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ABSTRACT Design of contemporary antennas necessarily involves electromagnetic (EM) simulation tools.
Their employment is imperative to ensure evaluation reliability but also to carry out the design process
itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping
is more and more often replaced by rigorous numerical optimization, which entails considerable compu-
tational expenses, sometimes prohibitive. A potentially attractive way of expediting the simulation-based
design procedures is the replacement of expensive EM analysis by fast surrogate models (or metamodels).
Unfortunately, due to the curse of dimensionality and considerable nonlinearity of antenna characteristics,
applicability of conventional modeling methods is limited to structures described by small numbers of
parameters within narrow ranges thereof. A recently proposed nested kriging technique works around
these issues by allocating the surrogate model domain within the regions containing designs that are of
high quality with respect to the selected performance figures. This paper investigates whether sequential
design of experiments (DoE) is capable of enhancing the modeling accuracy over one-shot space-filling data
sampling originally implemented in the nested kriging framework. Numerical verification carried out for two
microstrip antennas indicates that no noticeable benefits can be achieved, which contradicts the common-
sense expectations. This result can be explained by a particular geometry of the confined domain of the
performance-driven surrogate. As this set consists of nearly-optimum designs, the average nonlinearity of
the antenna responses therein is almost location independent, therefore optimum training data allocation
should be close to uniform. This is indeed corroborated by our experiments.

INDEX TERMS Antenna design, surrogate modeling, approximation models, kriging interpolation,
performance-driven modeling, sequential sampling.

I. INTRODUCTION
The design of modern antennas is a demanding and
multi-stage endeavour that involves conceptual development,
topology evolution, as well as the adjustment of geometry
parameters [1]–[3]. The latter may be quite extensive and
often pertains to all antenna dimensions [4]. The reasons
are strictly related to geometrical complexity of contem-
porary antenna systems where the fulfillment of stringent
performance requirements [5] and implementation of various
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functionalities, e.g., circular polarization [6], multi-band [7]
or MIMO operation [8], pattern/polarization diversity [9],
let alone meeting additional requirements such as reduc-
tion of the physical size of the radiator [10], [11], calls for
unconventional layouts [12]–[19]. These include incorpora-
tion of stubs [12], [13], slots [14], [15], defected ground
structures [16], [17] or complex (e.g., spline-parameterized)
profiles [18], [19] the exact effects of which cannot be quan-
tified using analytical or equivalent network representations.
Thus, utilization of full-wave electromagnetic (EM) simu-
lation tools is imperative at all design stages to ensure the
reliability of antenna evaluation [20], [21]. It is especially
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crucial in parameter tuning, which is nowadays frequently
realized through rigorous numerical optimization. The high
computational cost of such procedures—a result of massive
EM analyses required by both local [22] and global [23]
search routines, is a serious practical problem. It is even
more pronounced for uncertainty quantification procedures,
especially robust (tolerance-aware) design [24], [25].

Expediting simulation-driven design is a practical neces-
sity. It can be accomplished using strictly algorithmic means,
the example of which is the incorporation of adjoint sen-
sitivities [26] into gradient optimization [27], [28]. Non-
intrusivemethods include gradient-based routines with sparse
sensitivity updates, e.g., [29], [30]. Computational speedup
can also be obtained using variable-fidelity simulation mod-
els such as equivalent networks in the case of microwave
components [31] or coarse-mesh EM analysis in the design
of antenna structures [32]. In either case, the low-fidelity
model has to undergo an appropriate enhancement to be
used as a reliable predictor. Popular techniques include space
mapping [33] as well as various response correction schemes
(manifold mapping [34], adaptive response scaling [35],
shape-preserving response prediction [36]). For certain
purposes, especially global optimization, machine learning
techniques are often employed [37], [38], typically in con-
nection with surrogate modeling methods [39] and adaptive
sampling [40]. Local surrogates are becoming indispensable
for uncertainty quantification, either to replace EM analysis
when performing Monte Carlo analysis [41] or to directly
yield the statistical moments of the system outputs (e.g.,
polynomial chaos expansion [42]).

