

The author of the PhD dissertation: Dorota Osula
Scientific discipline: Informatics

DOCTORAL DISSERTATION

Title of PhD dissertation: Multi-agent graph searching and exploration algorithms

Title of PhD dissertation (in Polish): Algorytmy przeszukiwania i eksploracji
grafów przez grupę mobilnych agentów

Supervisor

signature

Second supervisor

signature

dr hab. inż. Dariusz Dereniowski,
prof. nadzw. PG

Auxiliary supervisor

signature

Cosupervisor

signature

Gdańsk, year 2019

GDAŃSK UNIVERSITY OF TECHNOLOGY

DOCTORAL THESIS

Multi-agent graph searching and
exploration algorithms

Author:
mgr inż. Dorota Osula

Supervisor:
dr hab. inż. Dariusz Dereniowski,

prof. nadzw. PG

FACULTY OF ELECTRONICS,
TELECOMMUNICATIONS AND INFORMATICS

Department of Algorithms and Systems Modelling

2020

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

iii

Acknowledgements

First and foremost, I would like to express my profound gratitude to my
supervisor, Professor Dariusz Dereniowski for the continuous support dur-
ing my PhD studies and research. I am sincerely grateful for his patience,
motivation, immense knowledge and invaluable guidance throughout my
research and writing of this thesis. I could not have imagined having a
better supervisor and mentor for my PhD.

Secondly, I wish to express my warmest gratitude to my co-authors
for sharing your experiences and knowledge, and for providing invalu-
able support and feedback throughout the research. I would also like to
thank Professor Rita Zuazua for her friendship, guidance and giving me
the amazing opportunity to visit Mexico.

Finally, my deep and sincere gratitude to my family for their continu-
ous and unparalleled love, help and support. I am forever indebted to my
parents for giving me the opportunities and experiences that have made
me who I am today. I am grateful for my husband for always being there
for me. They selflessly encouraged me to explore new horizons and to
seek my own destiny. This journey would not have been possible if not for
them. I dedicate this milestone achievement to them.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

v

Abstrakt

Grupa mobilnych agentów musi wykonać powierzone im zadanie na
grafie, zaczynając od specjalnie wyznaczonych wierzchołków zwanych
bazami. Celem jest skonstruowanie strategii (tj., sekwencji kroków, z
których każdy jest zbiorem ruchów agentów), która pozwoli agentom
na wykonanie zleconego zadania. Strategie analizujemy pod kątem ich
efektywności, np. liczby wykorzystanych agentów, sumy wszystkich
wykonanych ruchów czy liczby kroków strategii. Obecnie dziedzina
przeszukiwania oraz eksploracji a priori nieznanego agentom grafu (tj. on-
line) dynamicznie się rozwija. Ciągle proponowane są nowe podejścia,
w celu ulepszenia sposobu modelowania rzeczywistych problemów, ta-
kich jak przeszukiwanie niebezpiecznych obszarów czy konstrukcja mapy
nieznanego terenu przez grupę robotów.

Problemy przeszukiwania i eksploracji grafów w sposób scentrali-
zowany i gdy graf jest dany agentom na wejściu (tj. off-line) są znanymi
problemami w teorii grafów i wiele wyczerpujących wyników zostało
już uzyskanych. W poniższej pracy skupiamy się na monotonicznym
spójnym przeszukiwaniu grafu, rozproszonej eksploracji on-line grafów
oraz częściowej eksploracji digrafów. Zwracamy w tym miejscu uwagę,
że zadania przeszukiwania i eksploracjii są ze sobą mocno powiązane.
Pierwsze może być postrzegane jako konstrukcja strategii, która ma za
zadanie złapać ruchomego uciekiniera, zaś w drugim uciekinier jest staty-
czny. Dlatego, różnica między nimi tak naprawdę leży w zachowaniu się
jednostki będącej celem pościgu. W tej pracy używamy obydwóch pojęć,
aby być zgodnymi z powrzechną literaturą.

Rozprawę otwiera rozdział przeglądowy, który w wyczerpujący
sposób traktuje o przeszukiwaniu oraz eksploracji grafów. Po nim, w
kolejnych czterech rozdziałach zaprezentowane są poniższe wyniki:

− Dowolny, nieznany graf z klasy częściowych krat (ang. partial
grids) o liczbie wierzchołków n może być przeszukany w sposób
spójny przez grupę mobilnych agentów o rozmiarze O(

√
n), gdy

Ω(
√

n/ log n) jest niezbędne.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

vi

− Sprawdzenie czy spójna szerokość ścieżkowa grafu (ang. connected
pathwidth) jest mniejsza od ustalonej liczby całkowitej k może być
wykonane w czasie wielomianowym.

− Dla dowolnego cyklu oraz drzewa w czasie wielomianowym może
zostać znaleziony algorytm, który pozwoli grupie mobilnych agen-
tów na eksplorację znanego grafu w sposób optymalny, gdzie
parametrem minimalizacyjnym jest suma przebytych dróg oraz
cena agentów. Dla a priori nieznanych cykli konstruujemy 2-
kompetytywny algorytm. Pokazaliśmy również, że każdy on-line
algorytm jest co najmniej 3/2 razy gorszy (2 razy gorszy) niż opty-
malny algorytm off-line dla cykli (dla drzew).

− Problem stwierdzenia możliwości uspójnienia podgrafu spinającego
wybrane wierzchołki w digrafie poprzez wyczyszczenie przez
zadaną liczbę mobilnych agentów jest NP-zupełny oraz FPT (Fixed
Parameter Tractable).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

vii

Abstract

A team of mobile entities, which we refer to as agents or searchers inter-
changeably1, starting from homebases needs to complete a given task in a
graph. The goal is to build a strategy, which allows agents to accomplish
their task. We analyze strategies for their effectiveness (e.g., the number
of used agents, the total number of performed moves by the agents or the
completion time). Currently, the fields of on-line (i.e., agents have no a
priori knowledge about the graph topology) multi-agent graph searching
and exploration are rapidly expanding. Recent studies have presented new
approaches and models to better describe real-life problems like clearing
danger areas by a group of robots or constructing a map of an unknown
terrain.

A centralized searching and exploration in the off-line setting (i.e., when
the topology of a graph is known in advance) are well studied, due to their
wide applications in robotic and network fields, and many profound re-
sults have been established. In this thesis we are focusing on the issues of
the monotone connected decontamination problem, the on-line collaborative
exploration and the partial exploration of digraphs. We point out that the
two tasks, namely graph searching and exploration are closely related. The
former can be seen as designing a strategy that aims at finding a moving
entity while the latter can be seen as finding a static entity. Thus, the differ-
ence lies in the behavior of the target. We use the names graph searching
and exploration also to be consistent with existing literature.

Firstly, we provide two comprehensive surveys on the topics of graph
searching and exploration. Then in the four subsequent chapters, we
present the following results:

− We give a distributed algorithm for the searchers that allows them
to compute a connected and monotone strategy that guarantees
searching any unknown partial grid of order n with the use of O(

√
n)

searchers. Moreover, we give a lower bound of Ω(
√

n/ log n) in
terms of achievable competitive ratio of any distributed algorithm.

1Historically, the terms ’agent’ and ’searcher’ have been used in the contexts of graph
exploration and searching, respectively. Thus, in this thesis we use them both, dependently
on the described topic.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

viii

− Checking if the connected pathwidth of any graph is at most some fixed
integer k can be done in polynomial time.

− Let the cost of a strategy be the total distance traversed by agents cou-
pled with the price of invoking them. We construct two cost-optimal
off-line algorithms for rings and trees, respectively. For unknown
rings, we give a 2-competitive algorithm. We prove a lower bound
of competitive ratio of 3/2 (for rings) and 2 (for trees) for any on-line
algorithm.

− The problem of establishing if there exists a subgraph, which con-
nects a chosen vertices and can be explored by a given number of
agents is NP-hard and FPT.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

ix

Summary

This thesis is organized as follows. Firstly, in Chapter 1, we give the nec-
essary definitions and notations that are used in the rest of the work. In
particular we define the concepts of a graph and digraph (weighted and
non-weighted) together with some basic properties (Section 1.1). In Sec-
tion 1.2 we define a strategy as a sequence of sets of agents’ moves and
give the formal definition of the basic model. Then in Section 1.3, we de-
scribe models of our interests and state the main results obtained in this
thesis.

Chapter 2 provides comprehensive surveys on the two deterministic
agents’ problems: graph decontamination (Section 2.1) and graph explo-
ration (Section 2.2). Different models are described based on: the opti-
mization factor of a strategy, communication between agents, time clock
and the initial knowledge about the graph (i.e., the on-line and off-line
settings). In Section 2.1 the numerous results are presented for various
search numbers, also in the context of other graph’s parameters, e.g., path-
width or vertex separation. Then, we look closer at monotone, connected
and internal strategies, on which we would focus on later. We finish this
section with tables (Table 2.1-Table 2.7) presenting all (to the best of this
author’s knowledge) results in the field, including several model modifi-
cations (e.g., equipping agents in special proprieties of visibility or cloning).
Section 2.2 surveys the distributed graph exploration by a team of mobile
agents. We divided it into edge- and vertex-exploration and present cur-
rent results for different optimization factors (e.g., completion time or the
number of agents) on several graph classes. Up to date results are shown
in Tables 2.8-2.10.

The thesis is divided into two parts: Part I Decontamination and Part II
Exploration, where both consist of two chapters with newly obtained re-
sults in the fields.

As a way of modeling two-dimensional shapes, we restrict our atten-
tion in Chapter 3 to networks that can be embedded into partial grids:
nodes are placed on the plane at integer coordinates and only nodes at
distance one can be adjacent. Distributed, connected and monotone de-
contamination in the on-line setting is investigated, where the number of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

x

searchers is being minimized. Although searchers do not have any know-
ledge about the graph a priori, we equip them in the sense of direction, i.e.,
they recognize the direction of an incident edge (up, down, left or right).
We give a distributed algorithm for the searchers that allows them to com-
pute a connected and monotone strategy that guarantees searching any
unknown partial grid with the use of O(

√
n) searchers, where n is the num-

ber of nodes in the grid. As for a lower bound, there exist partial grids that
require Ω(

√
n) searchers. Moreover, we prove that for each searching algo-

rithm in the on-line setting there is a partial grid that forces the algorithm
to use Ω(

√
n) searchers but O(log n) searchers are sufficient in the off-line

scenario. This gives a lower bound of Ω(
√

n/ log n) in terms of achievable
competitive ratio of any distributed algorithm.

The graph searching number is strictly linked to the pathwidth param-
eter of the graph. During the GRASTA 2017 workshop, Fedor V. Fomin
[75] raised an open question, whether we can verify in polynomial time,
if the connected pathwidth of a given graph is at most k, for a fixed k. In
Chapter 4 we answer this question in the affirmative by providing an al-
gorithm inspired by the algorithm for computing minimum-length path
decompositions by Dereniowski, Kubiak, and Zwols [50].

Chapter 5 presents results on the exploration of rings and trees in the
off-line and on-line settings. We are interested in the cost-optimal strate-
gies, where the cost of a strategy is understood as the total distance tra-
versed by agents coupled with the price of invoking them. The algorithms
that compute optimal strategies for a given ring or tree of order n are con-
structed. For unknown rings, we give a 2-competitive algorithm and prove
a lower bound of competitive ratio of 3/2 for any on-line algorithm. For
every on-line algorithm for trees, we prove the competitive ratio to be no
less than 2, which can be achieved by the DFS algorithm.

In the second chapter of the exploration part (Chapter 6) we study sev-
eral problems of clearing subgraphs by mobile agents in digraphs. The
agents can move only along directed walks of a digraph and, depending
on the variant, their initial positions may be pre-specified. In general, for a
given subset S of vertices of a digraph D and a positive integer k, the ob-
jective is to determine whether there is a subgraph H = (V, A) of D such
that (a) S ⊆ V, (b) H is the union of k directed walks in D, and (c) the
underlying graph of H includes a Steiner tree for S in D. Since a directed
walk is not necessarily a simple directed path, the problem is actually on
covering with paths. We provide several results on the polynomial time
tractability, hardness, and parameterized complexity of the problem. Our
main fixed-parameter algorithm is randomized.

Finally, we close this thesis with conclusion in Chapter 7.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

xi

Most of the results in this thesis have been published. Section 2.1 is
based on the survey accepted for publication in Utilitas Mathematica [128].
Extended abstract of Chapter 3 has been presented at the 15th Workshop
on Approximation and Online Algorithms (WAOA 2017) and published in the
LNCS series [51]. Authors have been invited to publish the full version of
the paper in journal of Theory of Computing Systems. Chapter 4 answers the
open question raised in [75] and has been accepted for publication in the
special issue of Theoretical Computer Science. Extended abstract of Chapter 5
has been presented at the 45th International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2019) and published in the
LNCS series [129]. Finally, Chapter 6 is based on the article from Journal of
Computer and System Sciences [52].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

xiii

Contents

Abstrakt v

Summary viii

1 Introduction 1
1.1 Graph Theory Definitions . 1
1.2 Search and Exploration Strategies 2
1.3 Problems’ Statements and Main Results 6

1.3.1 Decontamination of Partial Grids 6
1.3.2 Computation of Connected Pathwidth 7
1.3.3 Minimum-cost Graph Exploration 8
1.3.4 The Link Up Problem 9

2 Survey 11
2.1 Decontamination . 14

2.1.1 Search Models . 14
2.1.2 The Search Number 16
2.1.3 Search Numbers for Different Search Models 21
2.1.4 Monotone Contiguous Search 21
2.1.5 Computing Search Numbers 34

2.2 Exploration . 35
2.2.1 Completion Time . 35
2.2.2 Other Optimization Factors 38

I Decontamination 43

3 On-line Search in Two-Dimensional Environment 45
3.1 The Model . 46
3.2 Partial Grid Notation . 48
3.3 Lower Bound . 50
3.4 The Algorithm . 53

3.4.1 Initialization . 53

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

xiv

3.4.2 Procedures . 54
Procedure ClearExpansion 54
Procedure UpdateCheckpoints 57

3.4.3 Procedure GridSearching 58
3.5 Analysis of the Algorithm . 60

3.5.1 Single Phase Analysis 63
3.5.2 How Many Nodes Are Explored by a Checkpoint? . 65
3.5.3 The Algorithm Uses O(

√
n) Searchers in Total 67

3.6 Unknown Size of the Graph 70
3.7 Conclusions . 71

3.7.1 Motivation . 71
3.7.2 Open Problems . 73

4 Finding Small-width Connected Path Decompositions 75
4.1 Motivation . 76
4.2 Definitions . 76
4.3 The Algorithm . 78

4.3.1 States . 79
4.3.2 Extension Rules . 80
4.3.3 Summing Up . 82

4.4 The Analysis . 83
4.5 Open Problems . 101

II Exploration 103

5 Minimizing the Cost of Team Exploration 105
5.1 The Model . 105
5.2 Rings in the Off-line Setting 106
5.3 Rings in the On-line Setting 109
5.4 Trees in the Off-line Setting 114

5.4.1 The Algorithm . 115
Procedures . 117

5.4.2 Analysis of the Algorithm 119
5.5 Trees in the On-line Setting 125
5.6 Conclusions . 129

6 Clearing Directed Subgraphs by Mobile Agents 131
6.1 The Model . 131
6.2 The Link Up Problem is Fixed-Parameter Tractable 133

6.2.1 The Tree Pattern Embedding Problem 140
6.3 The Link Up Problem is Hard 151

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

xv

6.3.1 Direct Implication . 154
6.3.2 Converse implication 156

6.4 Conclusions . 159

7 Conclusions 161

Bibliography 165

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

xvii

List of Symbols

A(G, H) a number of searchers used by algorithm A
for graph G starting from the set of homebases H

Aopt(G, H) a minimum number of searchers to search (or explore)
graph G starting from the set of homebases H

α(H,P) start point of interval of connected graph H
in decomposition P

b(C) bottleneck of checkpoint C
B agent-quantity function
B set of all bases of some digraph
B(S) set of all S-branches
β(H,P) end point of interval of connected graph H

in decomposition P
c(v) children of vertex v
c(S) cost of strategy S
cpw(G) connected pathwidth of graph G
cs(G) connected edge search number of graph G
C〈i〉 i-th expansion of checkpoint C
dH(v, u) distance between vertices v and u in graph or digraph H
degH(v) degree of vertex v in graph or digraph H
degin(v) in-degree of vertex v
degout(v) out-degree of vertex v
D = (V, A) digraph D with vertex-set V and arc-set A
ens(G) mixed search number of graph G
F(p1, p2) a frontier of ends in points p1 and p2
G = (V, E) graph G with vertex-set V and edge-set E
G[Y] subgraph of graph G induced by vertex set Y
is(G) internal edge search number of graph G
I(S,P) interval of S in path decomposition P
L(T) leaves of tree T
m number of edges (arcs) of a graph (digraph)
ms(G) monotone edge search number of graph G
n number of vertices of a graph or digraph

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

xviii

ns(G) node search number of graph G
N natural numbers and zero
N+ natural numbers
NG(Y) neighborhood of vertex set Y in G
o asymptotic little O notation
O asymptotic big O notation
p(v) parent of vertex v
ppw(G) proper-pathwidth of graph G
pw(G) pathwidth of graph G
P a path decomposition
PT(v, u) path between two vertices v and u in tree T
π1 ◦ π2 concatenation of two walks π1 and π2
R rational positive numbers and zero
R+ rational positive numbers
R(F, i) i-th rectangle of frontier F
s(D) set of all source vertices in digraph D
s(G) edge search number of graph G
Tv tree rooted in vertex v
TC(D) transitive closure of digraph D
θ asymptotic little Theta notation
Θ asymptotic big Theta notation
vs(G) vertex separation of graph G
w(e) weight of edge e
w(G) sum of weight of all edges of graph G
W(v, u) walk from vertex v to vertex u
q invoking cost
ω asymptotic little Omega notation
Ω asymptotic big Omega notation

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

1

Chapter 1

Introduction

This thesis starts with giving the necessary definitions and notations, that
are used in the rest of the work. In particular, Section 1.1 gives the ba-
sic graph-theoretic definitions and Section 1.2 describes basic multi-agent
searching and exploration models. Then, in Section 1.3 we describe models
formally and state the main results obtained in this thesis.

