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Abstract. The purpose of the paper is to indicate an efficient method of analysis foundation settlement taking into account 
the variability of soil properties. The impact of the random variable distribution (Gauss or Lognormal) describing soil 
stiffness on foundation deposits was assessed. The Monte Carlo simulation method was applied in the computations. The 
settlements of the strip foundation with the subsoil described by a single random variable and a random field were 
compared.  

INTRODUCTION 

While the literature regarding foundation settlements is vast, the investigations are still active on optimal analytical 
methods to refer precisely to the real foundation conditions. It is made possible by means of software employing 
advanced material models [1-5]. Probabilistic methods are successively gaining more and more importance [6-18]. 
They are distinguished in the soil cases showcasing high parameter variability, compared to metals, concrete, even 
composites. Various probabilistic analytical methods are in current use, the Monte Carlo simulation (MC) is the most 
featured due to its easy implementation, result reliability and a possible engineer-oriented result interpretation [19]. 
The MC-based repetition of computations is available due to the increasing power of computational tools. The 
dedicated software makes it possible to implement algorithms governing series of simulations. Nowadays it seems a 
promising direction in soil mechanics. 

The advanced algorithms are created in order to accelerate the crude MC routines, e.g. variance-reduction 
techniques (stratified and Latin hypercube sampling), the response surface method (RSM), targeted random sampling 
(TRS) and more. Their results are always uncertain, especially in the cases of a number of random variables due to 
the soil, multi-strata cases and complex boundary conditions. 

The most important issue in the probabilistic analysis is a relevant random description of soil parameters. Single 
random variables are most frequently applied, but this approach is too simplistic and unrealistic. A much more 
advanced approach incorporates random fields. This version requires a precise definition of variables, their mean 
values, standard deviations, moreover, their correlation function. Such an approach have to be preceded by extensive 
soil investigations to properly assess single parameters and correlation length, necessary to define a random field with 
properly formed correlation function on the basis of a limited data set. 

The Eurocodes require to employ probabilistic methods in structural reliability assessment and safety issues. These 
computations involve advanced, dedicated software operated by users familiar with probabilistic methodology, yet 
their direct introduction to standard engineering computations becomes a necessity [20, 21]. 
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The work attempts an insight on random soil parameters modelling, involving either a random variable or a random 
field. The work is aimed at pointing out optimal computational algorithms for engineering procedures. 

CASE STUDY 

An example of continuous foot in plane strain conditions is being investigated (Fig. 1). The model horizontal 
length equals 18 m, its vertical height 6 m. The thickness of the foundation equals 0.5 m.  

 
 
 

 
 

Figure 1. 2D model of plane strain case modelled in ZSoil software [22] 
 
While the analysis character is dominantly probabilistic and the Monte Carlo simulation method is a basic 

computational tool, these random parameters partially impose certain model limitations. Thus the under-foundation 
domain was split into two sub-regions, due to analytical parameters applied: the first (no. 1), deterministic and the 
second (no. 2), random. The middle random region (II) of horizontal and vertical finite mesh 40×16 elements 
corresponds to finite element dimensions 0.25×0.1875 m. The remaining domain (no. 1) is defined by the unstructured 
mesh and deterministic parameters: E = 30 MPa, cohesion c = 10 kPa, and internal friction angle φ = 30°. Concrete is 
considered elastic, its parameters correspond to C30/37 concrete (with Young’s modulus E = 33 GPa). 

Aforementioned random layer no. 2 detects the following mechanical parameters: E = 50 MPa, c = 10 kPa, 
φ = 30°. The stiffness of random domain was assumed higher than in the surrounding one. The selection of elements 
and zones was intended to optimize the computational time of a single case, making it possible to implement the 
Monte Carlo simulation method. The Mohr-Coulomb shear criterion was chosen to assess the settlements of the 
footing. The uniform load intensity equals 18 kPa, the vertical loading is 1.75 MN (Fig. 1). The load was collected 
from the internal wall subjected to vertical loading only.  