A more aggressive approach is to replace expensive EM
simulations in their entirety by globally accurate surro-
gates [43]. Ensuring a sufficient predictive power of the meta-
model enables conducting all conceivable simulation-based
design tasks at a negligible cost. The initial expenditures
related to training data acquisition, even if considerable, may
be justified by multiple use of the model. Due to their gener-
ality, data-driven (or approximation) surrogates are by far the
most popular [44]. Some widely applied techniques include
kriging [45], Gaussian process regression [46], radial basis
functions [47], artificial neural networks [48], and, recently,
polynomial chaos expansion [49]. Although appealing, prac-
tical realization of the above concept is hindered by several
factors including high nonlinearity of antenna characteristics
and the curse of dimensionality, i.e., a rapid increase of the
training data set size required to render a reliable model as
a function of the number of antenna parameters. Another
issue are utility demands: design-ready surrogate should be
valid over broad ranges of the system operating conditions,
material parameters (e.g., substrate permittivity) and geom-
etry parameters. Establishing an accurate model that fulfills
such conditions is challenging for modern multi-parameter
antennas to the extent of being virtually impossible beyond
a few variables with narrow ranges thereof [44]. Available
mitigation techniques, e.g., high-dimensional model rep-
resentation (HDMR) [50], smart basis function selection

schemes (orthogonal matching pursuit, OMP [51], least-
angle regression, LAR [52]), or variable-fidelity surrogates
(co-kriging [53], Bayesian model fusion [54]) are only appli-
cable to specific situations.

A recently proposed performance-driven modeling offers
an alternative approach to overcoming the dimensionality and
parameter range issues [55]. As suggested in [55], by con-
straining the model domain to a region that contains high
quality design with respect to performance figures relevant
to the antenna structure at hand, it is possible to render
the surrogate that is accurate and valid over wide ranges
of operating conditions (e.g., antenna center frequency [56]
or permittivity/thickness of the substrate antenna is imple-
mented on [57]). At the same time, the required number of
training samples is significantly lower than for conventional
methods. Identification of the region of interest is carried out
using a pre-optimized set of reference designs [55]. Due to a
complex geometry of the constrained domain, some practical
problems may arise related to design of experiments but also
model optimization [58]. These have been greatly alleviated
by the nested kriging framework [59], the formulation of
which involves a surjective transformation between the unity
interval and the model domain.

This paper investigates whether introducing sequential
design of experiments (DoE) into the nested kriging frame-
work may bring further benefits (in terms of improving the
predictive power of the surrogate) over the uniform sam-
pling originally implemented in [59]. Sequential DoEs [60],
especially the exploitative ones [20] aim at identifying and
filling in the regions characterized by higher nonlinearity
of the system outputs. This allows for redistribution of the
training data samples by putting more emphasis on such areas
while sparing samples on the plateau or low-nonlinearity
regions. Here, the infill criterion is maximization of the mean
square error [61] because the overall goal is to improve
the global accuracy of the surrogate. Numerical experiments
conducted for two dual-band microstrip antennas indicates
that sequential DoE does not bring any computational ben-
efits over the uniform sampling. This is an interesting and
counterintuitive result. Notwithstanding, it can be explained
by the specific geometry of the domain of the nested kriging
surrogate model, i.e., the fact that it only contains designs
that are nearly-optimumwith respect to the selected figures of
interest. The latter implies that the frequency-averaged non-
linearity of the antenna responses is almost location indepen-
dent. Consequently, the expected optimum allocation of the
training data samples should be close to uniform. This seems
to be an inherent feature of performance-driven modelling
techniques in general, and the nested-kriging framework in
particular.

II. SURROGATE MODELING BY NESTED KRIGING.
UNIFORM AND SEQUENTIAL SAMPLING
This section briefly recalls the nested kriging modelling
method with the emphasis on the uniform domain sampling
technique utilized in the original version of the framework.
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Subsequently, incorporation of sequential sampling into the
nested kriging methodology is discussed. Section III com-
pares the predictive power surrogate model constructed using
these two sampling strategies and provides qualitative expla-
nations for the obtained results.