1.1 Graph Theory Definitions

An undirected graph (which we refer shortly as to graph) G = (V(G), E(G))
is an ordered pair of two sets, where V(G) denotes the set of vertices (or
nodes) of G and E(G) the set of edges of G. We write V = V(G) and E =
E(G), when a graph is clear from the context. Each edge is a pair of two
vertices, i.e., e = {u, v}, where e ∈ E and u, v ∈ V. A vertex-weighted graph
is a triple G = (V, E, wV), where wV : V → R is a weight function defined
for all vertices. An edge-weighted graph is a triple G = (V, E, wE), where
wE : E → R is a weight function defined for all edges. The degree of a
vertex of a graph is the number of edges incident to the vertex.

A digraph D = (V(D), A(D)) is an ordered pair of two sets, where
V(D) denotes the set of vertices of D and A(D) the set of arcs of D. Sim-
ilarly, we write V = V(D) and A = A(D), when a digraph is clear from
the context. Arcs are directed edges, i.e., (u, v) 6= (v, u) for any u, v ∈ V.
We can look at digraphs as a generalization of undirected graphs. Indeed,
every graph G can be represented by a digraph by replacing each edge
{u, v} ∈ E(G) by two arcs: (u, v) and (v, u). Thus, problems solved on di-
graphs (as the one in Chapter 6), are (in the considered cases) more general
than on undirected graphs. We define vertex-weighted and arc-weighted di-
graphs analogously as for undirected graphs. The underlying graph G of D
is a graph with the same vertex set and {u, v} ∈ E(G) if and only if there is
an arc between u and v in D. The in-degree degin(v) of v ∈ V is the number
of arcs (u, v) ∈ A and the out-degree degout(v) of v is the number of arcs

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2 Chapter 1. Introduction

(v, u) ∈ A. A source of a directed graph is a vertex of in-degree zero. The
set of all source vertices in a directed graph D is denoted by s(D). By the
transitive closure TC(D) of a directed graph D, we mean a directed graph
on the same vertices such that for each pair (u, v) of distinct vertices, there
is an arc from u to v if and only if there is a directed path from u to v in the
original digraph.

For any graph G or digraph D we denote as W(v, u) a walk that starts
in v ∈ V and finishes in u ∈ V (if v = u then either walk is a single vertex
or a closed walk). A path is understood as an open walk with no repeated
vertices. If a graph (digraph) is non-weighted, then the distance between
two vertices in it is the number of edges (arcs) in a shortest (directed) path
connecting them. For edge-weighted graph (digraph) the distance is the
sum of weights of all edges (arcs) in a shortest (directed) path. For any
graph or digraph H and v, u ∈ V(H) we denote the distance between v
and u by dH(v, u) and omit the bottom index, when H is clear from the
context. The number of vertices of any walk π is denoted shortly as |π| =
|V(π)|. For two walks π1 and π2, where π2 starts at the ending point of
π1, the concatenation of π1 and π2 is denoted by π1 ◦ π2.

For any graph G and a set Y ⊆ V(G), the subgraph with vertex set Y
and edge set {{u, v} ∈ E(G)

∣∣ u, v ∈ Y} is denoted by G[Y] and is called
the subgraph induced by Y. For Y ⊆ V(G), we write NG(Y) to denote
the neighborhood of Y in G, defined as NG(Y) = {v ∈ V(G) \ Y

∣∣ ∃u ∈
Y s.t. {u, v} ∈ E(G)}.

A graph is connected if for every pair of vertices u and v, there is a walk
from u to v. A digraph is weakly connected if its underlying graph is con-
nected. A simple graph (digraph) has neither self-loops nor multi-edges
(multi-arcs). In this work we are interested only in connected (weakly con-
nected) and simple graphs (digraphs).

1.2 Search and Exploration Strategies

In this subsection we formally define the basic search and exploration mod-
els. In general, there exist many different models (see surveys in Chap-
ter 2), but the definitions below are common for them all. Additional re-
quirements and restrictions that have to be fulfilled in order for strategies to
become solutions to the problems solved in this thesis are described firstly
in the next subsection, and then in more details in subsequent chapters.

Let G be a class of connected (weakly connected) simple graphs (di-
graphs), G = (V, E) ∈ G and let n = |V|. In this work (unless stated

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

1.2. Search and Exploration Strategies 3

differently) it is assumed that agents have identifiers and unbounded com-
putational power. Each agent, while traversing a graph, executes its own
algorithm and this algorithm uses some local memory. We say for short
that this is the memory of the agent and we assume that it is polynomial in
the size of the graph.

For the search and exploration problems a strategy must follow a cer-
tain pattern, that is, all searchers have to be placed at specific nodes, called
homebases.

Definition 1.2.1. When an agent first occurs in a graph G it can only be placed
on a node called homebase. A set of homebases is predefined for a given graph
(i.e., it is not chosen by the agents). In particular, it can be only one node or the
whole set V.

For a graph G, set of homebases and a group of available agents our
goal is to find a strategy, which is a sequence of steps, which are sets of
agents’ moves.

Definition 1.2.2. A move consists of selecting one agent and performing one
of the following actions: (1) placing a chosen agent on one of the homebases, (2)
sliding a chosen agent along an edge from the node this agent occupies to a neigh-
bouring one or (3) removing a chosen agent from the graph.

Definition 1.2.3. Step is a set of moves. In other words, step includes moves of
agents that are performed simultaneously. We require that a step includes at most
one move of each agent.

Definition 1.2.4. For a graph G, set of homebases H ⊆ V and a set of k agents a
strategy S is a sequence of l ∈ N+ steps, i.e., S = (S1, . . . , Sl), where Si is the
i-th step. Moves from every step are performed simultaneously and moves from
Si, i ∈ {2, . . . , l} are made after all moves from Si−1 have finished.

In order to find a strategy, we construct an algorithm, which based on
the provided input computes the next step of a strategy. We consider in
this thesis two types of algorithms.

Definition 1.2.5. By a centralized algorithm in this work we understand a
deterministic procedure that runs on a single processor, which for a given input
computes a strategy that is then executed by the agents.

Definition 1.2.6. A distributed algorithm is an algorithm designed to run the
private processors of mobile agents. Thus, such an algorithm runs concurrently
and independently on multiple processors with only a limited amount of informa-
tion. 1

1Definition taken from the book Distributed Algorithms by Nancy A. Lynch [115].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4 Chapter 1. Introduction

Both types of algorithms can run in the two different settings: on-line
and off-line one.

Definition 1.2.7. In the off-line setting an algorithm receives the entire graph G
as an input.

Definition 1.2.8. In the on-line setting agents initially have no knowledge about
the graph.

Although an algorithm computes a strategy, we often view it as a pro-
cedure that computes the next step of the strategy (especially in the on-line
setting, where the input is provided to the algorithm gradually after each
step of the strategy is performed). In other words, a centralized algorithm,
based on its current knowledge about the graph, computes the next step
of a strategy, i.e., it dictates agents their next moves. In particular an al-
gorithm may know the whole graph from the beginning (off-line setting)
or learn its structure with time (on-line setting). On the other hand, in the
distributed model, each agent calculates its own next move based on the
content of its local memory (i.e., part of a graph, which it has explored so
far or has learned from the other agents). Distributed algorithm can also
run in two settings: off-line (where although the structure of a graph is
known to all agents from the beginning, they might be unaware of, e.g.,
other agents’ positions) and on-line one.

For brevity, whenever we refer to an algorithm in the on-line (off-line)
setting we call it on-line (respectively off-line) algorithm. Moreover, when
we write that an algorithm A uses f (n) agents, what we mean is that a
strategy computed by A for any n-node graph uses at most f (n) agents.

In a distributed algorithm, a channel of communication has to be pro-
vided for the agents, i.e., the agents have to communicate with each other.
The content of the exchanged messages is used by agents’ algorithms to
determine their further moves. We distinguish two models.

Definition 1.2.9. Global communication gives agents the ability to exchange
an unbounded number of messages in spite of their locations. Moreover, it is as-
sumed that communication does not take any time, i.e., sending or receiving a
message is not considered as a separate move.

Definition 1.2.10. In the local communication model agents can only exchange
messages when present and the same node. Similarly, as in the global communica-
tion model, sending and receiving a message does not take any time.

In this thesis, we are interested in finding strategies that solve two
graph-theoretic problems: decontamination and exploration. The word

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

1.2. Search and Exploration Strategies 5

searching is used interchangeably with decontamination throughout this
work.2 3

Problem 1.2.1. In the decontamination problem initially, all edges are con-
taminated. After each move of sliding a searcher along an edge, it is declared to
be clear. It becomes contaminated again (recontaminated) if at any time dur-
ing execution of the strategy S at least one of its endpoints is not occupied by a
searcher and is incident to a contaminated edge. We consider only strategies in
which recontamination does not occur and we call such strategies monotone. We
say that a strategy S decontaminates (or clears) graph G if after performing the
last step of S all edges are clear.

Problem 1.2.2. In the exploration problem each vertex has to be visited at least
once. In other words, we say that a strategy S explores a graph G if after per-
forming the last step of S each vertex has been visited at least once by some agent.

Finally, we would like to measure the efficiency of a strategy in order to
compare strategies. A common approach is to look for a strategy that min-
imizes the number of used agents. In this work, apart from minimizing the
number of agents we are interested also in other factors, which (for more
clarity) are described in details in specific chapters. Following the common
approach, we also want to compare on-line algorithms with the results of
the optimal strategies computed in the off-line setting, by calculating theirs
competitiveness.

Definition 1.2.11. Let A be any on-line algorithm that computes a decontaminat-
ing (or exploration) strategies for all graphs from some class G ′ ⊆ G. By A(G, H)
we denote the number of agents used by a strategy computed by A for a graph
G ∈ G ′ starting from the set of homebases H. Let now Aopt(G, H) be a minimum
number such that there exists a strategy that decontaminates (or explores) graph
G and starts from H. We say that an algorithm A is f (n)-competitive, for some
function f , if

max
H

A(G, H)

Aopt(G, H)
≤ f (n)

2Notice, that in computer science the concept of graph search is often equivalent to graph
traversal, i.e., the process of visiting all nodes in a graph in the centralized setting. To the
group of the graph traversal algorithms we include strategies such as depth-first search,
breadth-first search, best-first search and many others.

3The reason for using in this thesis searching as a broader concept than in computer
science, is that the word decontamination is used mostly in the context of distributed or
on-line computations, while searching is used for off-line problems related to pathwidth,
treewidth and other width-like measures of the graph. This is done to stay consistent with
the terminology used in the literature.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6 Chapter 1. Introduction

for each n-node graph G ∈ G ′. If H consists of only one homebase h, then for
brevity we write A(G, h) and Aopt(G, h).

Similarly, a measure of the efficiency of an on-line algorithm the com-
petitive ratio is understood as the worst-case ratio between the number of
agents produced by the on-line algorithm and the optimal off-line algo-
rithm.

1.3 Problems’ Statements and Main Results

In this section we formally describe each of our four considered subprob-
lems and present the main results. We would like to notice here that all of
these subproblems are described in more details together with all neces-
sary notation in particular chapters.

1.3.1 Decontamination of Partial Grids

Let G be a simple, undirected, connected partial-grid (i.e., a subgraph of a
grid) with a single homebase h. A monotone connected k-search strategy S for
a network G is defined as follows. Initially, k searchers are placed on h of G.
Then, S is a sequence of moves, where each move consists of selecting one
searcher present at some node u and sliding the searcher along an edge
{u, v}. (Thus, the searcher moves from its current location to one of the
neighbors.) We require S to decontaminate G, be monotone and connected,
i.e., the clear subgraph, that is, the subgraph consisting of all clear edges, is
connected after each move of the search strategy.

We now state the distributed model in the on-line setting that we use.
All searchers start at the homebase and the network itself is not known in
advance to the searchers (except for the fact that the searchers may expect
that the network is a partial grid). We assume that nodes are anonymous
and searchers have identifiers. The edges incident to each node are marked
with unique labels (port numbers) and because only partial grids are con-
sidered in this work we assume that labels naturally reflect all possible di-
rections for each edge (i.e., left, right, up and down). For the searchers, we
assume that they communicate locally by exchanging information when
present at the same node.

In Chapter 3, our main results consists of constructing a distributed
algorithm ModGridSearching and proving:

− For each distributed algorithm A computing a connected monotone
search strategy in the on-line setting there exists an n-node network

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

1.3. Problems’ Statements and Main Results 7

G with homebase h such that

max
h

A(G, h)
Aopt(G, h)

= Ω(
√

n/ log n)

(Lemma 3.3.1 and Theorem 3.3.1).

− The distributed algorithm ModGridSearching clears (starting at an ar-
bitrary homebase) in a connected and monotone way any unknown
underlying partial grid network of order n using O(

√
n) searchers.

The algorithm receives no prior information on the network (Theo-
rem 3.5.1 and Theorem 3.6.1).

1.3.2 Computation of Connected Pathwidth

Let G = (V(G), E(G)) be a simple, undirected, connected graph of order n.

Definition 1.3.1. A path decomposition of a graph G is a sequence P =
(X1, . . . , Xl), where Xi ⊆ V(G) for each i ∈ {1, . . . , l}, and

A.
⋃l

i=1 Xi = V(G),

B. for each {u, v} ∈ E(G) there exists i ∈ {1, . . . , l} such that u, v ∈ Xi,

C. for each i, j, k with 1 ≤ i ≤ j ≤ k ≤ l it holds that Xi ∩ Xk ⊆ Xj.

The width of a path decomposition P is width(P) = maxi∈{1,...,l} |Xi| − 1.
The pathwidth of G, denoted by pw(G), is the minimum width over all path
decompositions of G.

We say that a path decomposition P = (X1, . . . , Xl) is connected if the
subgraph G[X1∪ · · · ∪Xi] is connected for each i ∈ {1, . . . , l}. The connected
pathwidth of a graph G, denoted by cpw(G), is the minimum width taken
over all connected path decompositions of G.

This version of the classical pathwidth problem is motivated by several
pursuit-evasion games. More precisely, computing the minimum number
of searchers cs(G) needed to decontaminate in a connected way a given
graph G is equivalent to computing the connected pathwidth of G. More-
over, a connected path decomposition can be easily translated into the cor-
responding search strategy that cleans G and vice versa. Indeed, suppose
that P = (X1, . . . , Xl) is a connected path decomposition of G. We can use
it to obtain a search inductively as follows. Assuming that the searchers
are located at the vertices in Xi, we perform the following moves. First,
remove from G all searchers on the vertices in Xi \ Xi−1. Then place the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

8 Chapter 1. Introduction

searchers on the vertices in Xi+1 that are not occupied by any searchers.
Finally, use an additional searcher to clear all edges with two endpoints in
Xi+1. This completes the inductive construction. Using also an induction,
one can prove that once the vertices in Xi are occupied by the searchers,
all edges in the subgraph G[X1 ∪ · · · ∪ Xi] are clear. Such a search uses
1 + maxi |Xi| searchers, which is equal to cs(G) or cs(G) + 1 [44, 99].4

In Chapter 4 (Theorem 4.4.1) we prove that for every fixed k ≥ 1, there
is an algorithm deciding in time f (k) · nO(k2) whether cpw(G) ≤ k− 1, for
some function f depending on k only, i.e., in time polynomial in n.

1.3.3 Minimum-cost Graph Exploration

Let G be a simple, undirected, edge-weighted, connected graph of order n
with a single homebase h and let w : E→ R+ be an edge-weight function.

The goal is to find an algorithm, which for any graph G computes a
strategy, which explores G. In this problem, we consider strategies, that
consists of two types of moves: (1) traversing an edge by an agent and (2)
invoking a new agent in the homebase. Let S be a strategy constructed
for some graph G, k ∈ N+ be the number of agents used by S (notice
that k is not fixed) and di ∈ R+ ∪ {0} the distance traversed by the i-th
agent during the execution of S , i ∈ {1, . . . , k}. Let q be the invoking cost.
We define the cost of S as c(S) = kq + ∑k

i=1 di. In other words, cost is
understood as the sum of invoking costs and the total distance traversed
by entities. Intuitively, before exploring any vertex the algorithm needs to
decide what is more profitable: invoke a new agent (and pay for it q) or use
an agent already present in the graph. The number of agents, that can be
invoked, is unbounded.

For the off-line setting in Chapter 5 we present two algorithms that
compute cost-optimal strategies for exploring rings and trees (Theo-
rem 5.4.1), respectively.

In the on-line setting it is assumed that an agent, which occupies the
vertex v, knows the length of edges incident to v and the status of vertices
adjacent to v, i.e., if they have been already explored. We assume global
communication for this problem. We construct a 2-competitive distributed
algorithm for rings (Lemma 5.3.1) and prove a lower bound of 3/2 of the
competitive ratio for any on-line algorithm for rings (Theorem 5.3.1). For

4To be more precise, the (connected) pathwidth is equal to the (connected) node search
number, which can differ from s(G) (cs(G)) by at most one. For more details see the survey
in the following section, in particular Subsection 2.1.1 for the description of different search
models and Subsection 2.1.3 for relationships between search numbers and different graph
parameters.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

1.3. Problems’ Statements and Main Results 9

every algorithm for trees in the on-line setting, we prove the competitive
ratio to be no less than 2 (Theorem 5.5.1), which can be achieved by the
DFS algorithm.