In the following case, deterministic footing settlement (Fig. 2) computed in ZSoil [22] assuming characteristic 
load values and mechanical parameters of layers equals udet=0.1038 m. This deterministic, accessible procedure does 
not account for the scatter of soil material parameters and the field tests uncertainty. It is substantial to conduct a 
probabilistic computational routine here. They complement the mean, deterministic settlement values by their standard 
deviations, providing a broader engineering outlook on the results scatter, and finally, leading to reliability assessment. 
Material parameters are routinely modelled by single random variables. 

SINGLE RANDOM VARIABLE DESCRIPTION  

In the case when sufficient databases related to real foundation-oriented soil parameter distribution are not 
accessible, they are assumed a priori [23]. In the domain of single random variables, the most widespread are Normal 
(N) or Lognormal (LN) patterns. The single random variates generators are available in simple computational and 
spreadsheet software, further enabling random approach in standard design. Although they produce pseudorandom 
numbers, they meet the engineering computational aims well. 

Measured point 
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Young's modulus E has been assumed a sole random parameter of the problem. Its mean value is based on 
deterministic inquiries Eഥ=50 MPa. The coefficient of variation (νE) of Eഥ (layer no. 2) is assumed fixed at the νE = 0.3 
level, this variability extent stems from the data in [24]. A maximum standard deviation taken for the analysis is 
intended to produce maximum foundation settlement scatter, i.e. values of sufficient safety margin due to engineering 
design. 

In this approach, Normal and Lognormal random variables were chosen to model Young’s modulus of layer no. 2. 
At first Normal (Gaussian) case was conducted due to its easy implementation in closed formulae and relatively proper 
representation of most material properties. However the Gaussian probability density function (PDF) shows 
disadvantages, such as negative values appearance should the lower boundary for this case exceed (3-5)σE, where σ୉ 
is the assumed standard deviation. In the considered example, no negative generated samples were detected, however, 
should more samples be generated, there is no certainty of the occurrence of positive-only samples. A definite solution 
to the problem is the selection of truncated Gaussian random variable.  

Next, lognormal random variable was also incorporated to exclude negative values of Young’s modulus and to 
generate values of higher density within the mean value range. 

The work is intended to directly compare the Normal and Lognormal variants, while the generated variates may 
exceed allowable material parameters. This analysis has been undertaken due to the high accessibility of Gaussian 
variables in engineering computations. These results are legible, intuitive, and have a key meaning in engineering. 
Any Gaussian variable is symmetrically distributed. Moreover, in the case where no laboratory-based database is 
available, the application of non-symmetrically distributed variables, e.g. Lognormal, is not advised. The latter type 
is popular in the problems of lower bound criteria. In these cases, the variable selection is not supported by field 
investigations. 

Layer II (Fig. 1) which was considered random was described using two random variables. First of it, Gaussian 
one was used, with statistical parameters equal to the one denoted in the Table 1.  

 

Table 1. Statistical moments of Normal and Lognormal random variables 

Statistical moments Normal Lognormal 
Mean value ܧത [kPa] 50000 10.7767 

Standard deviation ߪா [kPa] 15000 0.2936 
Coefficient of variation ߥா [-] 0.3 0.3 

 
In order to apply the same mean and variability coefficient in lognormal PDF simple transformations based on the 

following formulae are performed:  
 

 Es(xi)=exp ൬μln(Es)
 +σln(Es)

 G(xi)൰ (1) 

 σln(Es)
2 =ln ൬1+

σEs
2

μEs
2 ൰ =ln൫1+COVEs

2 ൯ (2) 

 μln(Es)
 =ln ቀμln(Es)

 ቁ -0.5σln(Es)
2  (3) 

 
where Es denotes desired, Lognormal value transformed from normal distribution.  