A. NESTED KRIGING MODELING FORMULATION
The nested kriging procedure constructs two kriging interpo-
lation surrogates [45]. The first-level model serves for identi-
fying the domain for the second-level model, being the actual
surrogate that represents the antenna characteristics. The sur-
rogate domain XS is a confined region of the box-constrained
design space X , typically delimited by the lower bounds l
and the upper bounds u for design variables. The domain XS
accommodates high-quality designs, i.e., the designs that are
optimal or nearly-optimal w.r.t. the performance figures that
are of interest in a given design context. Exemplary figures of
merit may refer to antenna electrical characteristics (e.g.,
operating frequencies in the case of multi-band antennas) or
material parameters, such as relative permittivity of dielectric
substrate the antenna is to be implemented on. These are
denoted as fk , k = 1, . . . ,N . The ranges of the performance
figures fk.min ≤ f (j)k ≤ fk.max, k = 1, . . . ,N , for which the
surrogate is to be valid for, delimit the objective space F .
The first-level kriging surrogate sI (f) is rendered using the

training data set {f(j), x(j)}j =1,...,p, where x(j) = [x(j)1 . . .x(j)n ]T

are the designs optimal w.r.t. the selected performance vectors
f(j) = [f (j)1 . . . f (j)N ]; x(j) are referred to as the reference designs.
Thus, the first-level model sI (f), that maps the objective space
F into the parameter space X , is an inverse model, which,
for a given performance vector f ∈ F , yields a corresponding
vector x ∈ X . The intended domain for the surrogate is to
contain all the designs that are optimal w.r.t. all performance
vectors f ∈ F . As the set sI (F) ⊂ X is a mere approximation
of such a region, it has to be expanded. This is carried out by
an orthogonal extension of sI (F) in its normal directions. Let
us denote by {v(k)n (f)}, k = 1, . . . , n − N , the orthonormal
basis of vectors normal to sI (F) at f ∈ F [59]. Furthermore,
we denote by xd = xmax−xmin the ranges of design variables
within sI (F)), where xmax = max{x(k), k = 1, . . . , p},
xmin = min{x(k), k = 1, . . . , p}. Using these, the following
manifolds can be defined

M± =
{
x ∈ X : x = sI (f )±

∑n−N

k=1
αk (f )v(k)n (f )

}
(1)

where

α(f ) = [α1(f ) . . . αn−N (f )]T

= 0.5T
[
|xdv(1)n (f )| . . . |xdv(n−N )

n (f )|
]T

(2)

are the extension coefficients with T being a domain thick-
ness parameter. The domain XS is then established as

XS =
{
x = sI (f )+

∑n−N
k=1 λkαk (f )v

(k)
n (f ) : f ∈ F,

−1 ≤ λk ≤ 1, k = 1, . . . , n− N

}
(3)

The second-level kriging surrogate is set up in XS using the
data pairs {x(k)B , R(x(k)B )}k =1,...,NB, with R being the response

of the EM antenna model. Allocation of the training samples
is of paramount importance for model reliability. Section II.B
outlines the design of experiments strategy utilized by the
original nested kriging framework [59], which is replaced in
this work by the sequential sampling scheme as described in
Section II.C.

B. DESIGN OF EXPERIMENTS FOR NESTED KRIGING:
UNIFORM SAMPLING
In original nested kriging, one-shot design of experiments
is carried out, i.e., the entire data set is allocated prior to
constructing the model [59]. Despite a potentially complex
geometry of the model domain, the space-filling sampling is
greatly facilitated by exploiting the domain definition (3) and
a two-stage surjective transformation from a unit hypercube
[0,1]n onto XS . In the first step, the data samples {z(k)},
k = 1, . . . ,NB, z(k) = [z(k)1 . . . z(k)n ]T , are uniformly dis-
tributed using a Latin Hypercube Sampling [62], and mapped
using an auxiliary transformation h1 onto a Cartesian product
F× [−1,1]n−N

y = h1(z) = h1([z1 . . . zn]T )= [f1.min + z1(f1.max − f1.min)

. . . . . . fN .min + zN (fN .max − fN .min)]