1.3.4 The Link Up Problem

Let D be a vertex-weighted digraph with an additional subset of ver-
tices, such that its underlying graph is connected. In other words,
D = (V(D), A(D), F, B) is a quadruple, where V = V(D) is a set of
all vertices, A = A(D) set of arcs, F ⊆ V and B : V → N a vertex-weight
function. Let n = |V|.

The link up problem is modeled by D as follows. The vertices of D
correspond to terminals while its arcs correspond to (one-way) transmis-
sion links, the set F corresponds to locations of facilities, and the set B =
B−1(N+) corresponds to homebases, where a (positive) number of agents
is placed (so we shall refer to the function B as an agent-quantity function).
Let k = ∑v∈V B(v) be the total number of agents placed in the digraph.

The Link Up Problem (LU)

Do there exist k directed walks in D, with exactly B(v) starting points
at each vertex v ∈ V, whose edges induce a subgraph H of D such
that all vertices in F belong to one connected component of the un-
derlying graph of H? Note that the k directed walks may overlap in
vertices and even edges.

The LU problem may be understood as a question, whether for a team
of size k, initially located at homebases in B = B−1(N+), where the num-
ber of agents located at v ∈ B is equal to B(v), it is possible to follow k
walks in D clearing their arcs so that the underlying graph obtained by the
union of cleared walks includes a Steiner tree for all facilities in F.

Our two main results in Chapter 6 are stated below:

− The LU problem admits a fixed-parameter randomized algorithm
with respect to the total number l of facilities and homebases, run-
ning in 2O(l) · poly(n) time, where n is the order of the input graph
(Theorem 6.2.2 and Corollary 6.2.1).

− The LU problem is strongly NP-complete even for directed acyclic
graphs D = (V, A, F, B) with F = V and B(v) = 1 if v is a source
vertex in D and B(v) = 0 otherwise (Theorem 6.3.1).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

11

Chapter 2

Survey

In this chapter we provide comprehensive surveys on the two distributed
deterministic agents’ problems on undirected graphs: decontamination (or
searching, Section 2.1) and exploration (Section 2.2). The terminology from
this chapter has been broadly used in the literature and is inspired by sev-
eral publications such as those about on-line algorithms [66], distributed
algorithms [115], complexity theory [87, 111], parameterized complexity
[56] and approximation algorithms [147].

Let G be any simple, connected, undirected graph and let n = |V(G)|.
In Section 1.2 we have formally defined a strategy and basic searching and
exploration models. Let us now, as an introduction to surveys, look more
at the different optimization factors and communication and time models.

Efficiency measures. We distinguish the following optimization factors:

− number of agents - the total number of agents used on a graph;

− total moves - the sum of all movements performed by agents;

− completion time - the number of time units required to complete the
search, with the assumption that for edge-weighted graphs a walk
along an edge e takes w(e) time units (where w(e) is the weight of the
edge e) and for non-weighted graphs takes one time unit1;

− total distance - the sum of distances traversed by all agents;

− total clearing moves - the sum of clearing movements performed by
agents;

− energy - maximum value taken over all agents traversed distances;

1More precisely, it is the number of time units that passed from the first to the last move
performed by agents.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

12 Chapter 2. Survey

− cost - the total distance traversed by agents coupled with the cost of
invoking them, introduced in SOFSEM 2019 (see Chapter 5).

The minimal number of needed agents can stay in the contradiction
to other optimization factors, as it was proved for the total clearing moves
factor in [48] and can be easily observed e.g., for the completion time factor.
We refer to the total moves and completion time factors also as the moves
and time complexity of the strategy.

As the efficiency measure of on-line algorithms we use competitiveness
(defined formally in Section 1.2), just in a general case we can compare an
on-line algorithm with the optimal off-line one on any optimization factor
(not only on the number of agents as it has been stated before).

Communication Between Agents. In this thesis, we assume that agents
are not able to see each others’ positions on a graph, but they can exchange
with each other messages, i.e., communicate. Fraigniaud et al. show in [83],
that without communication every on-line exploration algorithm performs
Ω(k) times longer, where k is the number of agents, than the optimal off-
line one (i.e., has the competitive ratio Ω(k)). In other words, without com-
munication each of the agents would simply explore the graph on its own.
In the case of decontamination it is even impossible to achieve the goal
without communication, while apart from trivial cases (e.g., paths), one
agent is not able to clean the whole graph alone. Therefore some way of
communication must be provided for agents. In literature, we can find
two approaches: global and local communication. Global communication
allows all agents to send and receive unlimited number of messages at any
time in spite their locations, which is a very strong assumption, but re-
flects the real life ability of robots to communicate by, e.g., a WiFi network.
In the local model, on the other hand, communication is limited and fol-
lowing approaches can be distinguished: pebbles (tokens), whiteboards, face-
to-face or bounded communication. Historically, the first studied model of
pebbles allowed agents to drop and pick tokens in nodes in order to tag
them, while the model of whiteboards provides agents a memory space
on each node, to which they can write and read in the mutual exclusion.
In the face-to-face communication, agents can exchange information only
when they meet and in bounded model global communication is allowed
but only on a specified distance, which reflects the real life situation of a
bounded range of communicating equipment.

Time Clock. In the synchronous model all moves of agents are synchro-
nized and are being made in regards to the common clock. In each time

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Chapter 2. Survey 13

unit an agent can decide to stay on its position or make one of allowed
moves, which has the same unit length duration. Note here that agents
know exactly how many units of time it will take other agents to perform
their actions and based on that they can compute their next steps. On the
other hand, in the asynchronous settings, a move of an agent takes an un-
known but finite amount of time, which does not allow agents to make any
assumptions based on time about other agents’ current positions. Lastly,
in the quasi-synchronous model [73] only an upper bound of the length of
agents’ moves is given. Intuitively, an asynchronous algorithm (i.e., an al-
gorithm that perform in the asynchronous setting) can never perform bet-
ter than a synchronous one (respectively, in the synchronous setting) for
the same network, thus a good practice while investigating time or move
complexity is to compute the lower bounds for synchronous and upper
ones for asynchronous models.

Let us notice now that because usually we are interested in asymptotic
results, the choice of the communication model and time setting are not
very significant when we minimize the number of agents. Indeed, the
choice of communication model affects, e.g., move and time complexity
of search strategy [53], but (for the searching and exploration problems)
it does not affect the optimal number of needed agents. The global envi-
ronment can be simulated in the local setting by designating one searcher
called the leader who at the beginning of each move visits all nodes of the
cleaned subgraph in order to gather all needed information to compute
agents’ next moves. Leader coordinates moves of the whole team, by in-
forming the searcher, who is supposed to perform the next move.

This simple explanation also works for transposing a strategy in a syn-
chronous environment into the asynchronous setting. In other words, the
choice of the time model is not significantly relevant when minimizing the
number of agents, although it affects most of the other optimization fac-
tors2. Moreover, one additional searcher in the asynchronous setting is
often not only sufficient, but required in order to make the search or explo-
ration feasible.

2In an asynchronous models for mobile agent computing, while calculating the comple-
tion time it is often assumed that one move takes one time unit.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

14 Chapter 2. Survey

2.1 Decontamination

Let G be a class of connected, undirected, simple graphs. For every G ∈ G
we denote the number of vertices and edges as n = |V| and m = |E| re-
spectively. Recall that the decontamination problem is to construct a deter-
ministic search strategy, which clears initially infected network. It has been
extensively studied due to its various application in the computer science
area, where protecting a network from hostile viruses is crucial, as well
as in the robotic field, where robots need to cooperate in a real-life terrain
(which can be modeled as a graph) in order to achieve a common goal,
e.g., decontaminate a set of polluted tunnels, build a map or catch a hostile
intruder.

In this whole subsection we assume that graphs are non-weighted, un-
less it is said differently. This chapter is based on the survey accepted for
publication in Utilitas Mathematica [128].

2.1.1 Search Models

Edge Search. The basic and historically first model of graph searching,
studied in [132, 133], is the edge search in which initially all vertices and
edges of the network are contaminated and the goal is to find a strategy,
which will allow searchers to clean the whole network. The search strategy
is understood as a sequence of moves, where each move is one of the fol-
lowing: (1) placing a searcher on a node, (2) sliding a searcher along an
edge and (3) removing a searcher from the node it occupies. A contami-
nated node becomes clean if a searcher is placed on it and an edge becomes
clean if a searcher slides along it. A node v (or edge e) becomes recontam-
inated (contaminated again) if after a move there exists a free of searchers
path containing v (or respectively e) and any infected node or edge. We
will refer to the vertex which is occupied by a searcher and at least one of
its incident edges is contaminated as to a guarded one. See Figure 2.1 for an
example of an edge search decontamination.

Node and Mixed Search. Another approach given in [16] is the node
search variant, where only moves of type (1) and (3) are allowed (sliding
along an edge is forbidden) and an edge becomes clean, when two its
incident nodes are simultaneously occupied by searchers. Combining both
ways of clearing edges one obtains the mixed search variant. See Figure 2.2
for an example of the node search.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.1. Decontamination 15

Node-decontamination. In the node-decontamination (oppositely to edge-
decontamination or simply decontamination) problem the fugitive can hide
only in nodes, so there is no need to clear edges [114]. In this model
an unoccupied node stays clean only if all of its neighbors are clean and
get recontaminated otherwise. Searchers here are allowed to make all of
three moves, as in the edge search. Interestingly, in the literature (e.g.,
[69, 67]) node search and node-decontamination concepts are used inter-
changeably, which can be sometimes misleading. Moreover, the node-
decontamination model is (in practice, not in the assumptions) equivalent
to the mixed search one. It is because in articles written in the same time
different authors used different terminology to describe their models. One
of the goals of this survey was to introduce a common nomenclature and
classify models by it. The minimum number of searchers needed to clean in
this model can be different than the one required in the node search variant
- for the example from Figure 2.2 for the node-decontamination problem,
only two searchers are needed, which perform the total of three moves, i.e.,
place one searcher on v1, place one searcher on v2, slide a searcher from v1
to v3.

v1

v2

v3

e1

e2

e3

(A) Initially graph is empty and in
first two moves two searchers are

placed on v1.

v1

v2

v3

e1

e2

e3

(B) In the third move the searcher
from v1 is slid along the edge e1.

v1

v2

v3

e1

e2

e3

(C) In the forth move the searcher
from v1 is slid along the edge e2.

v1

v2

v3

e1

e2

e3

(D) Finally one of the searchers
cleans the remaining edge e3.

FIGURE 2.1: Decontaminating a cycle C3 in the edge search model; gray dots
and edges denote contaminated elements, black dots are the nodes occupied
by searcher(s), black edges stand for the cleaned edges, black arrows shows the
cleaning movements of the searchers and black circles denote the cleaned nodes
without any searcher. Optimal (in the sense of the number of searchers) clean-

ing of C3 requires two searchers and five moves.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

16 Chapter 2. Survey

v1

v2

v3

e1

e2

e3

(A) Initially graph is empty and one
searcher is placed on v1.

v1

v2

v3

e1

e2

e3

(B) In the second move a searcher is
placed on v2.

v1

v2

v3

e1

e2

e3

(C) Lastly the third searcher is placed
on v3, which immediately cleans the

remaining two edges.

FIGURE 2.2: Decontaminating a cycle C3 in the node search model. Optimal (in
the sense of the number of searchers) cleaning of C3 requires three searchers

and three moves.

Lets us notice here that when the number of searchers is being op-
timized, all these models will not differ by more than a small constant
(see Section 2.1.2). As for the relation between search variants and moves
complexity, apart from the work of Dereniowski and Dyer [48], where the
asymptotic difference for cliques is shown, no significant results were es-
tablished. We notice also that by combining moves into steps one can re-
define given strategies for the previous example in order to decrease the
number of steps (i.e., completion time) by 2. At the end of this subsection
let us present an example of recontamination in the mixed search model
in the Figure 2.3, where we have combined placing and sliding moves of
searchers into steps.

2.1.2 The Search Number

Search Number. The search number s(G) of a network G is the smallest
number of searchers in the edge search variant for which a search strategy
exists.

Monotonicity. In a monotone search strategy a recontamination of the no-
des is forbidden - once a node or an edge is cleared by a searcher, it must

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.1. Decontamination 17

v1

v2

v3

v4

v5

v6

v7

v8

(A) Initially graph is empty and in
the first step three searchers are placed

on v1.

v1

v2

v3

v4

v5

v6

v7

v8

(B) In the second step each of them
slides along one of the incidental edges.

v1

v2

v3

v4

v5

v6

v7

v8

(C) In the next two steps searcher from
the node v4 traverses to v7 and then to

v8, leaving v7 unprotected.

v1

v2

v3

v4

v5

v6

v7

v8

(D) Recontamination immediately
spreads from v6 to the unprotected

cleaned part of the graph.

FIGURE 2.3: An example of recontamination of the nodes in the mixed search
model; gray arrows denote directions of spreading of recontamination, gray cir-
cles denote the recontaminated nodes and the gray area shows the recontami-

nated part of the network.

stay clean till the end of the procedure. It forces searchers to guard vertices
that have contaminated neighbors and only a vertex with the entire neigh-
borhood cleaned can be left empty. Monotone strategies are of particular
interest for many reasons due to their broad applications in e.g., computer
and telecommunication networks. Because the number of cleaned nodes
do not decrease, monotone strategies perform in a polynomial number of
steps and for most of the models allowing recontamination does not im-
prove the results (see inequalities 2.1 - 2.3). It is also a priori difficult to
design a non-monotone search strategy. Additionally, if we do not assume
monotonicity in the on-line case we will reduce it to the off-line one, by just
sending one searcher to explore the whole graph, return to the homebase
and share its knowledge with other searchers allowing them to compute an

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

18 Chapter 2. Survey

optimal strategy and then execute it3. The minimum number of searchers
needed to search a graph G in the edge search model in the monotone way
is denoted by ms(G). See Figure 2.4 for an example of the allowed move-
ments in the monotone search strategies.

v1

v2

v3

v4

v5

v6

v7

v8

(A) In order to ensure monotonicity,
only two moves are allowed: from v2

to v5 and from v1 to v4.

v1

v2

v3

v4

v5

v6

v7

v8

(B) After performing this two moves
new possibilities have arisen: from v3

to v6 and from v4 to v7.

FIGURE 2.4: An example of allowed moves in the monotone search strategy in
the edge search model, where each of the four vertices {v1, v2, v3, v8} is occu-

pied by one searcher.

Connectivity and Internality. We call a strategy connected if the clean part
of the graph forms a connected subnetwork in every step of the strategy.
In the internal model we forbid searchers to jump, i.e., only the moves of
sliding a searcher along a link and placing a new searcher on a homebase
is allowed. Model with these two properties was first introduced in [7]
and called contiguous. This assumptions are dictated by the real life prob-
lems, which include performing tasks by robots, which do not posses the
ability of jumping between two remote places. The minimum number of
searchers needed to search a graph G in the edge search model in the con-
nected way is denoted by cs(G) and internal by is(G). In order to obtain
different search numbers one can combine described properties and de-
note them according to logical reasoning (e.g., mis stays for the monotone
internal search number and ics for contiguous one). Note that although
connected and contiguous strategies might perform differently (see Fig-
ure 2.5 for an example) they are equivalent in terms of used searchers (i.e.,
cs(G) = ics(G)), since every jumping move can be replaced by a sequence
of sliding moves.

It is natural to study search numbers in the off-line setting since no on-
line algorithms can perform better (in any sense). Although determining

3This simple explanation holds only for the strategies optimal in the sense of the number
of searchers, where agents dispose of the memory large enough.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.1. Decontamination 19

v1

v2

v3

v4

v5

v6

v7

v8

(A) In the internal strategy the searcher
from v4 is only allowed to move to any

of its neighbors.

v1

v2

v3

v4

v5

v6

v7

v8

(B) In the connected strategy the
searcher is forbidden to move to its
neighbor v7, but is allowed to jump to

v2 or v5.

v1

v2

v3

v4

v5

v6

v7

v8

(C) In the contiguous strategy
searchers need to abide both re-

strictions.

FIGURE 2.5: An example of the internal, connected and contiguous search
numbers; crosses denote nodes forbidden for the searcher occupying the cir-

cled node.

whether s(G) ≤ k for an arbitrary graph G and k ∈ N+ belongs to the
class of NP-complete problems [118], the distributed and centralized off-
line graph searching strategies are well studied and numerous deep results
were established, whose summary is presented below. First results can be
found in the articles written around the year 1980, where the edge search
model was defined [133, 132]. In [118] and [16] authors prove that every
graph can be searched in the monotone way and the famous statement:
Recontamination does not help comes from the article of the same title [109],
where LaPaugh shows the monotonicity of the edge search problem:

ms(G) = s(G). (2.1)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

20 Chapter 2. Survey

Ten years later Barrière et al. in [10, 8, 7] present a summary of all properties
condensed in two theorems, for an arbitrary graph G

is(G) = s(G) = ms(G) ≤ mis(G) ≤ (2.2)
≤ cs(G) = ics(G) ≤ mcs(G) = mics(G)

and tree T

is(T) = s(T) = ms(T) ≤ mis(T) = cs(T) = (2.3)
= ics(T) = mcs(T) = mics(T) ≤ 2s(T)− 2.

In [77] bounds for a special class of outerplanar graphs are presented, i.e,
for any 2-connected outerplanar graph G with its weak dual T∗

cs(T∗)/2 ≤ cs(G) ≤ 2cs(T∗). (2.4)

Interestingly the monotonicity condition has no influence on the optimal
number of searchers for trees. This does not hold for an arbitrary graph
G: in [151] Yang et al. constructed special kind of graphs with large clique
number for which they proved that the strictness of an inequality cs(G) <
mcs(G) is possible.

For brevity an algorithm, which computes only monotone (connected)
strategies, is called a monotone (connected) algorithm.