The parameters are presented in Table 1. The Python supplied generator [25] was applied to create the 
corresponding input data sets. Histograms of the generated sets of 10000 samples are presented in Figure 2. The 
statistical parameters of Normal and Lognormal variables are compared in Table 2. 
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Figure 2. Histogram of Normal and Lognormal input data set (Python [25]) 

Table 2. Statistical parameters of Normal and Lognormal random variables for 10000 set size 

Statistical parameters Normal Lognormal 
 ௠௜௡ [kPa] 1890 15928ܧ
 ௠௔௫ [kPa] 111370 159175ܧ
 ത       [kPa] 49597 49584ܧ
 ா      [kPa] 14912 14880ߪ

 
The work incorporates the crude Monte Carlo simulation variant. The prescribed series computation procedures 

were performed by means of Python and ZSoil packages. Here the computational time of a single realization is 
relatively short, allowing a mulitude of runs to be conducted, thus making the results reliable. A variety of alternative 
methods, e.g. variance-reduction techniques, response surface, are doubtful due to their result reliability. 

The generated Young's modulus variates made it possible to conduct two computational series, each one including 
10000 runs, resulting in two soil settlement response variables, corresponding to both Normal (Fig. 3)  and Lognormal 
cases. Parameters of these output variables are collected in Table 3. 

Significantly lower minimum settlement values are generated by the Normal pattern. On the other hand, larger 
maxima are produced by Lognormal generation variant. While the Lognormal variable is naturally low-bound, no 
such limitations appear due to extremes.  

 
Figure 3. Divergence of settlements observed for the Normal input data of standard MC method (10000 samples)  
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Figure 4. Comparison of model response with regard to Normal and Lognormal input data sets 

 

Table 3. Statistical parameters of response variable generated applying of 10000 samples taken from  
Normal and Lognormal distributions 

Statistical parameters Normal Lognormal Difference [%] 
Min value ௠ܻ௜௡            [m] -0.2887 -0.207658 28.07% 
Max value ௠ܻ௔௫           [m] -0.0843 -0.071268 15.46% 
Mean തܻ                        [m] -0.1099 -0.108564 1.22% 
Standard deviation ߪ௒  [m] 0.025325 0.0156266 38.30% 
Skewness ௦ܹ                [-] -3.96086 -0.913517 76.94% 

 
The settlements obtained by means of Gaussian-distributed variables meet the expectations, i.e. the solution 

includes a number of values significantly lower than Young's modulus in comparison to the uncertainty covered by 
Lognormal random model. However, the mean values in both cases coincide. The standard deviations are higher in 
the Normal solution variant. It is not apparent that the input Gaussian variables produce unsymmetrically distributed 
settlement variables, while the outcome of Lognormal input is almost symmetric. Note that both Normal and 
Lognormal computational variants bring about approximate settlement distributions. Thus they may be considered 
equivalent, assuming a dedicated Normal variable generation (bounding negative values). 

As mentioned before, material parameters of a vast soil volume under a foundation by means of a single random 
variable only is not enough to relevantly model the real footing conditions. It is suggested to apply a random field of 
material parameters to properly capture the dispersion of parameters governing the subsoil. 

RANDOM FIELD APPLICATIONS 

As far as random field generation is concerned it is a considerable task to apply an available, standard FEA 
software. It is not possible to appropriately match the random field correlation function, its parameters as well as to 
properly interpret the outcomes without a deep background on random field theory. This is the possible reason why 
different studies in the present time refer either to novel generation concepts or direct problem-oriented solutions. 

Method of generations 

The paper proposes a random field generation code too, addressed in detail in [26, 27]. The paper outlines the 
conditional generation method only. The software makes it possible to simulate discrete Gaussian random fields of an 
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arbitrary correlation function. The entirety of random field points is split into two sets of known, prior generated values 
and unknown values, investigated in given steps, the dimensions of these subsets are equal p and n, respectively:  

 

 u

k

n

p
 

  
 

X
X

X
 (4)  

 
These variables are assumed their mean values 

 

 u

k

n

p

 
  
 

X
X

X
 (5)  

 
The covariance matrix defined by an arbitrary correlation function is split according to the division of vector X: 
 

 
11 12

21 22

n

p
n p

 
  
 

K K
K

K K  (6)  

Standard transformations lead to a function decisive in the generation of unknown values uX : 
 

            
1
22 T 12

1( ) 1 det 2 exp
2 1

m m

t u k c u c c u cf t
t




  
       