× [−1+ 2zN+1 . . . − 1+ 2zn] (4)

whereas the second transformation h2 maps F× [−1,1]n−N

into XS as

x = h2(y)=h2([y1 . . . yn]T ) = sI ([y1 . . . yN ]T )

+

n−N∑
k=1

yN+kαk ([y1 . . . yN ]T )v(k)n ([y1 . . . yN ]T ) (5)

The samples x(k)B within the constrained domain XS (being
a subset of the design space X ) are obtained by applying a
composed transformation H : [0,1]n→ XS , H (·) = h2(h1(·)),
to the data set {z(k)} as follows

x(k)B = H (z(k)) = h2(h1(z(k))) (6)

Note that the uniform distribution of {z(k)} is understood
with respect to the objective space F . This is generally more
advantageous over a uniform distribution in XS because of
a normally nonlinear dependence between the performance
figures and the geometry parameter values corresponding
to the designs optimized with respect to these figures.
Figure 1 shows a graphical illustration of the sampling pro-
cedure outlined above.

C. SEQUENTIAL DESIGN OF EXPERIMENTS
FOR NESTED KRIGING
In this section, sequential design of experiments is considered
as an alternative sampling strategy for the nested kriging
modeling framework. The aim is to improve the predictive
power of the surrogate model without increasing the train-
ing data set size. As explained in Section II.B, in origi-
nal nested kriging, the samples are allocated using a one-
shot procedure, based on LHS [62] and a mapping from
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FIGURE 1. One-shot sampling procedure in the domain XS (for
two-dimensional objective space F and three-dimensional parameters
space X ) [59]: (i) function h1 (see (4)) maps LHS-allocated samples onto
the Cartesian product of F and [−1,1]n−N ; (ii) next, function h2 (see (5))
maps the samples onto XS ; penultimate picture from the bottom shows
samples sI (h1(z)) mapped into the image sI (F ) of F ; (iii) orthogonally
relocated samples within entire XS (see (6)).

the normalized domain (unity interval) onto the surrogate
domain [59]. One of the objectives of sequential sampling
[60], [63] is to concentrate the training data samples in the
regions of higher nonlinearity of the system outputs. This nor-
mally allows for reducing the modeling error as compared to
uniform distributions, assuming comparable training data set
sizes [64].

In this work, we focus on exploitation-based sequential
sampling [20], where the new (infill) data samples are allo-
cated iteratively using information acquired at the previously
allocated points. To that end, the choice of kriging interpo-
lation, among various data-driven surrogates, is beneficial,
because the kriging surrogate provides information about the
expected model error [65]. Here, the adopted infill criterion
is maximization of the mean square error [61].

For the convenience of the reader, a brief formulation of
kriging interpolation is provided below. Let XB.KR = {x1,
x2, . . . , xNB} be the training set with Rf (XB.KR) referring to
the corresponding high-fidelity model outputs. The kriging
surrogate sKR(x) is defined as follows [45]

sKR(x) = µβ + ρ(x) ·9−1 · (Rf (XB.KR)− ϕβ) (7)

In (4), µ stands for a NB × t model matrix of the training set
XB.KR and ϕ refers to a 1 × t vector of the evaluation point
x; with t being the number of terms used in the regression
function [66] described by the coefficients β

β = (XT
B.KR9

−1XB.KR)−1XB.KR9
−1Rf (XB.KR) (8)

whereas ρ(x) =
[
ψ(x, x1), . . . , ψ(x, xNB )

]
is an 1 × NB

vector of correlations between x and XB.KR, and 9 = [9i,j]
is a correlation matrix with 9i,j = ψ(xi, xj). Frequently,
the following correlation function is utilized [67]

ψ(x, x′) = exp
(∑n

k=1
−θk |xk − x ′k |P

)
(9)

where θk , k = 1, . . . , n, (n being the parameter space dimen-
sionality), are the hyperparameters, whereas P is typically
constant and decides upon the prediction ‘smoothness’ (for
many practical problems P = 2, i.e., Gaussian correla-
tion function, is assumed). The Maximum Likelihood Esti-
mate (MLE) of hyperparameters θk [67] is (θ1, . . . , θn) =
argmin−(NB/2) ln(σ̂ 2) − 0.5 ln(|9|), where the variance is
expressed as σ̂ 2