The Cost of the Connectivity and Monotonicity. Being aware of the in-
equality between regular and connected search number, one may wonder
how many extra searchers must be provided to ensure the connectivity.
The price of the connectivity for an arbitrary graph G was first estimated
by Barrière et al. in [9, 10] and then improved by Dereniowski in [47] giv-
ing a final result cs(G) ≤ 2s(G) + 3, where the factor 2 is tight. In the case
of trees, we obtain a tight upper bound of 2: cs(T) < 2s(T) [9, 10]. As for
the monotonicity, it does not change the search number ms(G) = s(G), but
influences the connected search number, i.e., cs(G) ≤ mcs(G) (as it was
already mentioned).

The Cost of Knowledge. For an on-line algorithms the following the-
orem [93] holds: for any monotone connected on-line algorithm A there
exists a constant c such that for any sufficiently large n, there exist a n-
node graph G, such that a strategy computed by A for G requires at least
c n

log nmics(G) searchers to clear G, i.e., the competitive ratio r(A) is upper

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.1. Decontamination 21

bounded by

r(A) ≤ Ω
(

n
log n

)
. (2.5)

Ilcinkas et al. [93] propose also an on-line algorithm which for any G
uses at most O

(
n

log n

)
mics(G) searchers thereby making the gap tight.

Moreover these results are insensible of the time environment - a lower
bound holds in a synchronous setting and the algorithm can be imple-
mented in an asynchronous one. On the other hand, [22] shows that by
neglecting the monotone property it is possible to construct an on-line al-
gorithm for an arbitrary graph working in the asynchronous environment
that needs only mics(G) + 1 searchers, giving the same competitive ratio
of 1, but performs in exponential time and is not monotone.

2.1.3 Search Numbers for Different Search Models

The search number originally was defined for the edge search model, but
as soon as new search variants were defined authors started to distinguish
it among them obtaining: the node search number ns(G) and the mixed search
number ens(G), for any graph G. Kirousis and Papadimitriou in 1986 [99]
were first who observed that the node and edge search numbers can differ
by at most one: ns(G)− 1 ≤ s(G) ≤ ns(G)+ 1, while Takahashu et al. [146]
completed this results by proving for mixed search model: s(G) − 1 ≤
ens(G) ≤ s(G) and ns(G)− 1 ≤ ens(G) ≤ ns(G).

Interestingly, graph searching number is strictly linked to the pathwidth
pw(G) and vertex separation vs(G) parameters (which are well known to be
equal [98]), as it has been shown: ns(G) = vs(G) + 1 = pw(G) + 1 [44, 99].
With the previous observation it leads to the inequality: vs(G) ≤ s(G) ≤
vs(G)+ 2 formally proven tight in 1994 by Ellis et al. [63]. For mixed search,
a new parameter, called proper-pathwidth and denoted by ppw(G) was de-
fined and following results were established [146]:

pw(G) ≤ ens(G) = ppw(G) ≤ pw(G) + 1. (2.6)

For more results for different graph parameters (i.e., bandwidth, branch-
width, cutwidth, treewidth) and their connection to graph searching see a
comprehensive review on the topic [76].

2.1.4 Monotone Contiguous Search

In this subsection results for monotone contiguous search are presented,
where searchers are assumed to start their task from one homebase, which

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

22 Chapter 2. Survey

is a part of an input. Firstly, a closer look at a problem of the amount of
information provided a priori for searchers is given. Then, in following
two paragraphs all known results (to the best of this author’s knowledge)
for monotone contiguous decontamination problem are described and pre-
sented in Tables 2.1-2.4. Models with visibility and cloning properties are
considered, where the first one provides for searchers additional informa-
tion about the neighborhood nodes of a currently occupied one, and the
second gives searchers an ability to make a copy of themselves before they
perform a move. The two last paragraphs say about the models with im-
munity (see Tables 2.5-2.7 for the summary) and exclusivity properties.

Bits of Advice. The common practice for on-line algorithms is to investi-
gate the amount of additional a priori knowledge about the network which
has to be provided for searchers in order to accomplish their task efficiently.
Fraigniaud et al. introduced in [80] a new measure of difficulty for on-line
tasks called bits of advice, which is the minimum number of bits of informa-
tion, which have to be provided for searchers to make the decontamination
task possible. First results in the subject of searching and exploration can
be found in [81], where authors consider one-agent exploration of trees.
The most significant results in the multi-agents decontamination task are
provided by Nisse and Soguet in [121], where the amount of bits of ad-
vice for the problem of finding mics(G) for any unknown graph G in the
synchronous environment is investigated. Authors define an oracle using
a total of O(n log n) bits and the algorithm that solves the monotone con-
tiguous search problem with this oracle in O(n3) time steps. Moreover,
no algorithm using an oracle providing o(n log n) bits of advice permits to
clear monotonically using mics searchers, so the bound is asymptotically
tight. In other words, it is possible to construct an optimal monotone con-
tiguous search strategy for an arbitrary unknown graph G if in every node
a whiteboard with O(log n) bits of information is provided.

An interesting algorithm for monotone contiguous graph search for
any unknown weighted graph G can be found in [27], where Borowiecki
et al. equipped searchers in an additional ability, called sense of direction.
A partition (V1, . . . , Vt) of graph’s G node set is given, such that edges are
allowed only within each Vi and between two consecutive Vi’s. Searchers
have no a priori knowledge about the graph, but can recognize whether an
edge incident to already explored vertex in Vi leads to a vertex in one of
Vi−1, Vi or Vi+1. Giving the size of advice O(|E|) authors present an al-
gorithm, which for G computes a strategy that requires 3 max

i=1,...,t
ω(Vi) + 1

searchers, where ω(Vi) is the sum of weights of all nodes in the set Vi.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.1. Decontamination 23

Every n-node graph can be searched by this technique, in the worst sce-
nario only one-element partition is created and the strategy uses 3n + 1
searchers. See Figure 2.6 for an example.

FIGURE 2.6: An example of division of vertices into the four partitions. When
a searcher occupies a vertex, it knows if the adjacent edge leads to a vertex

lying inside the left, right or the current partition.

Different Topologies. Whereas the problem of finding the search num-
ber for arbitrary graphs is NP-hard, it can be solved in polynomial time for
specified network topologies. It was Barrière et al. who first introduced
monotone contiguous search number and provided an algorithm, that for
any given tree T computes an optimal search strategy, proving the same
equality mics(T) = ics(T) = Θ (log n) [7]. Similar results however can-
not be transferred to weighted trees, as Dereniowski shows in [46], the
problem of connected searching even for node-weighted trees is strongly
NP-complete 4. The same author gives in [45] the 3-approximation algo-
rithm, which can be computed in polynomial time. If the tree is not known
in advance, then for every monotone connected algorithm there exist some
trees for which Ω(n) searchers are needed, which holds even for binary
trees [93]. These properties are highly unsatisfying, since it is possible to
search every graph with O(n) searchers, simply leaving one searcher on
each node.

In the off-line setting, other topologies were investigated and mono-
tone contiguous search algorithms were constructed for chordal rings and
toroidal meshes [67, 92], hypercubes [68, 92], butterflies [92], Sierpinski
graphs [114], meshes [69, 134], pyramids [142], product networks [94] and
star graphs [95]. In [134] Qiu looked at the problem from a different per-
spective of maximizing the number of nodes that can be cleared for a given
number of k searchers. Apart from the number of searchers, most of these

4Apart from the NP-completeness Dereniowski constructs an FPT algorithm for finding
an optimal strategy with the respect to the maximum degree of a tree.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

24 Chapter 2. Survey

works analyze the completion time and total moves parameters and the
influence of cloning and visibility abilities (which are broader discussed in
the next paragraph).

As for the on-line setting, authors of [51] present an algorithm for de-
contaminating partial grids, which for n-node grids computes strategies,
which use O(

√
n) searchers and give a lower bound for the competitive

ratio Ω(
√

n/ log n) (see Chapter 3 for details).
See Tables 2.1-2.4 for the summary of all known (to the best of this au-

thor’s knowledge) results for the monotone contiguous decontamination
problem.

Ref. Number of Searchers
Computational Bits of

Complexity Messages

[7] GIVEN n-NODE TREE T
Θ (log n) Θ (n) Θ(n)

[22] UNKNOWN n-NODE TREE T
Θ (n)

[46] GIVEN n-NODE NODE AND/OR EDGE WEIGHTED TREE T
WITH A MAXIMUM NODE DEGREE ∆

NP-complete
[45] 3mics(T) O(∆n3 log n)
[51] UNKNOWN n-NODE PARTIAL GRID G

O(
√

n)
r = Ω(

√
n/ log n)

TABLE 2.1: Asymptotic results for distributed algorithms (in on-line and off-
line settings) for trees and for partial grids in the monotone contiguous model.
By Computational Complexity is understood the time needed to compute the
algorithm and by Bits of Messages, the amount of bits of messages exchanged
by searchers while performing the strategy; r stays for the competitive ratio for

any algorithm.

Visibility and Cloning. Property of visibility d (or the local knowledge at
distance d) provides a searcher additional information about all nodes at
distance d and less from the one currently being occupied. In particular, it
means that a searcher is able to read their whiteboards (if a model assumes
ones) and recognize their states (clear, contaminated and occupied). By
the strongest assumption of the visibility 0 (local model) is understood that

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.1. Decontamination 25

Ref. Model
Number of

Total Moves
Completion

Searchers Time

[69] GIVEN MESH Mm×n , m ≥ n, |V| = mn, |E| = 2mn−m− n
NoSyn n + 1 (n2 + 4mn− 5n− 2)/2 mn− 2
NoVis n∗ (n2 + 2mn− 3n)/2 m + n− 2∗

EdSyn n + 1 (n2 + 4mn− 3n− 2)/2 mn + n− 2
EdVis n + 1 (n2 + 4mn− 5n)/2 mn− n

[67] GIVEN TOROIDAL MESH Zm×n , m ≥ n, |V| = mn, |E| = 2mn
No 2n + 1∗ 2mn− 4n− 1 mn− 2n

NoVis 2n∗ mn− 2n∗ dm−2
2 e

∗

[67] GIVEN d-DIMENSIONAL TOROIDAL MESH Zn1×...×nd ,
n = n1 × . . .× nd, WHERE n1 ≤ . . . ≤ nd

No 2 n
nd

+ 1 2n− 4 n
dn
− 1 n− 2 n

nd

NoVis 2 n
nd

n− 2 n
nd

dnd−2e
2

TABLE 2.2: List of the monotone contiguous distributed off-line search al-
gorithms for meshes and toroidal meshes in the local communication model
(face-to-face or whiteboard), where ∗ marks the optimal results. Moves of
searchers are being performed in parallel, i.e., combined into steps, which
decreases the completion time, understood as the number of steps of the
strategy. In the Model description: No - node-decontamination; Ed - edge-
decontamination, edge search; Syn - synchronous settings (otherwise model
is asynchronous); Vis - visibility in the distance 1 (otherwise visibility 0) and Cl
- cloning ability (cloning is performed on demand and it is not considered as a

move if it is not specified otherwise).D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

26 Chapter 2. Survey

Ref. Model
Number of

Total Moves
Completion

Searchers Time

[68] GIVEN d-DIMENSIONAL HYPERCUBE H, n = 2d, m = d2d−1

[92] No/Ed Θ
(

n√
log n

)
O(n log n) O(n log n)

NoCl n
2 O(n log n) O(n log n)

NoVis n
2

n
4 (log n + 1) = Θ(log n)
= O(n log n)

NoVisCl n
2 n− 1∗ log n∗

NoSynCl n
2 n− 1∗ log n∗

EdSynCl d
2 (

d
d/2) = O(n) n

2 log n∗ log n∗

EdCl d
2 (

d
d/2) = O(n) n

2 log n∗ log n∗

[92] GIVEN d-DIMENSIONAL BUTTERFLY B,
WHERE n = 2d(d + 1), m = d2d+1

Ed/No 2d = n
d+1 (3d− 3)2d + 4 = 3d− 1

= O(n log n)
NoCl 2d = n

d+1 d2d+1 3d− 1
EdCl 2d = n

d+1 d2d+1∗ 3d− 1
+Syn +Cl the same

[67] GIVEN n-NODE CHORDAL RING C(〈d1 = 1, . . . , dk〉),
WHERE 4 ≤ dk ≤

√
n

No 2dk + 1∗ 4n− 6dk − 1 3n− 4dk − 1
NoVis 2d∗k n− 2d∗k d n−2dk

2(dk−dk−1)
e

[92] WHERE 1 ≤ dk ≤ b n
2 c

Ed 2dk + 1 2kn + 2d2
k+ 2kn− dk + 2

−2dk + 2
No 2dk + 1 4n + 2d2

k − 5dk 4n− 4dk

NoSyn 2dk + 1 2n + 2d2
k − 2dk n + dk − 1

+Cl the same 2dk − 1 the same
[142] GIVEN d-LEVEL PYRAMID P, n = (4d+1 − 1)/3

NoVisCl 2d+1 − 1 = 3 · 2d − 1 =

= O(
√

n) = O(
√

n)
NoVisCl 22d = O(n) 4d = O(log n)∗

TABLE 2.3: Monotone contiguous model with local communication (face-to-
face or whiteboard); n = |V| and m = |E| is the number of nodes and edges

respectively in the given network (distributed off-line algorithms).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.1. Decontamination 27

Ref. Model
Number of

Total Moves
Completion

Searchers Time

[114] GIVEN d-DIMENSIONAL SIERPIŃSKI GRAPH G
WHERE n = 3d+3

2 , m = 3d

No d + 1∗ O(d3d) 6 · 3d−2 − 1
NoVis d + 1∗ O(d3d) 7·3d−2−1

2 − 1
[94] PRODUCT NETWORK OF k GIVEN GRAPHS P = G1 × . . .× Gk ,

WHERE n1, . . . , nk ≤ n
NoSynCl mics(G1)∏k

i=2 ni ∑k
i=1M(Gi)

NoSynCl O(nk) O(nk)

[95] GIVEN d-DIMENSIONAL STAR S, n = |V| = d!, |E| = (d−1)d!
2

NoVisCl 1 + log3(n− 1) 3b 3(d−1)
2 c − 2

TABLE 2.4: Continuation of Table 2.3. Cloning here is assumed as a separate
move, which takes one time step. For any graph G,M(G) denotes the minimal

number of total moves.

searchers have knowledge only about the currently occupied node, which
was the case in the previous sections.

The ability of cloning allows searchers to make a copy of themselves
before they perform a move. Their clones get unique id numbers and start
acting like a regular, full-fledged searchers initially based on the node of
their creation. In order to limit the number of needed searchers, cloning
property is attended with the terminate one, which (colloquially saying)
equips searchers in the ability to commit a suicide.

Distributed off-line algorithms in models concerning cloning and vis-
ibility 1 (or simply: visibility) properties for specified topologies can be
found in [67, 68, 69, 92, 94, 95, 114, 134, 142] (see Tables 2.2-2.4 for a sum-
mary). Generally, cloning ability allows to minimize the sum of moves of
the searchers and the number of steps of a strategy, but may increase the
number of searchers. With the visibility property there is no need for an
additional searcher (the leader) to coordinate other searchers moves de-
creasing the same moves and time complexity in the asynchronous envi-
ronment. Interestingly, in the visibility model, changing the settings from
asynchronous to the synchronous ones appears not to provide any benefit,
although it is still considered as an open problem [68].

As for the on-line algorithms, an experimental analysis of models
with visibility 0, 1 and 2 with and without cloning has been performed in

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

28 Chapter 2. Survey

[71, 72], where a monotone, without jumping BFS algorithm in the syn-
chronous environment is considered. Authors present results and relations
between the search number, the total move complexity and the amount of
homebases, which they compare to the one obtained by applying genetic
algorithms methods.

Immunity. An interesting change to the previously described model is
the assumption of different conditions to occur in order for a node to be re-
contaminated. In the literature two concepts were introduced: temporal and
threshold immunity. In the first model, recontamination of a node occurs af-
ter constant exposing it to a danger for a given immunity time t ≥ 0 [70].
See Figure 2.7 for an example of a recontamination under the temporal im-
munity. A monotone contiguous synchronous algorithms and bounds of
the number of needed searchers, total moves and bits of exchanged mes-
sages by searchers for meshes, toroidal meshes and trees for fixed t are
presented in [70, 40] (see Table 2.5 for the summary). For a fixed number
of searchers we can ask for the value of smallest t for a given graph, re-
quired to make the task of decontamination possible. This parameter was
introduced by Daadaa et al. in [41] and referred to as the immunity number
parameter. The authors analyze monotone and nonmonotone strategies
for different topologies, including trees and meshes, in the synchronous
environment for a single searcher. Let us notice here that in this model
a synchronous strategy can not be easily transmitted to an asynchronous
one (or local communication to the global one), while the simple leader
explanation does not hold due to the time limitations.

The second approach is to recontaminate a node when a specified num-
ber m (or greater) of its neighbors is contaminated, which we refer to as the
m-Immunity property. Monotone contiguous strategies and bounds of the
number of needed searchers and total moves in the local-majority model (an
unoccupied, cleared node is reinfected when more than a half of its neigh-
bors are contaminated) for multi-dimensional toroidal meshes, graphs of
vertex degree at most three and tree networks, are presented in [113] (see
Table 2.6 for a summary). Broader results for all m for multi-dimensional
meshes, toroidal meshes, multi-dimensional hypercubes and trees are pro-
vided by [73, 74, 112], where strategies optimal in the sense of the number
of searchers and total performed moves are constructed and upper bounds
of completion time provided. See Table 2.7 for a summary and Figure 2.8
for an example of a recontamination under the threshold immunity.

