on the low-fidelity model to
obtain objective function and constraint values. The design brings the
largest improvement with respect to the objective F1. The search for
largest improvement in F1 is performed with a given condition that
the designs arewell within the global bounds and also they satisfy the
linear and nonlinear constraints.
Step 6: The best perturbation result obtained from step 5 is used to

update step 2; that is, xcN is updated. The patch is relocated so that the
center of the patch is the updated xcN .
Step 7: Steps 2–6 are continued until the path between x�1�� and

x�N�� is complete.

D. Automated Determination of Patch Sizes

Using an automated technique to determine patch size, similar to the
one presented in [4], the distancebetweenx�1�� andx�N�� is split into an
integer-valued number of intervals. The number of intervals in each
direction of the design variable given bymk is assigned by the follow-

ing procedure, where we use the notation x�1�� �
h
x�1��1 ; : : : ; x�1��n

i
T

(similarly for x�N��):
1) F�c� is evaluated at n points x�1−N��

k �h
x�1��1 : : : x�1��k−1 x�N��

k x�1��k�1 : : : x
�1��
n

i
T
, k � 1; : : : ; n; where n is the

design space dimensionality.

Set patch size using an 
automated procedure

Evaluate perturbations 
inside each patch 

Search for the point 
that brings the best 

improvement

No

Return to the 
last best point

Yes

START

Identify two points on 
the Pareto front

Feasible point reached?

END

Yes

Path between extreme 
points complete?

No

Relocate patch 
with the best 
perturbation as 

the center

Fig. 3 Aerodynamic design exploration based on sequential domain
patching.
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2) Calculate E1:k �
���c�x�1−N��

k

�
− c

�
x�1��

����.��c�x�1�����,
k � 1; : : : ; n.
3) F�c� is evaluated at n points x�N−1��

k �h
x�N��
1 : : : x�N��

k−1 x�1��k x�N��
k�1 : : : x�N��

n

i
T
, k � 1; : : : ; n.

4) Calculate EN:k �
���c�x�N−1��

k

�
− c

�
x�N������.��c�x�N�����,

k � 1; : : : ; n.
5) Set Ek � �E1:k � EN:k�∕2.
6) Normalize Ek � Ek∕maxfEj: j � 1; : : : ; ng.
7) Set mk � maxf2; mmax:Ekg, k � 1; : : : ; n.
Varying the kth component of x�1�� toward x�N�� gives relative

response changes, E1:k (similarly for EN:k). The value of mk is
rounded to a nearest integer with the minimum value 2 as the default.
The maximum number of intervals per geometric direction, mmax,
is a user-defined parameter and can be set based on a maximum
allowed relative response change Emax as follows: mmax �
dmaxfEk: k � 1; : : : ; ng∕Emaxe (calculated for unnormalizedEk fac-
tors). In case we have a specific computational budget, the value of
mmax can be adjusted as per requirement.

E. Pareto Set Refinement

The algorithm discussed in Sec. II.C is used to determine the initial
Pareto at the level of the low-fidelity model c. To obtain the high-

fidelity Pareto-optimal designs x�k�f , k � 1; : : : ; N, the following

procedure is executed:

x�k�f ← arg min
x;F2�x�≤F2�x�k�f

�
F1

�
sq�x� �

�
f
�
x�k�f

�
− sq

�
x�k�f

���
(7)

In this refinement process, the first objective is improved without
degrading the second objective. The above process begins with

x�k�f � x�k�c as the starting point and the process is iterated until

convergence. The correction term in Eq. (7) makes sure that

sq�x�k�f � � f�x�k�f � at the initiation of each iteration. The surrogate

model sq used in this process is a second-order polynomial approxi-

mation without the mixed terms. The approximation model is based

on the low-fidelitymodel c evaluated atx�k�c and the perturbed designs

within the patch surrounding x�k�c .