= (Rf (XB.KR) − ϕβ)T9−1(Rf (XB.KR) −
ϕ β)/NB, and |9| stands for the determinant of 9. If no
extrapolation is required, the regression function is assumed
constant, i.e., ϕ = [1 . . . 1]T = 1 and µ = 1. The mean
square error of the kriging prediction at any untried x is given
by

MSE
[
ŝKR (x)

]
= σ̂ 2[1− ρ (x)9−1ρT (x)

+

(
1− 19−1ρT (x)

)2
/1T91] (10)

In each iteration of the sampling procedure, the global
maximum of MSE over the surrogate model domain (10) has
to be sought [68]; a new sample is allocated therein [61].
Typically, the global search is realized using population-
based metaheuristics, the CPU cost of which is usually
high [23], [69]. In this work, an alternative approach is taken,
which exploits the particular structure of the surrogate model
domain of the nested kriging technique as well as the math-
ematical formalism defining the domain and its relation-
ships with the normalized domain (a unity interval). More
specifically, the maximum of MSE is found in a two-step
process, where the first step is exhaustive grid search leading
to identification of a good initial point for the subsequent
local improvement.

We use the following notation:

• N0 – initial number of data samples allocated in the
surrogate model domain XS (here, using the method of
Section II.B);

78420 VOLUME 8, 2020

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


A. Pietrenko-Dabrowska, S. Koziel: On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling

• s(i)KR – the second-level surrogate model identified in the
i th iteration of the sampling procedure using the current
training set {x(k)B , R(x(k)B )}k=1,...,N0+i;

Let MF be a rectangular grid in the objective space F ,
defined as

MF = {f (k1,...,kN ) = [f k11 f k22 . . . f kNN ]T :

: kj ∈ {0, 1, . . . ,NM }, j = 1, . . . ,N } (11)

where f
kj
j = fj.min + (kj/NM )(fj.max − fj.min). Thus, MF

contains (NM + 1)N points uniformly covering F . The initial
approximation xmax.tmp of the point maximizing the MSE is
found through the exhaustive search on the grid as

xmax .tmp = h2
(
[f Ttmp 0 . . . 0]

T
)

(12)

where

f tmp = max {f ∈ MF : MSE (sI (f ))} (13)

The number of zeros in (12) equals n – N . Because the
dimensionality of F is low and the first-level model is fast,
large values of NM are utilized in practice (we set NM = 100
in our numerical experiments) without incurring noticeable
computational expenditures. This permits relatively precise
allocation of the required infill point location.

The design xmax.tmp is refined to obtain the new sample
point through local search by solving

x(N0+i)
B = x∗ = H (z∗) (14)

with

z∗ = arg max
z∈[0,1]n

{
MSE

(
s(i)KR (H (z))

)}
(15)

The starting point for (15) is

h−11 ([f Ttmp 0 . . . 0]
T ) = H−1(xmax .tmp) (16)

The mappings h1, h2, and H were defined in Section II.B.
The overall design of experiments procedure can be summa-
rized as follows:
1. Allocate the initial sample set {x(k)B } of size N0 using the

method of Section 2.2;
2. Generate a grid MF (cf. (11)) and set i = 1;
3. Set up the second-level kriging surrogate s(i)KR using {x

(k)
B ,

R(x(k))}k=1,...,N0+i, as the training set;
4. Find the initial approximation xmax.tmp of the MSE max-

imizer by solving (12), (13);
5. Refine the MSE maximizer (and the new infill sample)

x(N0+i)
B by solving (14), (15) with the initial design (16);

6. Set i = i+ 1;
7. If the termination condition is not satisfied, go to 3;
8. Construct the final second-level surrogate sKR using the

current training set.
The termination condition in Step 7 can be based on:

(i) exceeding the maximum budget N0 + i > Nmax (user-
defined maximum number of samples), (ii) achieving the
target value of maximum MSE, or (iii) achieving the tar-
get predictive power of the model (estimated using, e.g.,