Apart from the upper bound of the minimal number of needed
searchers for trees of a given height h [113], all of described results hold

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.1. Decontamination 29

v1

v2 v3

v4 v5

v6 v7 v8
(A) A searcher is placed on the home-
base v1 and slides along to v3 and v5.

v1

v2 v3

v4 v5

v6 v7 v8
(B) When the searcher moves to v8
three unit of time has passed since he
left v1 unprotected, thus v1 becomes re-

contaminated.
v1

v2 v3

v4 v5

v6 v7 v8
(C) In the next step, the searcher stays
in v8 and recontamination spreads

to v3.

FIGURE 2.7: An example of recontamination under the temporal immunity,
where t = 2.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

30 Chapter 2. Survey

TEMPORAL TIME IMMUNITY WITH TIME PARAMETER t

Ref. Number of Searchers
Total Moves

Bits of Messages

[40] GIVEN MESH Mm×n, m ≥ n

A(Mm×n) ≤ min
{
d m
dt/2ee, d

2m−1
t e

}
[40] GIVEN TOROIDAL MESH Zm×n, m ≥ n

A(Zm×n) ≤ min
{
d m
dt/2ee, d

2m−1
t e

}
[70] GIVEN n-NODE TREE T

A(T) = Ω(log3(
n

t+1)) T (T) = Θ(n)
B(T) = Θ(n)

UNKNOWN TREE T OF A GIVEN HEIGHT h
A(T) ≤ b 2h

t+2c

TABLE 2.5: Summary of the results for the monotone contiguous node-
decontamination problem in the synchronous setting with the t-time immu-
nity property (an unoccupied, cleared node becomes recontaminated after t
time steps of being continuously exposed to danger) in the local communica-
tion model (face-to-face or whiteboard); for a graph G: A(G), T (G) and B(G)
denote the minimal number of searchers, time steps and bits of messages ex-

changed by searchers, respectively.

under the assumption of the complete knowledge about a graph. Never-
theless some might be extended for the on-line setting, e.g., it is easy to
notice, that for the local-majority model for any binary tree, single searcher
is always sufficient, although in order to minimize the number of its moves
the diameter of a tree has to be known a priori [113].

Exclusivity. The exclusivity property restricts any two searches to occupy
the same node at the same time. This assumption is dictated by the real
life problem of placing several searchers at the same point in a physical
environment. Also it prevents software agents deployed in a computer
network from consuming too much local resources (e.g., memory, compu-
tation cycles). In [21] authors prove several significant results for the exclu-
sive search number xs. Firstly, it does not satisfy the subgraph–closeness
property, i.e., there exist graphs H and G, where H is a subgraph of G and
xs(H) > xs(G). Secondly the equality xs(G) = xms(G) does not hold, i.e.,
an optimal strategy does not have to be monotone and finally the disparity
between xs and different search variants (edge search, node search) can be
arbitrarily large. Study of exclusive searching in the mixed search model

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.1. Decontamination 31

LOCAL-MAJORITY IMMUNITY

Ref. Number of Searchers Total Moves

[113] GIVEN d-DIMENSIONAL TOROIDAL MESH Zn , n = n1 × · · · × nd

SYNCHRONOUS WITH LOCAL COMMUNICATION MODEL

A(Zn) = 2d If every ni, i = 1, . . . , d is even:
M(Zn) ≤ (d− 2)2d−1 + O(n),
else:M(Zn) ≤ (d− 2)2d−1 + n.
M(Zn) = n− 1, d = 1
M(Zn) = n, d = 2
M(Zn) ≥ n + 2d − 2d− 2, d > 3

[113] GIVEN n-NODE GRAPH G OF VERTEX DEGREE AT MOST THREE

ASYNCHRONOUS WITH GLOBAL COMMUNICATION MODEL

If every vertex is M(G) ≤ 2|E|
of degree > 1: For binary tree T:
A(G) = 2, else: A(G) = 1. M(T) = 2(n− 1)− diam(T)

[113] GIVEN n-NODE TREE T
ASYNCHRONOUS WITH GLOBAL COMMUNICATION MODEL

Construction of a lower bound for A(T)
and an algorithm, which achieves it.

[113] GIVEN n-NODE COMPLETE k-ARY TREE T OF HEIGHT h
ASYNCHRONOUS WITH GLOBAL COMMUNICATION MODEL

A(T) ≤ h + 1, k ≥ 4
A(T) ≤ h, k = 3

TABLE 2.6: Summary of the results for the monotone contiguous node-
decontamination problem with the local-majority property (an unoccupied,
cleared node becomes recontaminated if more than a half of its neighbors are
infected); for a graph G: A(G) and M(G) denote the minimal number of

searchers and total moves respectively.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

32 Chapter 2. Survey

m-IMMUNITY

Ref. Number of Searchers
Total Moves

Completion Time

[74] GIVEN d-DIMENSIONAL HYPERCUBE H
OF A SIZE n = n1 × . . .× nd

SYNCHRONOUS MODEL

A(H, m) ≤ 2d−m

[74] GIVEN d-DIMENSIONAL MESH M
OF A SIZE n = n1 × · · · × nd , WHERE 2 ≤ n1 ≤ · · · ≤ nd

QUASI-SYNCHRONOUS MODEL

[73] A(M, m) = 1, m ≥ d M(M, m) = Θ(n)
A(M, m) ≤ n1 · . . . · nd−m, 1 ≤ m < d
A(M, m) ≥ n1 + . . . + nd−m+

−(d−m− 1), 1 ≤ m < d
[73] GIVEN d-DIMENSIONAL TOROIDAL MESH Z

OF A SIZE n = n1 × · · · × nd , WHERE 2 ≤ n1 ≤ · · · ≤ nd

QUASI-SYNCHRONOUS MODEL

[112] A(Z, m) ≤ 2mn1 · . . . · nd−m, 1 ≤ m < d M(Z, m) = Θ(n)
A(Z, m) ≤ 22d−m, d ≤ m < 2d− 3
A(Z, m) = 22d−m, 2d− 3 ≤ m ≤ 2d
A(Z, m) ≥ 2(n1 + . . . nd−m − (d−m− 1)),
1 ≤ m < d

[74] GIVEN n-NODE TREE T
ASYNCHRONOUS MODEL

[73] Recursively constructed lower bounds T (T, m) ≤ 2n− 3
for A(T, m), M(T, m) and
an algorithm, which achieves them.

TABLE 2.7: Summary of the results for the monotone contiguous node-
decontamination problem with the m-Immunity property (an unoccupied,
cleared node becomes recontaminated if m or more of its neighbors are in-
fected) in the local communication model (face-to-face or whiteboard); for a
graph G and immunity number m ≥ 0, A(G, m), M(G, m) and T (G, m) de-
note the minimal number of searchers, total moves and time steps respectively.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.1. Decontamination 33

v1

v2 v3

v4 v5

v6 v7 v8
(A) Searcher is placed on the homebase

v1 and slides along to v3 and v5.

v1

v2 v3

v4 v5

v6 v7 v8
(B) In the next move searcher comes
back to the node v3 leaving v5 un-

guarded.
v1

v2 v3

v4 v5

v6 v7 v8
(C) Vertex v5 becomes recontaminated,
because its three neighbors are contam-

inated.

FIGURE 2.8: An example of recontamination under the threshold 3-Immunity;
one may notice that it is impossible for the node v1 to be recontaminated.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

34 Chapter 2. Survey

for trees can be found in [20], where Blin et al. show that classical search
numbers and the exclusive one can differ exponentially. Relation between
exclusive graph searching and pathwidth in edge and mixed search models
for planar graphs with bounded maximum degree, split graphs, star-like
graphs and cographs is studied in [116].

2.1.5 Computing Search Numbers

As we have already mentioned, computing the node search number of a
given graph G is equivalent to computing the pathwidth of G. Moreover,
a path decomposition can be easily translated into the corresponding node
search strategy that cleans G and vice versa. Thus, the notions of treewidth
and pathwidth received growing interest and a vast amount of results has
been obtained. Several modifications to pathwidth have been proposed
and in this subsection we are interested also in the connected variant, i.e.,
connected pathwidth. Computing this parameter is equivalent to finding the
connected node search number.

A lot of research has been done in the direction of obtaining FPT algo-
rithms for pathwidth, parametrized by the pathwidth k. One of the first
polynomial-time algorithms was presented in 1983 by Ellis et al. and had
running time O(n2k2+4k+2) [62]. Later these results were improved (e.g.,
[23, 24]) leading to the currently fastest FPT algorithm, working in time
2O(k2)n [85]. In these algorithms, in order to produce an optimal solution,
an approximate path- or tree-decomposition is pre-computed. It is thus
of interest to have good approximations for these problems. Numerous
works have been published in this direction [4, 108, 136], leading to the cur-
rently fastest algorithm for constant-factor approximation for treewidth,
working in time 2O(k)n [25], that is, single exponential in the treewidth k.
The best known approximation ratio of a polynomial time approximation
algorithm for pathwidth is O(

√
log(opt) log n) [64].

There exist exact algorithms for computing pathwidth, whose running
times are exponential in the order of the input graph. Pathwidth can be
computed in O∗(2n)-time (in O∗(2n) space) or in O∗(4n)-time with the use
of polynomial space, using a simple algorithm from [26]. There is also
a faster algorithm with running time O∗(1.9657n) [144], which has been
further improved very recently to O∗(1.89n) [100]. See [15, 37, 38] for some
experimental approaches to pathwidth computation.

For pathwidth, it is known due to [138] that the set of minimal forbid-
den minors (i.e., the obstruction set) is finite for each fixed k. However, a
significant difference between pathwidth and connected pathwidth is that

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.2. Exploration 35

the latter one is not closed under taking minors and hence it is not known if
the set of minimal forbidden minors for connected pathwidth is finite [12].

As much as is done in computing pathwidth, not much has been known
about its connected version. During the GRASTA 2017 workshop, Fedor V.
Fomin [75] raised an open question, whether we can verify in polynomial
time, if the connected pathwidth of a given graph is at most k, for a fixed
constant k. We answer this question in the affirmative in Chapter 4. The
question whether connected pathwidth is FPT with respect to this param-
eter remains open.

2.2 Exploration

The goal is to find an algorithm that for any graph G computes a strategy S
which allows agents to vertex-explore or edge-explore G (all vertices or edges,
respectively, have to be visited at least once5). We call the exploration with
return if agents after exploration have to return to their initial positions. We
say that an agent terminates when it finishes its part of the exploration. If
it is not said otherwise graphs are non-weighted and they have only one
homebase, in which agents have to terminate. In this subsection we are
interested mostly in the on-line setting, although providing results in the
off-line one is necessary in order to give a proper perspective.

2.2.1 Completion Time

Completion time is the number of time units required to complete the ex-
ploration. We distinguish two models: in the first one (non-returnable) an
agent once enters an edge has to traverse it fully and in the second one (re-
turnable) an agent can stop and/or reverse while traversing an edge. Recall
from the introduction to this section, that for edge-weighted graphs a walk
along an edge e takes w(e) time units (where w(e) is the weight of the edge
e) and for non-weighted graphs takes one time unit. The problem in its two
versions is stated as follows:

Time Edge(Vertex)-Exploration

Find an algorithm that for any number of agents k and a homebase h,
computes a time-optimal edge(vertex)-exploration strategy for every
a priori unknown graph G.

Firstly, let us notice that the edge-exploration can never perform better
than the vertex one. Thus, because every graph can be searched by DFS

5We omit the prefix when these types of exploration are equivalent, e.g., for trees.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

36 Chapter 2. Survey

algorithm with a use of one agent, we obtain a trivial upper bound of 2m
for any exploration strategy. Let D be the h-radius of a graph, understood
as a distance from the homebase to the furthest vertex. In order to explore
a whole graph and return to the homebase a team of k agents needs at
least m

k time units for arbitrary graphs and 2 m
k for trees. Moreover, at least

one of the agents has to explore the furthest vertex, which gives lower
bounds of max{m

k , 2D} for arbitrary graphs and max{2 m
k , 2D} for trees,

which asymptotically is equivalent to O(D + m/k) and O(D + n/k) [31,
83].

Trees. The best known lower bound of the competitive ratio for trees,
which holds even in the global communication model, has been given by
Dynia et al. in [59] (where they introduce so called Jellyfish trees) and is
equal to Ω(log k/ log log k).

In 2006 Fraigniaud et al. in [83] have presented a DFS-based algo-
rithm in the whiteboard communication model, which explores every
tree in O(D + n/ log k) time units. This leads to the competitive ratio of
O(k/ log k) (comparing to a lower bound of Θ(D + n/k)). These results
have been improved by Brass et al. in 2011 [31], where an algorithm in the
local communication model of the exploration time of 2 m

k +O((k + D)k−1)

for general k and 2 m
k + 2Dk−1 for k < D has been presented. Moreover,

they prove their algorithm to be optimal for k = 2. Concurrently, in
2006 Dynia et al. [60] have investigated sparse trees in the face-to-face
communication model and presented an algorithm, which complexity
is independent from the number of used agents k. The competitive ra-
tio of O(D1−1/d min{d, log d · D1/2d}) has been achieved, where d is the
density parameter defined in the article. When agents know d in ad-
vance, then the competitive ratio is equal to O(D1−1/d). In 2014 Ortolf
and Schidelhauer [126] have constructed two algorithms, where each of
them improves the results from [83], but only for a specified relationship
between D and k. The competitive ratio of 4D for D = o(k/ log k) and of

2(2+o(1))
√

(log D)(log log k)(log k)(log k + log n) for D 6= o(k/ log k) has been
established. As for edge-weighted trees, Higashikawa et al. in 2014 [90]
have given a greedy modification of the algorithm from [83] obtaining the
same a lower constant factor and prove the optimality of the competitive
ratio of Θ(D + n/ log k) in the class of greedy algorithms. The algorithm
operates in the local communication and returnable model. See Table 2.8
for the summary.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.2. Exploration 37

Completion Time
Ref. Model Results Competitive Ratio

[83] WhB O(D + n/ log k) O(k/ log k)
[31] Loc 2m/k + O((k + D)k−1)

≥ max{2m/k, 2D}
TREE FOR TWO AGENTS, k = 2

Loc m + D 1.5∗

[90] EDGE-WEIGHTED TREE

LocRet O(k/ log k)
GREEDY ALGORITHM

LocRet Θ(k/ log k)∗∗

[59] SMALL TEAM SIZE, k <
√

n
Glob Ω(k/ log log k)

[60] F2F O(H1−1/d min{d, log dH1/2d})
KNOWN DENSITY D

F2F O(D1−1/d)

[126] Loc ≥ 4D
IF D > o(k/logk)

Loc ≥ 2(2+o(1))
√

(log D)(log log k)·
·(log k)(log k + log n)

TABLE 2.8: List of the results for the on-line exploration models for trees with
the completion time optimization factor, where * marks the optimal ones. We
denote D as the diameter (understood as the maximum distance from the root);
n as the number of vertices; m as the number of edges and k as the number of
agents. In the Model description: Glob - global communication; F2F - face to face
communication; WhB - whiteboard communication; Loc - local communication;
Bo - bounded communication; NoC - none communication; Ret - returnable;

NoR - non-returnable; Ed - edge-exploration and Ve - vertex-exploration.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

38 Chapter 2. Survey

General graphs. The best known lower bound of competitive ratio of
edge-exploration problem for general graphs is equal to 2− 1/k and holds
even in the global communication model [83]. In 2014 Brass et al. [30] have
generalized the algorithm from [31, 83] for all graphs and proved the com-
petitive ratio of

(
2 + 2nk(ln k+1)

m

)
, which is near the optimal (2 − 1/k) for

dense graphs (i.e., where m is a super linear function of n).
The results for trees and general graphs presented in the two previ-

ous paragraphs are efficient only for small size teams, where k <
√

n,
i.e., where in a lower bound of Ω(D + n/k) the latter component n/k is
dominant. Dereniowski et al. in 2015 [53] have investigated the vertex-
exploration of arbitrary graphs performed by teams of the polynomial size,
i.e., k = Dnc, where c > 1 is any constant. They provided lower bounds of
D(1 + 2/c− o(1)) for the face-to-face model and of D(1 + 1/c− o(1)) for
the global communication model. They have also constructed asymptot-
ically optimal algorithms for both communication models, which explore
every graph in O(D) time units. One year later Disser at al. [55] have
filled the remaining gap for

√
n < k < Dnc by extending a lower bound

of Ω(log k/ log log k) to the range
√

n ≤ k < n logc−1 n and proving the
competitive ratio to be ω(1) otherwise.

Grids. Ortlof and Schidelhauer examined the vertex-exploration of p ×
p grids with rectangular obstacles [127] and have provided a O(log2 p)-
competitive algorithm in the face-to-face model (comparing to a trivial
lower bound of max{2p − 1, n/k}). They have also presented a lower
bound of the competitive ratio (independent of p) of Ω(log k/ log log k)
(by using similar methods to [59]), which holds even in the global commu-
nication model.

Rings. Higashikawa et al. in 2014 [90] have constructed a 1.5-competitive
algorithm performed by 2 agents in the global communication non-
returnable model for edge-weighted rings, which is optimal.

See Table 2.9 for the summary.