X X K X X K X X  (7)  

 
here 1

11 12 22 21c
 K K K K K  is a conditional correlation matrix,  1

12 22c u k k
  X X K K X X  is a conditional 

vector of mean values, t is a truncation parameter. 
The random fields were generated according to various correlation functions, e.g. Wiener, Brown and others. The 

software has been thoroughly checked and verified [26]. 
The method outlined above is marked by two distinct features. The first points out conditional algorithm to 

sequentially generate an unknown random field. Thus it is possible to capture the fields of arbitrarily large dimensions. 
The second feature is a field envelope making it possible to modify restraining conditions in order to adjust the created 
field to a given example. Hence restraints of a theoretical correlation function may be superimposed by additional 
envelopes regarding engineering boundary conditions 

Random field calculations 

Random fields are continuously gaining their application to analyse material soil parameters. The selection of 
correlation function and its parameters, including material data should be based on in situ investigations in the 
foundation site. These tests are expensive, thus prior parameter assumption is a routine. 

The random field is given a standard, widely encountered correlation function: 
 

 1 2( , ) e d x d yx y    (8)  
 
This form is reasonable while an under-foundation volume is filled by a single soil type. The key parameters to be 

estimated here are correlation lengths d1 and d2. According to their values, the internal random field correlation is 
exclusively affected by the distance between the points (homogeneous field). The impact of d parameter in the uni-
dimensional case is shown in Fig. 5. The field correlation on both vertical and horizontal directions is usually taken 
separately. 
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Figure 5. Correlation length with regard to different correlation parameters  

 
In order to comprehensively outlook the correlation length impact on field performance, the strong and weak 

correlation cases may be compared. It was conducted applying a finite element 16×40 field discretization, assuming 
d1 = d2 (Eq. 8). In the case of high correlation parameter ݀ = 0.05 in surrounding points, such information means 
that the closely located values are convergent, as presented in Figure 6. In case of different correlation length assumed 
in vertical and horizontal direction the shape may slightly differ, however the idea still remains the same. 

 

 
Figure 6. Example of highly correlated  field (d = 0.05)  

 
The less correlated field is presented in Fig. 7. As the visual representation of middle point of corresponding 

elements stiffness values differs a lot, smooth connection between these values is preserved. However comparing 
extremes, boundary regions differences of up to 2ߪ are allowed. 

 
Figure 7. Example of low correlated field (d = 1.0) 
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The examples of a highly correlated random field in Fig. 6 and a slightly correlated case in Fig. 7 are compared 
with the totally random case, generated by white noise field algorithm presented in Fig. 8. Most differences are 
observable due to values at neighbouring points, totally irrational in the white noise generation type. On the other 
hand, only highly correlated fields find their real-case scenario fundamentals due to a soil natural homogeneity within 
regions, not only referring to local values. It seems correct, especially in the stiffness analysis.  

 

 
Figure 8. Non-correlated, white noise generated field 

 
Apparently, both random field and single random variable analytical variants of soil parameter variation may be 

compared assuming a strong correlation case. The result convergence is expected here. A population of 5000 fields 
was generated, assuming d1 = d2 = 0.05 (Eq. 8). Properties of the conducted generation were additionally verified in 
the first place, starting with the check of all the achieved distribution at an arbitrarily chosen single point in the vicinity 
of the field center. Making use of an entire generated population of 5000 fields, the achieved distribution is shown in 
Fig. 9.  
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Figure 9. Frequency distributions from 5000 generated field (middle point of each field).  