FIGURE 2. Identifying infill samples in sequential design of experiments
for the nested-kriging framework. The point ftmp is an initial
approximation of the MSE maximizer, found using (13). Its image through
the mapping h2 (cf. (5)) becomes an initial point for local refinement as
in (14)-(16); however, optimization process is formally conducted in the
unit interval using the mapping H (cf. (6)) mapping the unit interval onto
the surrogate model domain XS .

cross-validation [70]). Note that (ii) and (iii) do not coin-
cide because the system responses are vector-valued and the
error measure applied for model quality assessment may
be selected to, e.g., reflect visual agreement between the
surrogate-predicted and EM-simulated antenna characteris-
tics. Figure 2 provides a graphical illustration of the overall
process of identifying the infill samples.

III. VERIFICATION CASE STUDIES
This section provides numerical verification of the nested
kriging with sequential design of experiments, including its
comparison with uniform sampling of Section II.B. Our
considerations are complemented by discussion that gives a
qualitative interpretation of the obtained results.

A. CASE STUDIES
For the sake of numerical verification, the following antenna
structures are considered:
• A dual-band uniplanar dipole antenna (Antenna I)
shown in Fig. 3(a) [71]. The antenna is implemented on
RO4350 substrate (εr = 3.5, h = 0.76 mm). The EM
model is implemented in CST Microwave Studio and
evaluated using its time-domain solver (∼100,000 cells;
simulation time 60 s). The objective is to construct the
surrogate model valid for the following ranges of operat-
ing frequencies 2.0 GHz ≤ f1 ≤ 3.0 GHz (lower band),
and 4.0 GHz ≤ f2 ≤ 5.5 GHz (upper band). The details
about the reference designs and the parameter space can
be found in [71].

• A trapezoid dual-band dipole antenna (Antenna II)
shown in Fig. 3(b) [72]. The structure is implemented
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FIGURE 3. Verification case studies: (a) uniplanar dual-band dipole
antenna (Antenna I) [71], and (b) trapezoid dual-band dipole antenna
(Antenna II) [72].

on RO4003 substrate (εr = 3.38, h = 0.76
mm) and described by eight independent parameters:
x = [LrrdWsWdSLdLgrWgr ]T (all dimensions in mm
except those with r-subscript which are relative). The
parameters Wr = 5, Ls = 5, and L0 = 25 are fixed.
The feed line width W0 = 4.5 mm is calculated to
ensure 50 ohm impedance. Other parameters are Lr =
Lrr ((Ws − W0)/2 − Wd − d), Wg = WgrWs, Lg =
Lgr (L0 − Wg/2 +W0/2), and g = Wd . The computa-
tional model is implemented in CST Microwave Studio
(∼900,000 mesh cells, simulation time 250 seconds).
In this case, the surrogate model is to be constructed
for the objective space parameterized by the operating
frequencies f1 and f2 = Kf 1 for 2.0 GHz ≤ f1 ≤
3.5 GHz, and 1.2 ≤ K ≤ 1.6. The details about the
reference designs and the parameter space can be found
in [72].

B. EXPERIMENTAL SETUP AND RESULTS
For all considered test antennas, the nested kriging surrogate
has been constructed using several training sets of various
sizes: 100, 200, 400 and 800 samples. In both cases, the sur-
rogate was constructed for two different values of the thick-
ness parameter T (cf. Section II.A). For all cases, the sur-
rogate was constructed using training data allocated accord-
ing to uniform sampling method of Section II.B as well as
sequential DoE of Section II.C. Additionally, a conventional
kriging interpolation and radial basis function surrogates
have been included to emphasize the overall benefits of the
nested kriging framework. The numerical results have been
gathered in Tables 1 and 2 for Antennas I and II, respectively.

FIGURE 4. Responses of Antenna I at the selected test designs for
N = 400: EM model (—), nested kriging surrogate with sequential
sampling and D = 0.05 (o).

TABLE 1. Modeling results for Antenna I.

TABLE 2. Modeling results for Antenna II.