IV. Numerical Examples

In this section, the proposed algorithm is demonstrated using two
analytical problems and a two-dimensional multi-objective aerody-
namic design problem.

A. Analytical Problems

The analytical problems, the Fonseca and Fleming function [50]
and the Zitzler–Deb–Thiele’s functionN.1 (ZDT 1) [51], are used to
demonstrate the application of the proposed algorithm.

1. Zitzler–Deb–Thiele’s Function N:1 (ZDT 1)

The formulation of the test problem is given by

min f1 � x1 (8)

min f2 � u
�
1 −

										
x1∕u

p �
(9)

where

xi ∈ �0; 1�; i � 1; : : : ; 30

and u � 1� 9∕7
P

30
i�2 xi.

The analytical functions f1 and f2 are considered as the high-
fidelity model f . A low-fidelity model c is formulated by adding
noise (Δf) to the analytical functions as

f1:c � f1 � Δf (10)

f2:c � f2 � Δf (11)

where Δf � 0.1x1 � 0.5.
Figure 4 shows the characteristic features of low- and high-fidelity

models. The approach explained in Sec. II is executed to obtain the

extreme points of the Pareto using SOO and then yield the entire

Pareto front.
Figure 5 shows the initial and final Pareto fronts. The initial Pareto

front (shown in black dots) is obtained using the low-fidelity model

and the algorithm in Sec. II.C. The final Pareto front (shown in red

dots) is then obtained after executing the refinement procedure given

in Sec. II.E. The proposed algorithm used 50 low-fidelity model

evaluations and 24 high-fidelity model evaluations. The exact ana-

lytical solution (shown by the blue dashed curve) compares well with

the results of the proposed algorithm for this case.

2. Fonseca and Fleming Function

The formulation of the test problem is given by

min f1 � 1 − exp

"
−
Xn
i�1



xi −

1			
n

p
�
2
#

(12)

min f2 � 1 − exp

"
−
Xn
i�1



xi �

1			
n

p
�
2
#

(13)

where

xi ∈ �−4; 4�; i � 1; : : : ; 8

The analytical functions f1 and f2 are considered as the high-

fidelity accurate model f . The low-fidelity model c is formulated by

adding noise (Δf) to the analytical functions in the same way as

in Eq. (11).
The initial and final Pareto fronts obtained using the proposed

algorithm are given in Fig. 6. The initial Pareto front is shown in black

dots, and the final Pareto front is shown in red dots. The proposed

algorithm used 150 low-fidelity model evaluations and 16 high-

fidelity model evaluations. The results compare well with the exact

analytical solution for this case, which is shown by the blue

dashed curve.

B. Transonic Airfoil Design

This section demonstrates the proposed algorithm for the multi-

objective design optimization of an airfoil in transonic flow.

0 0.5 1 1.5
F1

12

13

14

15

16

17

18

F
2

Low-fidelity model response
High-fidelity model response

Fig. 4 Representation of high- and low-fidelity evaluation values of five
random designs.
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1. Problem Description

The main goal of the aerodynamic problem is to obtain the trade-

offs between conflicting objectives, the drag coefficient Cd and the

pitching moment coefficient Cm, of the RAE 2822 at a freestream

Mach number of M∞ � 0.734, lift coefficient Cl of 0.824, and

Reynolds number (Re) of 6.5 × 106, subject to a cross-sectional area
(A) constraint. Specifically, the conflicting objectives considered

here are the high-fidelity values of the drag coefficient and the

pitching moment coefficient; that is, we have F1�x� � Cd:f and

F2�x� � Cm:f, and the multi-objective constrained optimization

problem can be expressed as:

min
l≤x≤u

Cd; max
l≤x≤u

Cm (14)

subject to

Cl�x� � 0.824

and A�x� ≥ Abaseline, where Abaseline is the cross-sectional area of
the baseline RAE2822 airfoil. It should be noted here that this
formulation is a modified version of the single-objective benchmark
aerodynamic design optimization case developed by the AIAA
Aerodynamic Design Optimization Discussion Group (see, e.g.,
[4], for the original formulation).