2.2.2 Other Optimization Factors

Apart from minimizing the completion time of a strategy few other opti-
mization factors occurs in the literature, which we describe in this subsec-
tion.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.2. Exploration 39

Completion Time
Ref. Model Results Competitive Ratio

[83] ANY GRAPH

EdNoC Ω(k)
EdGlob ≥ 2− 1/k

[31] ANY GRAPH

EdLoc ≥ max{m/k, 2D}
[90] EDGE-WEIGHTED RING

GlobNoR 1.5∗

[127] GRID l × l WITH RECTANGULAR OBSTACLES

VeF2F O(l log2 l + (f log l)/k)) O(log2 l)
≥ max{2l − 1, f /k}

VeGlob Ω(log k/(log log k))
[30] ANY GRAPH

EdLoc ≤ 2
k (m + nk(ln k + 1)) ≤

(
2 + 2nk(ln k+1)

m

)
[53] ANY GRAPH, k = Dnc

VeF2F ≤ D(1 + 2/(c− 1) + o(1)) O(1)
≥ D(1 + 2/(c)− o(1))

VeGlob ≤ D(1 + 1/(c− 1) + o(1)) O(1)
≥ D(1 + 1/(c)− o(1))

[55] ANY GRAPH,
√

n < k < n logc n
VeGlob Ω(log k/ log log k)

ANY GRAPH, n logc n ≤ k < Dnc

VeGlob ω(1)

TABLE 2.9: Continuation of the Table 2.8 with results for different graph
topologies; f stays for the number of non-obstacles vertices and c > 0 is any

constant.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

40 Chapter 2. Survey

Energy. The energy parameter is defined as the maximum traversed dis-
tance by agents in a strategy. The problem for trees is stated as following:

Energy Exploration

Find an algorithm that for any number of agents k and a homebase h,
computes a mimimum-energy exploration strategy for every a priori
unknown tree T.

In 2006 Dynia et al. have presented an 8-competitive algorithm for ex-
ploring trees in the bounded communication model and proved a lower
bound to be at least 1.5 [58]. One year later in [59] this results have been
improved by an algorithm with the competitive ratio of (4− 2/k) (which
holds even in the face-to-face setting). In the strategies computed by both
algorithms, in order to minimize the energy, each step consists of only one
move. Thus, both algorithms have the high time complexity of O(kD + n),
where D is the height of a tree.

Number of Agents. One of the natural assumptions is to restrict the en-
ergy that can be consumed by each of the agents during the exploration.
Indeed, let us assume that agents are equipped with a battery of a given
size B. Firstly this problem occurred in [5] and [13] by the name of the
piecemeal exploration, where a single agent has to explore the whole graph
on its own and can recharge its battery in the homebase node. Notice, that
only graphs of the maximum diameter B/2 can be searched by such an
agent. As for the teams of agents for exploration with return, Das et al.
in [42] present us two algorithms for trees in global and face-to-face com-
munication settings with the competitive ratio of O(log B) and prove this
results to be optimal. For the exploration, where after finishing agents do
not have to return to the homebase, the asymptotically optimal algorithm
based on a DFS approach has been given in [43].

Recently, a slightly different approach has been presented: authors of
[6] have considered the problem of exploring an unknown tree with a team
of k agents with limited energy B. The goal is to maximize the number of
nodes collectively visited by all agents during the execution of the strategy.
They present a 3-competitive algorithm and a non-trivial lower bound of
2.17 on the competitive ratio of any on-line algorithm.

Total Distance. In the broadcasting problem, apart from the homebase ver-
tex, there exist also a source one. The task for agents is to deliver the infor-
mation from the source to every vertex of a graph. Exploration can be seen
as a special case of this problem, where a source is located in the homebase.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.2. Exploration 41

In [39] edge-weighted trees in the off-line setting have been studied, where
a group of k mobile agents has a goal to broadcast the information along
the whole tree minimizing the total distance. Two algorithms have been
presented: for an arbitrary k of completion time O(n log n) and a linear
one for k big enough (i.e., at least the number of leaves).

The Cost. In [129] a new optimization factor was proposed called the cost,
which is the total distance traversed by agents coupled with the cost of in-
voking them (see Chapter 5). Vertex-exploration is analyzed for two edge-
weighted graph classes: rings and trees, in the off-line and on-line settings.
Agents do not have to terminate in the homebase and can communicate
globally. Algorithms that compute the optimal strategies for a given ring
and tree of order n are presented. For rings in the on-line setting, author
gives a 2-competitive algorithm and proves the lower bound of 3/2 of the
competitive ratio for any on-line algorithm. For every algorithm for trees
in the on-line setting, the competitive ratio is proved to be no less than 2,
which can be achieved by the DFS algorithm.

See Table 2.10 for the summary.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

42 Chapter 2. Survey

Ref. Model Competitive Ratio Completion Time

MINIMAL ENERGY, UNKNOWN TREE

[58] BoR ≤ 8 O(kD + n)
BoR ≥ 1.5

[59] F2FR ≤ (4− 2/k)

MINIMAL NUMBER OF AGENTS, UNKNOWN TREE

[42] F2FR Θ(log B)
[43] Glob O(1)

MINIMAL TOTAL DISTANCE, GIVEN TREE AND k AGENTS

[39] O(n log n)
k big enough O(n)

MINIMAL COST

GIVEN TREE AND RING

[129] O(n)
UNKNOWN RING

VeGlob ≤ 2 O(n)
≥ 3/2

UNKNOWN TREE

Glob 2 O(n)

TABLE 2.10: List of the results for the exploration models with different opti-
mization factors, where R stays for the exploration with return.D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

43

Part I

Decontamination

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

45

Chapter 3

On-line Search in
Two-Dimensional
Environment

In this chapter we study the decontamination problem on graphs modeled
by partial grids (i.e., connected subgraphs of grids, formally defined later),
and the agents operate in a distributed on-line model.

This chapter is constructed as follows: the next section defines the
graph searching problem we study, while Section 3.2 introduces the ter-
minology related to the partial grid networks we consider in this chapter.
Section 3.3 gives a construction of a class of n-node networks such that
each on-line algorithm, which constructs a monotone connected strategy,
uses Ω(

√
n) searchers for some network in the class which turns out to be

Ω(
√

n/ log n) times more than an optimal off-line algorithm would use.
Section 3.4 describes a distributed algorithm that performs a mono-

tone connected search in partial grids where it is assumed that the algo-
rithm is given an upper bound n on the size of the network. We assume a
‘sense of direction’ in our model, that is, the grid is embedded into a two-
dimensional space by assigning integer coordinates to the nodes. Then, a
searcher knows the coordinates of each neighbor of the currently occupied
node. More details are given in Section 3.2. We point out that this algo-
rithm uses a distributed procedure from [27] as a subroutine that is called
many times to clear selected parts of a grid and it can be seen as a gener-
alization from a ‘linear’ graph structure studied in [27] to a 2-dimensional
structure discussed in this work. Also, although both algorithms are con-
ducted via some greedy rules which dictate how a search should ‘expand’
to unknown parts of the graph, the analysis of our algorithm is different
from the one in [27].

Then, in Section 3.5 we prove the correctness of the algorithm and pro-
vide an upper bound on its performance: it is using O(

√
n) searchers for

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

46 Chapter 3. On-line Search in Two-Dimensional Environment

any partial grid network. In Section 3.6 we consider a modified version of
the algorithm, which receives no information on the underlying graph in
advance, and we prove that the algorithm also uses O(

√
n) searchers. This

result, stated in Theorem 3.6.1, is our main contribution. We finish with
conclusions in Section 3.7, giving a few remarks on how our work relates
to searching two-dimensional environments, like polygons with holes. As
there are many open problems and research directions related to the sub-
ject, we list some of them also in Section 3.7.

Applications in robotics. We remark on a potential practical motivation
of our setting. Partial grids, which can be seen as a grids with obstacles, are
a way of modeling two-dimensional shapes, e.g., polygons. Every search
strategy for a polygon can be used to obtain a search strategy for its un-
derlying partial grid and vice versa. The number of searchers in both cases
are withing a constant factor of each other. Thus in particular, searching
strategies for continuous scenarios like polygons can be obtained by first
getting the underlying partial grid and then computing a (discrete) search
strategy for the grid by the algorithm we propose in this work. For more
details see Section 3.7.1. Thus, our results may be of particular interest
not only by providing theoretical insight into searching dynamics in dis-
tributed searcher computations, but may also find applications in the field
of robotics. Most investigations oriented towards algorithms that can be
applied on physical devices need to deal with the problem of modeling of
the real world. This can be done either by discretizing it (usually through
graphs) or by building algorithms that work in continuous search space
and need to address the geometric issues that emerge. Having in mind
the vast literature on the subject we point the interested reader to a few
references to recent works in this field [36, 57, 91, 101, 135, 139, 140, 141,
143].

3.1 The Model

Let G be a simple, undirected, connected partial-grid (i.e., a subgraph of a
grid) with a single homebase h. A monotone connected k-search strategy S for
a network G is defined as follows. Initially, k searchers are placed on h of G.
Then, S is a sequence of moves, where each move consists of selecting one
searcher present at some node u and sliding the searcher along an edge
{u, v}. (Thus, the searcher moves from its current location to one of the
neighbors.) We require S to decontaminate G, be monotone and connected,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.1. The Model 47

i.e., the clear subgraph, that is, the subgraph consisting of all clear edges, is
connected after each move of the search strategy.

We now state the on-line distributed model we use. All searchers start
at the homebase and the network itself is not known in advance to the
searchers (except for the fact that the searchers may expect that the net-
work is a partial grid). In fact, the searchers have no information about the
network. (We note here that our main algorithmic result will be obtained
in two stages: first we describe an algorithm that as an input receives the
upper bound n of the size of the network and then we use it to obtain
our main result, an algorithm that works without any a priori information
about the network.) We assume that nodes are anonymous and searchers
have identifiers. The edges incident to each node are marked with unique
labels (port numbers) and because only partial grids are considered in this
work we assume that labels naturally reflect all possible directions for each
edge (i.e., left, right, up and down).

For the searchers, we assume that they communicate locally by ex-
changing information when present at the same node. Our algorithm is
stated as if there existed global communication but it can be easily turned
into required one with local communication as follows: we can designate
one extra searcher called the leader who will be performing the following
actions at the beginning of each move of the search strategy to be exe-
cuted. First, the leader visits all nodes of the subgraph searched to date
and gathers complete information about its structure and positions of all
other searchers, then the leader computes the next move and finally visits
all searchers to pass the information about the next move. Then, the move
is performed by the searchers.1

Our algorithm is described for the synchronous model in which time is
divided into steps, each step having the same unit length duration allow-
ing each searcher to perform its local computations and slide along an edge
if the searcher decides to move. We note that this assumption can be lifted
and the algorithm can be easily restated to be asynchronous. Indeed, hav-
ing one searcher that is the leader one can simulate synchronous behavior
of the searchers in such a way that the leader waits for the completion of
the current move of another searcher and then informs the searcher that
is supposed to perform the next move, dictated by the search strategy, to
start the move.

1Note that the actions of the leader clearly contain a lot of excess work in terms of the
number of moves it performs; since the criteria as time or cost (number of sliding moves)
are out to scope of this work, we will leave the reader with such a simple leader implemen-
tation.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

48 Chapter 3. On-line Search in Two-Dimensional Environment

3.2 Partial Grid Notation

We define a partial grid G = (V, E) with a set of n nodes V and edges E
as a connected subgraph of an n × n grid. We consider each partial grid
to be embedded into two-dimensional Cartesian coordinate system with a
horizontal x-axis and vertical y-axis, where each node of G is located at a
point with integer coordinates and two nodes are adjacent if and only if the
distance between them equals one (in Euclidean metric). This embedding
is considered for two reasons. The first one is technical, as it simplifies
some statements when we refer to coordinates when pointing nodes of G.
The second is that our on-line algorithm relies on the underlying geometric
structure. For convenience, the homebase is located at the point (0, 0). In
order to refer to a node that corresponds to a point with coordinates (x, y)
we write v (x, y). In this chapter n denotes an upper bound on the number
of nodes of a partial grid, such that

√
n is an integer.

Informally speaking, our algorithm will conduct a search by expand-
ing the clear part of the graph from one ‘checkpoint’ to another. These
checkpoints (defined formally later) will be subsets of nodes and their
potential placements on the partial grid are dictated by the concept of a
frontier. Take any x = i

√
n for some integer i, y = j

√
n for some inte-

ger j and take i′, j′ ∈ {0, 1}, i′ 6= j′. Then, the line segment with end-
points (x, y) and (x +

√
ni′, y +

√
nj′) is called a frontier and denoted by

F
(
(x, y) ,

(
x +
√

ni′, y +
√

nj′
))

. Whenever the endpoints of a frontier are
clear from the context or not important we will omit them. The frontier
F
(
(0, 0) ,

(√
n, 0
))

that contains the origin is called the homebase frontier and
the set of all frontiers is denoted by F . We will also divide frontiers into
vertical and horizontal ones, where coordinates of two extreme nodes do not
differ on first and second coordinate, respectively.

Similarly to the graph induced by a set of nodes, we denote the sub-
graph induced by all nodes that belong to a frontier F of a partial grid G
by G[F].

For i ∈ {1, . . . ,
√

n} and some frontier F = F ((x, y) , (x′, y′)), where
x ≤ x′ and y ≤ y′, we define the i-th rectangle of F, denoted by R(F, i), as
the rectangle with corner vertices (x− i, y− i), (x− i, y + i), (x′ + i, y′ − i),
(x′ + i, y′ + i) if F is horizontal and as the rectangle with corner vertices
(x− i, y− i), (x + i, y− i), (x′ − i, y′ + i), (x′ + i, y′ + i) if F is vertical. See
Figure 3.1 for an example.

Informally speaking, the two above concepts, namely frontiers and
rectangles, provide a template on how the search may progress. How-
ever, due to the structure of a partial grid it may be possible that only
certain nodes, but not all, that lie on a frontier have been reached at some

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.2. Partial Grid Notation 49

h = v(0, 0)

F1 = F ((8, 0), (8, 4))

(a) (b)

FIGURE 3.1: An illustration of the concept of rectangles (here
√

n = 4). In
(a) crosses denote nodes that lie on the homebase frontier F = F ((0, 0) , (4, 0)),
empty circles denote nodes that lie onR(F, 1), empty squares the ones onR(F, 2),
dark squares the ones onR(F, 3) and dark dots denote nodes that lie onR(F, 4).
Gray arrows stand for the 10 frontiers, that lie on theR(F, 4) (six horizontal and
four vertical ones). We denote one of the vertical frontiers that lie on R(F, 4)
as F1 = F ((8, 0) , (8, 4)). In (b) dark dots denote nodes that lie on F1, dark squares

the ones onR(F1, 1) and empty squares the ones onR(F1, 2).

point of a search strategy. For this reason, our notation needs to be ex-
tended to subsets of nodes that lie on frontiers and the corresponding
rectangles. Any subset C of nodes of G that belong to some frontier F is
called a checkpoint. The 0-th expansion of a checkpoint C is C itself and is
denoted by C〈0〉. For i ∈ {1, . . . ,

√
n} we define the i-th expansion of C,

denoted by C〈i〉, recursively as follows: the set C〈i〉 consists of all nodes
v /∈ C〈0〉 ∪ C〈1〉 ∪ · · · ∪ C〈i− 1〉 for which there exists a node u ∈ C〈i− 1〉,
such that there exists a path between v and u in the subgraph of G induced
by nodes that lie on the rectanglesR(F, 0),R(F, 1), . . . ,R(F, i). Define

C+〈i〉 = C〈0〉 ∪ . . . ∪ C〈i〉, i ∈ {0, . . . ,
√

n}.

Informally, C〈i〉 consists of only those nodes that belong to the rectangle
R(F, i) that are connected to nodes of C by paths that lie ‘inside’ ofR(F, i)
— this definition captures the behavior of searchers (in our algorithm) that
guard the nodes of C and ‘expand’ from C in all directions: then possible
nodes that belong to any of the rectangles R(F, 0),R(F, 1), . . . ,R(F, i) but
do not belong to C+〈i〉 will not be reached by the searchers. See Figure 3.2
for an exemplary checkpoint with its expansions.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

50 Chapter 3. On-line Search in Two-Dimensional Environment

h = v(0, 0)

FIGURE 3.2: Some expansions of a checkpoint C (here
√

n = 9); crosses denote
C = C〈0〉, thw gray area covers nodes that belong to C+〈3〉, empty squares de-
note nodes in C〈4〉 and dark squares denote the ones that need to be guarded
provided that the gray area consists of the clear nodes. The horizontal dotted

line that contains h is the considered frontier.

3.3 Lower Bound

First note that a regular
√

n×
√

n grid requires Ω(
√

n) searchers even in
the off-line setting [61], that is, when the network is known in advance and
the searchers may decide on the location of the homebase. Therefore, our
on-line algorithm is asymptotically optimal with respect to this worst case
measure.

We aim at proving that for each on-line algorithm A there exists an n-
node partial grid network G with homebase h such that

max
h

A(G, h)/Aopt(G, h) = Ω(
√

n/ log n).2

Define a class of partial grids

L =
⋃
l≥0

Ll ,

2We remark that we defined the competitive ratio by taking the worst case homebase
for A. However, we note that this does not weaken the result of this section as, informally
speaking, one may take two copies of each grid obtained in this section, rotate one copy by
180 degrees and merge the two copies at their homebases. Then, we obtain that for each
choice of the homebase any algorithm is forced to use Ω(

√
n) searchers for some grids since

in one copy the search is conducted as in our following analysis.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.3. Lower Bound 51

(0,0)

7-th diagonal

FIGURE 3.3: A network from L8 obtained from the corresponding network in
L7 by extending it at 6.

where Ll for l ≥ 0 is defined recursively as follows. We take L0 to contain
one network that is a single node located at (0, 0). Then, in order to de-
scribe how Ll+1 is obtained from Ll , l ≥ 0, we introduce an operation of
extending G ∈ Ll at i, for i ∈ {0, . . . , l}. In this operation, first take G and
add l + 2 new nodes located at coordinates:

(0, l + 1), (1, l), . . . , (j, l + 1− j), . . . , (l + 1, 0).

Call these coordinates the (l + 1)-th diagonal. For each j ∈ {0, . . . , i} add an
edge connecting the nodes v (j, l − j) and v (j, l − j + 1), and for each j ∈
{i, . . . , l} add an edge connecting the nodes v (j, l − j) and v (j + 1, l − j).
Then, obtain Ll+1 as follows: initially take Ll+1 to be empty and then for
each G ∈ Ll and for each i ∈ {0, . . . , l}, obtain a network G′ by extending
G at i and add G′ to Ll+1. Notice here that a graph constructed this way is
not only a partial grid, but also a tree.