Figures 4 through 5 show the surrogate and EM-simulated
antenna responses for the selected test designs.

C. DISCUSSION: WHY SEQUENTIAL SAMPLING DOES NOT
IMPROVE MODEL ACCURACY?
The results provided in Tables 1 and 2 clearly demonstrate
that sequential DoE does not lead to the improvement of
the surrogate model accuracy when compared to uniform
sampling of Section II.A. The results are consistent for both
considered antennas, various domain thickness parameters T,
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FIGURE 5. Responses of Antenna II at the selected test designs for
N = 400: EM model (—), nested kriging surrogate with sequential
sampling(o).

FIGURE 6. Antenna I: selected two-dimensional projections of the
training sets obtained using uniform (�) and sequential (o) sampling.
It can be observed that the sample distributions for both sets is quite
comparable in terms of uniformity, which is an indication that sequential
design of experiments does lead to uniform sample allocation when
applied to constrained domain of the nested kriging.

as well as different training data set sizes. This interesting
outcome is counterintuitive and not in line with the intended
performance of sequential DoEs.

A closer look into the formulation of the performance-
driven surrogates, specifically, nested kriging, helps
explaining this phenomenon. The fundamental reason is a
very definition of the surrogate model domain, which—
by design—contains the parameter vectors that are opti-
mum or nearly-optimum with respect to the performance
figures of choice. Because the domain is the extended image
of the objective space through the first-level surrogate, it
contains uniformly distributed representations of the opti-
mum designs for all combinations of the relevant figures of
interest (e.g., operating conditions). This means that the

FIGURE 7. Reflection responses of Antenna I at random locations in
(a) box-constrained domain X , and (b) constrained domain XS
(cf. Section II.A). Because large regions of the domain X contain
poor-quality designs with shallow resonances, the nonlinearity of the
functional landscape within X is not uniform and sequential DoE may
bring some benefits by concentrating samples in the areas of higher
nonlinearities. For the constrained domain, the nonlinearity of the
antenna responses is more or less the same throughout XS (the
resonances are deep and just allocated at different frequencies);
consequently, uniform sampling seems to be the optimum choice and
sequential DoE does not improve the model predictive
power.

(frequency-averaged) nonlinearity of antenna characteristics
is essentially independent of the location within the domain.
In particular, there are no regions where the typical nonlinear-
ity of the functional landscape to be modeled is higher than
elsewhere.

This is illustrated in Fig. 6 showing random samples dis-
tributed within the original (box-constrained) domain X and
the constrained domain XS of the nested kriging. Conse-
quently, uniform distribution of the training samples is what
is preferred (from the point of view of improving the global
accuracy of the surrogate) and sequential design of experi-
ments leads to such a distribution. Figure 7 provides an illus-
tration for Antenna I, where the distributions obtained using
uniform and sequential DoEs are very much comparable.
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Based on the above conjectures, the predictive power of the
models rendered with uniform and sequential DoEs should
indeed be comparable. It appears that (error-wise) optimality
of uniform sampling is an inherent feature of performance-
driven modeling methods in general, and the nested kriging
framework in particular.

IV. CONCLUSION
The paper addressed design of experiments for computation-
ally efficient surrogate modelling of antenna input charac-
teristics. In particular, we compared the performance of the
nested kriging modelling framework using uniform (LHS-
based) and sequential sampling that involves maximization of
the mean square error as the primary infill criterion. Compre-
hensive numerical experiments conducted for two microstrip
antennas lead to counterintuitive results demonstrating no
improvement of the predictive power for the surrogate ren-
dered using sequential DoE over the uniform sampling. The
results are consistent for all considered test cases, and var-
ious sizes of the training sets. This phenomenon has been
explained based on the inherent properties of the constrained
domain of the nested kriging model, specifically that fact
that the domain only contains nearly optimum parameter
vectors uniformly representing the design objectives selected
for the antenna structure at hand. This leads to a conclusion
that uniform sampling seems to be an optimum choice and
the improvement due to sequential DoEs (if any) would be
negligible. This seems to be an inherent feature of the nested
kriging framework as well as other performance-driven mod-
elling techniques.
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