2. Design Variables

The airfoil shape is controlled using the B-spline parameterization
approach described by Ren et al. [49]. Figure 7a shows eight control
points, four on each of the top and bottom surfaces, that can move in
the vertical direction. The leading and trailing edge endpoints of the
airfoil are fixed in all directions. The x locations of the eight control
points (eight design variables) are based on a fit to the RAE 2822 as

x1
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0

1
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3

x 2

10–7

0 0.5 1 0 0.5 1 1.5 2
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0.4

0.6

0.8

1

1.2

F
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Initial Pareto

Final Pareto

Exact solution

a) b)
Fig. 5 Pareto front obtained for the ZDT 1 function: a) design space; b) feature space.
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Fig. 6 Pareto front obtained for the Fonseca and Fleming function: a) design space; b) feature space.
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Fig. 7 Airfoil computational models: a) airfoil shape parameterization; b) hyperbolic C-mesh.
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X� �Xu; Xl �T � �0.0 0.15 0.45 0.80; 0.0 0.35 0.60 0.90 �T ,
and the initial design variable vector is x� �xu; xl �T �
�0.0175 0.0498 0.0688 0.0406; −0.0291 −0.0679 −0.0384
0.0054�T . The lower bound of x is set as l�
�0.015 0.015 0.015 0.015; −0.08 −0.08 −0.08 −0.01�T , and the
upper bound is set as u � � 0.08 0.08 0.08 0.08; −0.01
−0.015 − 0.015 0.01�T .

3. High-Fidelity Viscous Aerodynamics Model

The physics problem involves solving a viscous case using Stanford
UniversityUnstructured (SU2) [52] implicit density-based flow solver.
The high-fidelity aerodynamic model (f) solves the steady compress-
ible Reynolds-averaged Navier–Stokes (RANS) equations with the

Spalart–Allmaras turbulent model [53] using the SU2 implicit density-
based solver. The second-order Jameson-Schmidt-Turkel scheme [54]
is used to calculate the convective flux alongwith onemultigrid level to
accelerate the solution. The turbulent variables are convected using a
first-order scalar upwind method. The flow solver convergence cri-
terion is the one that occurs first of the two: 1) the change in the drag

coefficient value over the last 100 iterations is less than 10−5, or 2) a
maximum number of iterations of 20,000 is met.
The computational grid is generated using the hyperbolic C-mesh

of Kinsey and Barth [55] (see Fig. 7b) with the far-field set 100 chord
lengths from the airfoil surface. To have the wall y� values within
reasonable values (i.e., y� < 5) around the airfoil surface, the dis-

tance from the airfoil surface to the first node is 10−5c, where c is the
airfoil chord length. The grid points are clustered at the trailing edge
and the leading edge of the airfoil with the density controlled by the
number of points in the streamwise direction and in the direction
normal to the airfoil surface.
Table 1 gives the results of a grid convergence study using theRAE

2822 airfoil atM∞ � 0.734,Cl � 0.824, andRe∞ � 6.5 × 106. The
constant lift condition is achieved by internally changing the angle of
attack within the flow solver. It can be seen that the difference
between meshes 3 and 4 is 1.8 drag counts (note that we define one

drag count [d.c.] as ΔCd � 10−4, and one lift count [l.c.] as

ΔCl � 10−2), which is not within the standard expectation of a
converged solution mesh density, that is, less than 0.1 d.c. There is,
however, a significant difference in the simulation times, that is, 153
minutes for mesh 4 and 34 minutes for mesh 3. Therefore, for the
purpose of demonstrating the proposed algorithm, mesh 3 is chosen
for the high-fidelity model f simulations.