Figure 3.3 shows a network that was obtained from the corresponding
network in L7 by extending it at 6.

For a network G ∈ Ll , l ≥ 0, we define a characteristic sequence of G,
σ(G), as follows. If l = 0, then the characteristic sequence of G is empty. If
l > 0, then take the network G′ such that G has been obtained by extending
G′ at i. The characteristic sequence of G is σ(G), constructed by appending
to σ(G′) a new element v (i, l − i− 1). Note that the characteristic sequence
uniquely defines the corresponding network. In other words, G is a binary
tree rooted at v(0, 0) with l + 1 leaves, where only the vertices from σ(G)
have two children. The network introduced in Figure 3.3 has characteristic
sequence (v (0, 0), v (1, 0), v (1, 1), v (0, 3), v (3, 1), v (2, 3), v (1, 5), v (6, 1)).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

52 Chapter 3. On-line Search in Two-Dimensional Environment

Lemma 3.3.1. For any integer l and for each on-line algorithm A computing a
connected monotone search strategy there exists G ∈ Ll such that for homebase
v (0, 0) we have A(G, v (0, 0)) ≥ (l + 1)/2.

Proof. Consider any algorithm A producing a connected monotone search
strategy. Run A for each network in Ll with the homebase v (0, 0). Note
that for each network in Ll , there exist distinct moves m1, . . . , ml such that
till the beginning of move mj, j ∈ {1, . . . , l}, no node on the j-th diagonal
has been occupied by a searcher and at the end of mj some node v

(
xj, yj

)
of the j-th diagonal is occupied by a searcher. Consider G ∈ Ll such that
σ(G) = (v (0, 0) , v (x1, y1) , . . . , v (xl−1, yl−1)). Informally speaking, when-
ever the algorithm reaches for the first time a node v (i, j− i) in the j-th
diagonal, an adversary decides to extend at i the network explored so far,
thus always forcing the situation that the first node reached on a diagonal
is of degree three.

Note that at the beginning of move mj, j ∈ {1, . . . , l}, no node of the
j-th diagonal has been reached by a searcher and the first j nodes of the
characteristic sequence have been reached by searchers. Recall that G is a
binary tree.

We analyze the explored part of any graph G ∈ Ll at the beginning
of the move ml . All edges incident to the leaves in G are contaminated at
this point. On the other hand, all nodes of the characteristic sequence have
been visited by searchers till the end of the move ml − 1. Therefore, the
contaminated subgraph of G at this point is a collection of paths leading
from nodes that are guarded to the leaves. Since there are l + 1 leaves in G,
there are l + 1 such paths, each such a path needs to have a searcher placed
at one of its endpoints (the one that is not a leaf in G) and, by construction
of G, any searcher can be present on at most two such endpoints. Thus, at
least (l + 1)/2 nodes need to be occupied by searchers, as required by the
lemma.

Theorem 3.3.1. For each on-line algorithm A computing a connected monotone
search strategy there exists an n-node network G with homebase h such that

A(G, h)
Aopt(G, h)

= Ω(
√

n/ log n).

Proof. Observe that each network G inL is a tree and therefore Aopt(G, h) =
O(log(n)), n = |V(G)| [9, 118]. The theorem follows hence from
Lemma 3.3.1 and the fact that the length of the characteristic sequence
of each network in Ll is Ω(

√
n).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.4. The Algorithm 53

3.4 The Algorithm

In this section we describe our algorithm that takes an upper bound on the
size of the network as an input. Section 3.4.1 deals with the initialization
performed at the beginning of the algorithm. Then, Section 3.4.2 introduces
two procedures used by the algorithm and finally Section 3.4.3 states the
main algorithm.

We point out that the strategy to be computed is monotone. This means
that whenever a new node has been reached by some searcher, the node
will be guarded as long as it has some incident contaminated edges. After
each move performed by searchers, each searcher that occupies a node that
does not need to be guarded is said to be free. Each node that needs to be
guarded is occupied by at least one searcher; if more searchers occupy such
a node then all of them except for one are also free. Once all incident edges
of a guarded node v become clear, the searcher that has been guarding
v becomes immediately free. So we do not express this fact explicitly in
the algorithm as the above rule is sufficient to partition the searchers into
the free and guarding ones at any point of the strategy computed by the
algorithm. Before we start the description of the algorithm, we stress out
how we ‘reuse’ searchers that are free. Whenever the algorithm decides
that a searcher needs to perform some action the following decision takes
place. If there exists a searcher that is free, then the actions is made by
this searcher. If there is no free searcher, then a new one is introduced by
the algorithm to perform the action. Thus, in our analysis we will count the
number of searchers introduced throughout the execution of the algorithm.

If, at some point, no node of the last expansion of some checkpoint
needs to be guarded, then we say that the expansion is empty.

3.4.1 Initialization

We start presenting our algorithm by describing initial conditions. Recall
that the origin v (0, 0) of the two-dimensional xy coordinate system is sit-
uated in the homebase. The initial checkpoint C0 is the set of nodes of the
connected component of G[F] that contains h, where F is the homebase
frontier. Thus, initially |C0| searchers place themselves on all nodes of C0
(note that the nodes of C0 induce a path in G). See Figure 3.4 for an exam-
ple.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

54 Chapter 3. On-line Search in Two-Dimensional Environment

h = v(0, 0)

(9, 0)

FIGURE 3.4: Exemplary initialization for
√

n = 9; crosses denote nodes belong-
ing to the initial checkpoint C0 and empty circles denote nodes that belong to

the homebase frontier, but do not fall into C0.

3.4.2 Procedures

Procedure ClearExpansion

We start with an informal description of the procedure. When a new check-
point C has been reached, our search strategy ‘expands’ from C by succes-
sively clearing subgraphs G[C+〈i〉] for i ∈ {1, . . . ,

√
n}. Once all nodes in

C+〈i − 1〉 are clear for some 0 < i ≤
√

n, the transition to reaching the
state in which all nodes in C+〈i〉 are clear requires clearing all nodes of
the i-th expansion of C. This is done by calling for every guarded node
u from C+〈i− 1〉 a special procedure (ModConnectedSearching, described
below), which clears nodes which belong to C〈i〉 and ‘can be accessed’
from u. Procedure ClearExpansion makes the above-mentioned calls to
ModConnectedSearching and uses O(

√
n) searchers in the process.

For clearing all nodes of the i-th expansion of C, provided that G[C+〈i−
1〉] is clear we will use a procedure from [27]. That procedure is more
general and it is stated in [27] as Procedure ConnectedSearching with its
performance stated in Theorem 1 in [27]. Here we give its following refor-
mulation that uses our notation.

Theorem 3.4.1 ([27]). Let F be any frontier and let G′ be any connected partial
grid with nodes lie entirely on the rectangles R(F, 0),R(F, 1), . . . ,R(F, i), i ≥
0. There exists an on-line procedure ConnectedSearching that, starting at an
arbitrarily chosen homebase in G′, clears G′ in a connected and monotone way
using 6i + 4 searchers.

We stress out that the above theorem assumes that the partial grid is
entirely contained in the area covered by the rectangles. In other words,
the subgraph G′ in Theorem 3.4.1 has no vertices ‘outside’ of the specified
area. However, while using procedure ConnectedSearching, we will be
clearing a subgraph of G[C+〈i〉] that is embedded into the entire partial
grid and thus some nodes v of G[C+〈i〉] have edges leading to neighbors

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.4. The Algorithm 55

FIGURE 3.5: Example of an execution of procedure ClearExpansion; crosses
denote C = C〈0〉, empty circles denote nodes that belong to C+〈1〉, dark
squares denote the one that belongs to C+〈1〉 and for which procedure
ModConnectedSearching is invoked, gray areas show nodes that will be cleared
in four calls of ModConnectedSearching in order to clear C〈2〉. Note that the
empty circles that lie on a gray area are guarded at first, but after one of the
calls of ModConnectedSearching there is no need to guard them any more, so

the procedure is not invoked for them.

that lie outside of G[C+〈i〉]. If such an edge is already clear, then no re-
contamination happens for the node v and moreover no searcher used by
ConnectedSearching for the subgraph of G[C+〈i〉] needs to stay at v. On
the other hand, if such an edge is contaminated (and thus not reached yet
by our search strategy), then v needs to be guarded and for that end we
place an extra searcher on it that guards v during the remaining execution
of ConnectedSearching. Note that in the latter case, the node v belongs
to R(F, i), where F is the frontier that contains the nodes of C and there-
fore there exist O(

√
n) such nodes v. In other words, ConnectedSearching

is called to clear a certain subgraph contained within R(F, i) and when-
ever a node on the rectangle R(F, i) has a contaminated edge leading out-
side of the rectangle R(F, i), then an extra searcher, not accommodated
by ConnectedSearching in Theorem 3.4.1, is introduced to be left behind
to guard v. The modification of ConnectedSearching that leaves behind
a searcher on each such a newly reached node of R(F, i) will be denoted
by ModConnectedSearching. Note that this procedure is invoked for every
guarded node from C+〈i− 1〉 in order to clear C+〈i〉, see Figure 3.5 for an
example.

It is enough to provide as an input to ModConnectedSearching: a node
v in C+〈i− 1〉 that plays the role of homebase for ModConnectedSearching,
the frontier F and i. We stress out that there are possibly many such nodes
v and once one of them is selected, some other such nodes in C+〈i − 1〉
may no longer have an incident edge that is contaminated since the call

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

56 Chapter 3. On-line Search in Two-Dimensional Environment

to ModConnectedSearching did clear such an edge. However, we assume
that ModConnectedSearching clears only the maximal connected subgraph
that contains v and is induced by contaminated edges only. Thus, once
its execution is completed, there may exist another vertex v for which a
new call to ModConnectedSearching will be made to clear another maximal
connected subgraph induced by contaminated edges. See Figure 3.5 that
illustrates this process: the shaded areas indicate which subgraphs have
been actually cleared by subsequent calls to ModConnectedSearching. We
point out that, alternatively, a single call to ModConnectedSearching would
suffice if the procedure would ‘process’ the entire subgraph contained in
the expansion C+〈i〉 but this approach would ignore that some subgraph of
C+〈i〉 is already clear and hence we present the procedure as having multi-
ple calls to ModConnectedSearching that work on contaminated edges only.
We note that each checkpoint used in our final algorithm is obtained as fol-
lows: some frontier F is selected and then a checkpoint C is created as some
set of nodes that belong to F; thus we assume that with C such a unique
frontier F is associated.

Thus, this approach guarantees us using at most 6i+ 4 searchers to clear
G[C〈i〉] and, in addition to those, 2

√
n + 8i searchers for guarding nodes

lying onR(F, i), which will be analyzed in more details in Section 3.5.
To summarize, we give a formal statement of our procedure.

Procedure ClearExpansion

Input: An expansion C〈i− 1〉 with C contained in the frontier F, i ≥ 1.
Result: Clearing all nodes of C〈i〉.

while there exists a node v ∈ C〈i − 1〉 with a contaminated neighbor u
in C〈i〉 do

Place 6i + 4 + 2
√

n + 8i free searchers on v to be used by
ModConnectedSearching.
Call ModConnectedSearching for v as the homebase, frontier F and
integer i.

The following observation summarizes the outcome of an execution of
procedure ClearExpansion.

Lemma 3.4.1. Suppose that C〈i− 1〉, that is an expansion contained in a frontier
F, where i ≥ 1, is an input to procedure ClearExpansion. Suppose that G′ is
the maximal subgraph contained in G[C〈i〉] and induced by all nodes v such that
there exists a path contained in G[C〈i〉] connecting v with a vertex of C. Then, a
call to ClearExpansion with the above input provides the following:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.4. The Algorithm 57

− exactly the edges of G′ that are contaminated prior to the call are cleared
during this call to ClearExpansion,

− after the call, each vertex of G′ with an incident contaminated edge is
guarded by a searcher,

− all of the nodes from C〈i− 1〉 are cleaned and do not have to be guarded.

We point out that there may be an indirect interaction between different
checkpoints. Consider an execution of procedure ClearExpansion with an
input C〈i − 1〉. At the point of performing this call, there may exist a dif-
ferent checkpoint C′ and a corresponding expansion C′〈i′〉 such that some
searcher is guarding a node v of C′〈i′〉 because v has (assuming for simplic-
ity) a single contaminated edge e incident to it. It may happen that during
the execution of ClearExpansion the edge e becomes clear as it belongs to
C+〈i〉. Therefore, this results in a situation that v is not guarded (since it
has no incident contaminated edges) and the corresponding searcher be-
comes free.

Procedure UpdateCheckpoints

By definition, if F is some frontier, then R(F,
√

n) contains 10 frontiers
(see Figure 3.1). Thus, reaching the

√
n-th expansion C〈

√
n〉 of a check-

point of F provides a possibility of creating one new checkpoint for each
of the above frontiers. Procedure UpdateCheckpoints, which takes as an
input C〈

√
n〉 and a collection C of currently present checkpoints, generates

these new checkpoints and adds them to C and removes C from C. Also,
if it happens that some newly constructed checkpoint belongs to the same
frontier as some existing checkpoint in C and no expansion for the existing
one has been performed yet, then both checkpoints are merged into one.
Finally, any checkpoint in C whose lastly performed expansion is empty
is removed from C. We remark that procedure UpdateCheckpoints only
modifies the collection of checkpoints C and this procedure performs no
clearing moves.

Thus, to summarize, the ‘lifetime’ of a checkpoint is as follows. Once
the 1-st expansion of C is performed, the checkpoint will remain in the col-
lection C and possibly more expansions of C are made (in total at most

√
n

expansion are possible for each checkpoint). A checkpoint C may disap-
pear from C in three ways:

− when C is in its 0-th expansion and another checkpoint C′ appears in
the same frontier (thus, C′ is in its 0-th expansion) and then the nodes
of C are added to C′, or

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

58 Chapter 3. On-line Search in Two-Dimensional Environment

Procedure UpdateCheckpoints

Input: C〈
√

n〉 and the collection of all checkpoints C
Result: Updated collection C
C ← C \ {C}
Cnew ← ∅
for each frontier F on

√
n-th rectangle of the frontier containing C do

Let C′ consist of all guarded nodes in F.
If C′ 6= ∅, then Cnew ← Cnew ∪ {C′}.

for each C′′ in C do
if there exists C′ ∈ Cnew that is a subset of the same frontier as C′′

then
if C′′ is in 0-th expansion then
C ← C \ {C′′}
Replace C′ with C′′ ∪ C′ in Cnew.

C ← C ∪ Cnew
for each C in C do

if no node in the last expansion of C is guarded then
C ← C \ {C}

− some expansion of C becomes empty (then C is not removed from C
right away but during the subsequent call to UpdateCheckpoints), or

− C reaches its
√

n-th expansion and procedure UpdateCheckpoints is
called for C (in which case C possibly ‘gives birth’ to new checkpoints
during the execution of UpdateCheckpoints).

Our algorithm maintains a collection C of currently used checkpoints.

3.4.3 Procedure GridSearching

GridSearching is the main algorithm, whose aim it is to clear the entire
partial grid G in a connected and monotone way. We start with an in-
formal introduction of the algorithm. The search strategy it produces is
divided into phases, which will formally be defined in the next section. In
each step of the algorithm, a checkpoint with the highest number of nodes
that need to be guarded is chosen and the next expansion is made on it.
When one of the checkpoints reaches its

√
n-th expansion, then the cur-

rent phase ends and the procedure UpdateCheckpoints is invoked. Thus,
the division of search strategy into phases is dictated by consecutive calls
to procedure UpdateCheckpoints. For an expansion C, in the pseudocode

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.4. The Algorithm 59

below we write δ(C) to refer to the set of nodes that belong to the last ex-
pansion of C and need to be guarded at a given point.

Procedure GridSearching

Input: An integer n providing an upper bound on the size of the partial
grid G.

Result: A monotone connected search strategy for G.
Perform the initialization (see Section 3.4.1).
while G is not clear do

while no checkpoint has reached its
√

n-th expansion do
Let Cmax ∈ C be such that δ(Cmax) ≥ δ(C) for each C ∈ C.
Let i be the number of expansions of Cmax performed so far.
Invoke ClearExpansion for Cmax〈i〉.

Invoke UpdateCheckpoints for the
√

n-th expansion Cmax〈
√

n〉 and
for C.

We now introduce a classification of searchers used in our algorithm.
This classification will be used in the proof of Theorem 3.5.1 but we place it
here as it provides another way of describing several actions that take place
in the algorithm. We can divide searchers into three groups: explorers, clean-
ers and guards. Suppose that procedure ClearExpansion performs the i-th
expansion of a checkpoint Cmax. Denote by Fmax the frontier that contains
the nodes in Cmax. All searchers located at nodes on the (i− 1)-th rectangle
of Fmax that need to be occupied in order to avoid recontamination at the
beginning of the call to procedure ClearExpansion are named to be guards.
The explorers and cleaners are used by algorithm ModConnectedSearching
called during the execution of procedure ClearExpansion. Each time
ModConnectedSearching reaches a node v on the i-th rectangle of Fmax
such that v needs to be guarded, the searcher used for guarding v is called
an explorer. The searchers used in ModConnectedSearching that mimic the
movements of searchers in algorithm ConnectedSearching are the clean-
ers. We point out that we do not alter here the behavior of ClearExpansion
and ModConnectedSearching but just assign one of the three categories to
each searcher they use. Informally speaking, when explorers protect nodes
lying on the i-th rectangle and the guards protect the ones lying on the
(i− 1)-th rectangle of Fmax, cleaners clear nodes inside the i-th rectangle of
Fmax (i.e., the remaining nodes of the i-th expansion of Cmax).