 

Next, mean values are estimated of the generated fields Ê , subsequently comes the covariance matrix ˆ
EK :  
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The norm of the covariance matrix K̂  and the variance norm of this matrix are obtained as well ˆ
WK : 

 

  2ˆ ˆ
EK K  (11)  

  2ˆ ˆ
W EtrK K  (12)  

 
These norms are computed due to a theoretical model, so generation errors are available as follows: maximum 

error of a single element 8.44%, normal errors globally 3.87%, normal errors regarding variance 2.65%. 
The analysis proves proper random field generation, thus the realizations may be a starting point of a subsequent 

MC simulation. A population of 200 samples was taken here. The convergence course is shown in Fig. 10 and Table 
4. An apparent feature is observable in the result convergence, mean value and standard deviation 

 

 
 

Figure 10. Divergence of response and its parameters in the case of correlated random fields (Monte Carlo, 200 samples) 
 
In addition, computations were conducted for a population of 200 white noise runs (Fig. 11, Table 4). While a 

white noise use to capture soil features seems unrealistic, the results are intended to form an anticipated reference 
level for correlated random fields. The results are summarized in Table 4. 

 

 
Figure 11. Divergence of response and its parameters in the case of uncorrelated (white noise) random fields 
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Table 4. Comparison between standard Monte Carlo sampling for Normal (N) and Lognormal (LN) histograms (10000 samples)  
and random field (200 samples) generated by highly correlated (RF) and White Noise (WN) functions.  

Statistical parameters 10000 N 10000 LN 200 RF 200RF WN 

Min value ௠ܻ௜௡           [m] -0.2887 -0.207658 -0.27013 -0.11769 
Max value ௠ܻ௔௫          [m] -0.0843 -0.071268 -0.08649 -0.1057 
Mean തܻ                        [m] -0.1099 -0.108564 -0.11039 -0.1090646 
Standard deviation ߪ௒  [m] 0.025325 0.0156266 0.023384 0.0018344 
Skewness ௦ܹ                [-] -3.96086 -0.913517 -3.10202 -1.54488 

 
All the random field application results are rapidly convergent, thus performing a great computational effort is not 

needed. However, the variance reduction methods may be incorporated as well, due to prior classification of generated 
fields. Such an approach substantially reduces the sample space required to get a reliable result. 

CONCLUSIONS 

The paper addresses the case of continuous footing situated on a random subsoil solved as a plane strain system. 
The general purpose of the paper was to implement an extended analysis of the random subsoil, using different 
probability density functions to describing the stiffness modulus of soil. Two independent paths were compared – the 
first, considering an entire domain beneath the foundation random, represented by a single random variable only, the 
second, applying a random field methodology to model spatial variability of soil parameters. The model was built in 
the FEM code ZSoil, cooperating with the external programming language Python. 

The standard Monte Carlo method comparing both Normal and Lognormal variants proved the former one the 
easiest and relevant in such simple, shallow foundation case, with regard to serviceability limit state function. Different 
sampling domain sizes were regarded, the reference domain of 10000 samples was finally adopted. Considering both 
types of the input variables, even though the minimum and maximum values differ, the resultant histograms strongly 
resemble each other. In the cases of similar results of both variants, there is no need to use the Lognormal variables 
due to their complicated use in engineering application and the difficulties in interpretation. 

In order to assure the consistency with the fundamentals of soil mechanics, Gaussian random variables may be 
generated with a lower bound, not to allow the generation of negative values of Young’s modulus. Moreover, if both 
upper and lower bounds are introduced, it is possible to provide material parameters generated according to in-situ 
tests or general engineering design remarks. Although the trimming operation causes the input variable set not to 
match the assumed Gaussian theoretical pattern, the results are still directly applicable in real-life design. Such a 
realistic, engineering-oriented input dataset described by means of a modified Normal distribution seems a 
straightforward route to implement a probabilistic approach in standard engineering routines.  

For the random field cases, two variants were analysed. At first, completely uncorrelated white noise generation 
was conducted. While 200 runs were performed, the results convergence was perfect, thus the sequence was stopped. 
The second, reference calculations assumed high correlation between surrounding 2D elements. In this case 5000 
different fields were created, and the results convergence was high, limiting the sequence to 200 runs only. 

As a final result, both Monte Carlo and random field histograms were compared, a clear conclusion was driven 
proving that there is no necessity to incorporate developed statistical methods in the case of small footings. However, 
it can be significant, in the case of more complex structures. 

In the extension of the work engineering, in-situ measurements may be applied to build the correlation matrix of 
the random field, to model the spatial variability of properties of the natural soils beneath the foundation. 
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