4. Low-Fidelity Viscous Aerodynamics Model

The model setup for the low-fidelity model is same as that of the
high-fidelity model f , with the grid density being far less than that of
the high-fidelity one.As shown in Table 1,we useMesh 1 for the low-
fidelity model c. The low-fidelity model convergence criteria are set
with the following values occurring first: 1) the change in the drag

coefficient value over the last 100 iterations is less than 10−4, or 2) the
maximum number of iterations is set to 5000.

5. Single-Objective Optimization Results

Two SOO problems are solved using the SM algorithm [3,49] as
described inSec. II.B, and the results are shown inTable 2.Algorithm1
is executed iteratively using trust-region, gradient-based optimization
toobtain the initial point (cf. Fig. 1). Thegradient-based search uses the
sequential quadratic programming algorithm, where the original prob-
lem is solved iteratively by replacing the original objective function

(and nonlinear constraints) by their respective local quadratic models

(linear for constraint functions). To obtain the gradient information,

finite differences are used on the surrogate model s�x� with the finite
difference step size set at 10−5. Once the local optimum is reached, the

design is evaluated on the high-fidelity model f and fed into the

gradient-based algorithm to search for further minima, and the process

is continueduntil convergence.Optimization of themultifidelitymodel

is constrained to the vicinity of the current design defined as

kx − x�i�k ≤ δ�i�, with the trust-region radius δ�i� adjusted adaptively

using the standard trust-region rules [56]. The convergence tolerances

for the termination conditions are set as εx � 10−4, εH � 10−4,

and εδ � 10−4.
Because of the computational expense of the CFDmodels, instead

of exploring the entire Pareto, that is, in between the optimal points of

the two objective functions (the extreme points), only a part of the

Pareto front is explored. The algorithm is run to obtain the Pareto in

betweenCm � −0.074 andCm � −0.11 (chosen here for illustration
purposes). Subsequently, two SOO problems are solved to obtain the

endpoints of the Pareto front:
SOO problem 1:

x�1�� � arg min
x;kx−x�i�k≤δ�i�

Cd�s�x�� (15)

subjected to Cl�x� � 0.824,

Cm�x� ≥ −0.11 A�x� ≥ Abaseline

SOO problem 2:

x�N�� � arg min
x;kx−x�i�k≤δ�i�

Cd�s�x�� (16)

subjected to Cl�x� � 0.824,

Cm�x� ≥ −0.074 A�x� ≥ Abaseline

where s�x� is a fast surrogate model as described in Sec. II, and x�1��

and x�N�� are the two extreme points of the Pareto front.
As can be seen in Table 2, for problems 1 and 2, the SM algorithm

reduces the drag coefficient value from 203.80 d.c. to 116.9 d.c. and

121.8 d.c, respectively, while satisfying the constraints. Figures 8a

and 8b show comparisons of the airfoil shapes and the pressure

coefficient distributions of the baseline and SOO optimal designs.

Figures 9a–9c show the pressure coefficient contours of the baseline

and optimum shape designs, respectively. It can be seen from Figs. 8

and 9 that the optimizer has significantly reduced the strength of the

upper surface shock, which explains the large reduction in the drag

coefficients.
In terms of the number of model evaluations, SM-based optimi-

zation used approximately 500 low-fidelity models and 4 high-

fidelity models for both the problems. The cost in terms of central

processing unit (CPU) time for the entire optimization process is

approximately 14 h on a high-performance computing (HPC) system

with 32 processors for each of the SOO problems.

Table 1 Grid convergence study for the baseline shape

Mesh Number of elements Lift counts Drag counts
Simulation
time,a min

1 9,836 82.4 324.6 3.1
2 38,876 82.4 221.5 8.8
3 154,556 82.4 204.8 34.0
4 616,316 82.4 203.0 152.6

aComputed on a high-performance cluster with 32 processors. Flow solution only.

Table 2 Single-objective optimization results

Parameter/method Baseline SOO problem 1 SOO problem 2

Cl (l.c.) 82.35 82.39 82.39

Cd (d.c.) 203.80 116.9 121.8

Cm;c∕4 −0.0905 −0.1023 −0.0736
A 0.0779 0.0779 0.0779

Nc — — 550 499

Nf — — 4 4

CPU time, h — — 14 13.55
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6. Pareto Front

The design space exploration is performed using the algorithm

described in Sec. II. Initial designs corresponding to the best possible

value of the first objective (minimum drag coefficient) subjected to

two different nonlinear pitching moments (target pitching moment

values) are obtained in the first step of the process using the output

SM-based SOO algorithm [49] as shown in Eqs. (15) and (16).

Because of the nature of constraint enforced [cf. Eq. (14)], the

MOO algorithm is modified to explore designs outside the design

space enclosed within the two SOO points [i.e., points obtained from

Eqs. (15) and (16)].
Subsequent designs along the Pareto are obtained using the algo-

rithm on the low-fidelity model as described in Sec. II.C, and the

process is terminated when the entire Pareto front is traversed in

between the two initial designs. Further, refinement of the initial

Pareto front is performed by evaluating the optimal solutions on the

high-fidelity model and minimizing the surrogate model constructed

at the vicinity of each optimal solutions as discussed in Sec. II.E. The

total cost in terms of CPU time to obtain the initial endpoints of the

Pareto, the initial Pareto, and the refined Pareto is 27, 13, and 10 h,

respectively, on aHPCwith 32 processors. Subsequently, the net cost

of obtaining the final Pareto front that contains 17 Pareto optimal

solutions (as shown in Fig. 10b) is approximately 50 h.
Figure 10a shows the refined optimal solution set (Pareto front)

obtained in between the SOO points. A zoomed-in plot of the final

Pareto front is represented in Fig. 10b. Few points (point 1 and

point 2) on the Pareto optimal set were selected to be compared with

the baseline design. Figures 11a and 11b show comparisons of all the

airfoil shape designs and the pressure coefficient distributions for

the selected points and the baseline design. There is a significant
difference in the pressure coefficient distribution of the selected
points compared with the baseline, with the former having a consid-
erable reduction in shock strength. Further, Mach contour plots in
Fig. 12 show point 1with higher shock strength, leading tomore drag
compared with point 2. This aligns with the fact that to obtain a lower
drag there will be a decrease in pitching moment as shown in Fig. 10.
Each CFD simulation is converged to within 1 drag count, and hence
irregularity in the Pareto front is observed if zoomed in as in Fig. 10b.
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Fig. 8 SOO results showing baseline and optimized a) airfoil shapes and b) pressure distributions atM∞ � 0.734, Cl � 0.824, and Re∞ � 6.5 × 106.

Fig. 9 SOOMach contours atM∞ � 0.734, Cl � 0.824, and Re∞ � 6.5 × 106 of a) the baseline airfoil, b) the SOO optimal design x�1 , and c) the SOO
optimal design x�2 .
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V. Conclusions

This paper presents a unique methodology for the design explora-
tion of aerodynamic problems in amulti-objective form. The extreme
points of the Pareto front to be explored are obtained cheaply using
multifidelity models and SOO. Further, starting from the extreme
points, an approximate Pareto front is identified by constructing
patches and using fast low-fidelity aerodynamic models to search
for optimumpoints in those patches. A refinement of the approximate
Pareto front is performed using high-fidelity models to obtain the
final Pareto front. The key features of the proposed algorithm that
distinguishes it from other surrogate-assisted multi-objective aero-
dynamic design exploration methods are 1) it uses fast low-fidelity
models to identify an initial Pareto front quickly, 2) it uses few high-
fidelity model evaluations to refine and obtain the final accurate
Pareto front, 3) objective function aggregation is not required, and
4) gradient information of the objective function is not used to obtain
the Pareto optimal solutions. Future work will investigate the robust-
ness and the scalability of the proposed algorithm.
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