We close this chapter with giving examples of the first three expan-
sions of some checkpoint C, see Figure 3.6, and showing how our algo-
rithm clears an exemplary partial grid network, see Figure 3.7 (for a formal
definition of a phase see the first paragraph of Section 3.5).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

60 Chapter 3. On-line Search in Two-Dimensional Environment

(A) First expansion of C. (B) Second expansion of C.

(C) Third expansion of C.

FIGURE 3.6: First three expansions for some checkpoint C (here
√

n = 9);
crosses denote C = C〈0〉, empty circles denote nodes cleared in previous ex-
pansions; squares denote nodes explored in the current expansion; dark circles
are nodes not reached yet by the searchers; and dark squares denote nodes that
need to be guarded at the end of current expansion. Gray areas show the clear

part of the graph, i.e., C+〈i〉 for i ∈ {1, 2, 3}.

3.5 Analysis of the Algorithm

By a step of the algorithm, or simply a step, we mean all searching moves
performed during a single iteration of the internal ‘while’ loop of proce-
dure GridSearching. Thus, one step of the algorithm includes all moves
produced by one call to procedure ClearExpansion. A phase of an algo-
rithm consists of all its steps between two consecutive calls to procedure
UpdateCheckpoints. Note that phases may differ with respect to the num-
ber of steps they are made of.

We say that a checkpoint is present in a given phase if its last expansion
is not empty at the beginning of this phase, i.e., if this checkpoint belongs
to C at the beginning of the phase. Similarly, a checkpoint is present in a
given step if it is present in the phase to which the step belongs. Thus, in
particular, a checkpoint is present in none or in all steps of a given phase.
Note that some checkpoints may have empty expansions during a part
of a the phase, but they still remain present to the end of the phase; this
assumption is made to simplify the analysis of the algorithm.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.5. Analysis of the Algorithm 61

C0

C1

C2C3

C4

C5

C6

(A) At the end of the first phase
C0 (initial checkpoint) reaches
its
√

n-th expansion. Procedure
UpdateCheckpoints creates 6 new
checkpoints and removes C0 from C,

i.e., C = {C1, C2, C3, C4, C5, C6}.

C1

C2C8

C4

C5

C6

C7

(B) The
√

n-th expansion of C5 ends the
second phase. Checkpoints C4 and C6
are removed from C because (in our ex-
ample) there is no need to guard any
node on theirs expansions. C3 is in 0-th
expansion, so when a new checkpoint
C8 is created on the same frontier, C3 is
removed from C; C = {C1, C2, C7, C8}.

C1

C2C8

C7

C9

C10

(C) Checkpoint C1 ends the third
phase. Notice that a new checkpoint
C9 emerged ‘inside’ the already cleared
area by C0; C2 is removed from C
even if

√
n-th expansion has not been

reached but its last expansion has no
nodes to be guarded; C = {C7, C9, C10}.

FIGURE 3.7: Clearing an exemplary partial grid by procedure GridSearching;
gray areas denote the clear part, arrows denote frontiers on which the marked
checkpoints lie, dotted rectangles around checkpoints denote their current ex-
pansions and solid rectangles denote the

√
n-th expansions, which end phases.

(The final two phases are presented on Figure 3.8.)

Let t be a step and v be a node, which needs to be guarded at the begin-
ning of step t. We say that the checkpoint C owns v in step t if:

− either C owns v in step t− 1 or

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

62 Chapter 3. On-line Search in Two-Dimensional Environment

C7

C9

C10

C12

C11

(A) Checkpoint C7 ends the fourth
phase. Note that a new checkpoint C12
emerged on an edge of C5’s

√
n-th ex-

pansion; it was not created at the end
of the second phase because then there
was no access to the contaminated part;

C = {C11, C12}.

C12

C11

(B) Last phase, in which the rest of the
graph is cleared.

FIGURE 3.8: Continuation of Figure 3.7

− no checkpoint owns v in step t− 1 and v belongs to the last expansion
of C performed till the end of step t− 1.

(Intuitively, if a node v is reached by searchers in a step in which an
expansion of C occurred, then C owns v as long as v is guarded.) We note
that any vertex v can be owned by only one checkpoint. This follows from
the fact that our strategy is monotone. More precisely, once v is owned
by some checkpoint C in some step, then in the following steps it either
continues to be owned by C or v does not need to be guarded. In the latter
case v will not be owned by any checkpoint till the end of the strategy.
Given a checkpoint C present in a step t, we write E(C, t) to denote the set
of nodes that C owns in step t. The weight of a checkpoint C present in a step
t is ωt(C) = |E(C, t)| and if a checkpoint C is not present in a step t, then
we take ωt(C) = 0. Note that each guarded node is owned by exactly one
checkpoint and hence, for a step t, the sum of weights of all checkpoints
present in step t equals the number of nodes that need to be guarded.

The checkpoint Cmax selected in a step t (see the pseudocode of Proce-
dure GridSearching) is called active in step t, or simply active if the step is
clear from the context or not important. All other checkpoints present in
this step are called inactive. We define an active interval of a checkpoint C to
be a maximal interval [t′, t′′] such that C is active in all steps t ∈ {t′, . . . , t′′}.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.5. Analysis of the Algorithm 63

end of a phase

death of C

beginning

birth of C

end of a phase

ACTIVE ACTIVE ACTIVE

t

ωt(C)

b(C)

of a phase

FIGURE 3.9: Exemplary life cycle of a checkpoint C.

3.5.1 Single Phase Analysis

We now prove lemmas that characterize how the weight of a checkpoint
changes over time — see Figure 3.9 for an exemplary life cycle of a check-
point. Informally, the weight of a checkpoint C does not grow in intervals
in which C is inactive (Lemma 3.5.1). Also, the weight of C at the end of
an active interval is not greater than at the beginning of it (Remark 3.5.1);
however, no upper bounds except for the trivial one of O(

√
n) can be con-

cluded for the weight of C inside its active interval.

Lemma 3.5.1. If a checkpoint C is present and inactive in a step t, then
ωt+1(C) ≤ ωt(C).

Proof. It follows directly from procedure ClearExpansion and the defini-
tions that the only checkpoint on which an expansion is performed during
execution of ClearExpansion is the active one. The weight of an inactive
checkpoint C can change only in the situation where the active checkpoint
in a step t expands on some nodes owned by C. In other words, the weight
of C may decrease if C contains in step t nodes that are added to the active
checkpoint in step t + 1. Thus, if t is not the last step of a phase, then the
proof is completed.

If t is the last step of some phase, then apart from ClearExpansion, pro-
cedure UpdateCheckpoints is invoked, which affects C in two situations:

− there exists a step t′ in the phase that ends such that ωt′(C) = 0. Then,
because C cannot be expanded during steps t′, . . . , t of the phase, we
get directly that ωt+1(C) = ωt(C) = 0.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

64 Chapter 3. On-line Search in Two-Dimensional Environment

− C is in its 0-th expansion and a new checkpoint is placed on the same
frontier, which implies that C is not present in step t + 1 and thus
ωt+1(C) = 0.

Thus, in all cases we obtain that ωt+1(C) ≤ ωt(C).

We next observe that, informally speaking, once a checkpoint becomes
active, it remains active until either the phase ends or its weight decreases.
Note that a checkpoint that is active in the last step of the phase is not
present in the first step of the next phase, i.e., its weight is then zero, which
allows us to state the lemma as follows:

Lemma 3.5.2. Let C be a checkpoint and let [t′, t′′] be an active interval of C. For
every step t ∈ {t′, . . . , t′′} it holds ωt(C) ≥ ωt′′+1(C).

Proof. Obviously, t and t′′ must belong to the same phase, because at the
end of each phase the active checkpoint is removed from C, i.e., it is no
longer present in the next phase.

If t′′ is the last step of the phase then the lemma follows, because
ωt′′+1(C) = 0 ≤ ωt′(C).

We will now prove that lemma holds when t′′ is not the last step of the
phase. Let us suppose for a contradiction that ωt′′+1(C) > ωt(C). From
the assumptions of the lemma and definition of an active interval we get
that C is not the active checkpoint in step t′′ + 1. Because we are still in
the same phase, it means that there must exist a checkpoint C∗ such that
ωt′′+1(C∗) ≥ ωt′′+1(C). Moreover from Lemma 3.5.1 we know, that because
C∗ was inactive from step t′ to t′′, it holds ωt(C∗) ≥ ωt′′(C∗) ≥ ωt′′+1(C∗).
This gives us

ωt(C∗) ≥ ωt′′+1(C∗) ≥ ωt′′+1(C) > ωt(C), (3.1)

which is in a contradiction to the assumption that C is the active checkpoint
in step t.

Remark 3.5.1. Let C be a checkpoint and let [t′, t′′] be an active interval of C.
Then, ωt′′+1(C) ≤ ωt′(C).

We now conclude from the two previous lemmas about the weight of
inactive checkpoints in the ends of the consecutive phases.

Lemma 3.5.3. Suppose that a phase ends in a step t′ and the next one ends in a
step t′′. If a checkpoint C is inactive (but present) in steps t′ and t′′, then ωt′′(C) ≤
ωt′(C).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.5. Analysis of the Algorithm 65

Proof. Each checkpoint C can be active or inactive in different steps during
the whole phase. If in some step t ∈ {t′, . . . , t′′} a checkpoint C is inac-
tive then from Lemma 3.5.1 we have that its weight will not increase, i.e.,
ωt(C) ≥ ωt+1(C). On the other hand, Lemma 3.5.2 guarantees us, that the
weight of an active checkpoint cannot be greater after its active interval
than at the beginning.

3.5.2 How Many Nodes Are Explored by a Checkpoint?

Define a bottleneck of a checkpoint C, denoted by b(C) to be its minimum
weight taken over all steps in which C was present. (Note that a checkpoint
may be present in many consecutive phases, see Figure 3.9.)

Suppose that a node v has been reached by a searcher for the first time
in a step t. Let C be the active checkpoint in step t. We say that v has been
explored by C.

If an expansion of an active checkpoint C reaches in a step t a node u
already explored by some checkpoint C′, then in most situations u does
not need to be guarded. However there might occur a “corner situation”
when u still needs to be guarded in order to avoid contamination. In such
case, the algorithm clearly needs one searcher on u to guard it and so it is
counted in our analysis due to the ‘ownership’ relation used in the defini-
tion of the weight of a checkpoint.

The next lemma states a lower bound on the number of nodes explored
by a checkpoint reaching its last expansion.

Lemma 3.5.4. Suppose that a phase ends in a step t. Let C be the active checkpoint
in step t. The number of nodes explored by C in all steps is at least b(C)

√
n.

Proof. First let us make a remark that nodes can be only explored by C
during execution of procedure ClearExpansion that took C as an input,
i.e., when C is active. Let us denote by S the set of all nodes explored by C.

Because C is active in the last step of the phase, it had to be active in
exactly

√
n steps in total, which can be contained in several past phases.

Let t1, t2, . . . , t√n = t be all steps in which C is active. Note that

√
n⋃

i=1

E(C, ti) ⊆ S

and E(C, ti) ∩ E(C, tj) = ∅ for i 6= j. The latter follows directly from the
fact that nodes in E(C, ti) and E(C, tj) belong to different rectangles of the
frontier containing C for i 6= j. (Recall that |E(C, t)| = ωt(C) for each step

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

66 Chapter 3. On-line Search in Two-Dimensional Environment

t.) Also from the definition of the bottleneck, we get that b(C) ≤ ωti(C) for
each i ∈ {1, . . . ,

√
n} and hence we conclude that:

|S| ≥
√

n

∑
i=1

ωti(C) ≥ b(C)
√

n. (3.2)

We now give an upper bound on the weight of each inactive checkpoint
at the end of a phase.

Lemma 3.5.5. Suppose that a phase ends in a step t. Let C1, . . . , Cl be all check-
points present in this phase, where C1 is the active checkpoint in step t. Then,
b(C1) ≥ ωt(Cj) for each j ∈ {2, . . . , l}.

Proof. Let us denote by t′ the last step in which ωt′(C1) = b(C1). If t′ = t
then the lemma follows strictly from the definition of an active checkpoint.
We will now prove that lemma stands also when t′ < t.

Suppose that t′ and t do not belong to the same active interval of C1.
From the Lemma 3.5.2 we know that ωt′′(C1) = b(C1) occurs for some t′′

that does not belong to an active interval. Moreover from Remark 3.5.1 we
get that every next active interval will need to start and finish on the same
weight as the bottleneck, which is in contradiction that t′ is the last step
when b(C1) occurred.

Hence t and t′ are part of the same active interval of C1. Then, we get
from Lemma 3.5.1 and the fact that C1 is active in step t′:

ωt(Cj) ≤ ωt′(Cj) ≤ ωt′(C1) = b(C1), j ∈ {2, . . . , l}, (3.3)

which finishes our proof.

Let us introduce a relation≺ on a set of checkpoints. Whenever C ≺ C′,
we say that C is a predecessor of C′ and C′ is a successor of C. We stress out
that the construction depends on the execution of the algorithm, namely
only checkpoints that appear in some step are considered, and the division
of the steps into phases shapes the relation. More precisely, the relation is
defined only for checkpoints added to the set C during all executions of
procedure UpdateCheckpoints. To construct the relation we iterate over
the consecutive phases of the algorithm. Initially the relation is empty and
once the construction is done for each phase smaller than i, we perform
the following for phase i. Let C be the active checkpoint in the last step
of phase i. Let C1, . . . , Cl be all checkpoints, different from C, that have no

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.5. Analysis of the Algorithm 67

successors so far and were added to C till the end of phase i− 1 (including
the last step). Then, let Cj ≺ C for each j ∈ {1, . . . , l}.

An important property of our algorithm is that each checkpoint may
have only a constant number of predecessors:

Lemma 3.5.6. Each checkpoint has at most 10 predecessors.

Proof. A checkpoint C can only once be active in the last step of some phase
i, because after that it will not be present in any later phases. At the end of
phase i the only checkpoints that do not have any successors are the ones
that were constructed by the procedure UpdateCheckpoints at the end of
phase i− 1. There are at most 10 such checkpoints.

3.5.3 The Algorithm Uses O(
√

n) Searchers in Total

We now bound the total weight of all checkpoints at the end of each phase
— note that this bounds the total number of searchers used for guarding at
the end of a phase. A high level intuition behind the proof of Lemma 3.5.7
is as follows. Due to Lemma 3.5.4, each checkpoint C that is active in the
last step of a phase explores at least b(C)

√
n nodes in total. Therefore, the

sum of bottlenecks of all such checkpoints C cannot exceed
√

n. Moreover,
C can have at most 10 predecessors and hence the sum of weights of those
predecessors is bounded by 10b(C) according to Lemma 3.5.5. Since each
checkpoint (except the one that is active in the last step of a given phase)
is a predecessor of some checkpoint that is active in the last step of some
phase, we bound the sum of all weights of all such checkpoints present in
a given phase by 10

√
n.

Lemma 3.5.7. Suppose that C1, . . . , Cl are all checkpoints present in a phase that
ends in step t, where C1 is active in step t. Then,

l

∑
i=1

ωt(Ci) ≤ ωt(C1) + 10
√

n.

Proof. Suppose that phase j ends in step t. Let ti be the last step of phase
i and let C0

i be the active checkpoint in step ti for each i ∈ {0, . . . , j}. We
denote by s the number of nodes visited by searchers till the end of step
t = tj. From Lemma 3.5.4 and the fact that the number of all nodes n is at
least s we have:

n ≥ s ≥
j

∑
i=0

b(C0
i)
√

n ⇒ 10
√

n ≥ 10
j

∑
i=0

b(C0
i). (3.4)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

68 Chapter 3. On-line Search in Two-Dimensional Environment

From Lemma 3.5.6 we have that the checkpoints C0
0 , . . . , C0

j can have at
most 10 predecessors. From the definition, they are constructed (i.e., added
to collection C during the execution of procedure UpdateCheckpoints) at
the beginning of the first step of a phase at the end of which their successor
is active. Let us denote by C1

i , . . . , Cli
i , 0 ≤ li ≤ 10, the predecessors of C0

i
for each i ∈ {0, . . . , j} (by li = 0 we denote that C0

i has no predecessors).
From Lemma 3.5.5 we have:

li

∑
k=1

ωti(C
k
i) ≤ 10b(C0

i), i ∈ {0, . . . , j}. (3.5)

Lemma 3.5.3 assures us that weights of inactive checkpoints will not be
greater at the end of the next phase than they are in the last step of current
phase:

ωt(Ck
i) = ωtj(C

k
i) ≤ ωtj−1(C

k
i) ≤ · · · ≤ ωti(C

k
i), (3.6)

i ∈ {0, . . . , j}; k ∈ {1, . . . , li}.

Because

{C1, . . . , Cl} ⊆ {C0
j } ∪

{
Ck

i
∣∣ k ∈ {1, . . . , li}, i ∈ {0, . . . , j}

}
,

we can conclude from Equations (3.6), (3.5) and (3.4) (in this order) that:

l

∑
i=1

ωt(Ci) ≤ ωt(C0
j) +

j

∑
i=0

li

∑
k=1

ωt(Ck
i)

≤ ωt(C0
j) +

j

∑
i=0

li

∑
k=1

ωti(C
k
i)

≤ ωt(C0
j) +

j

∑
i=0

10b(C0
i)

≤ ωt(C0
j) + 10

√
n. (3.7)

Theorem 3.5.1. Given an upper bound n of the size of the network as an input, the
algorithm GridSearching clears in a connected and monotone way any unknown
underlying partial grid network using O(

√
n) searchers.

Proof. At first let us notice that the algorithm GridSearching ends with the
whole network cleared. Indeed, as long as there are contaminated nodes,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.5. Analysis of the Algorithm 69

it will continue clearing next expansions of the checkpoints. Because no
recontamination takes place, it eventually terminates. We will bound the
number of searchers s used by a single call to procedure ClearExpansion
and the total number of searchers s′ used for guarding at the end of
any step of the algorithm. Note that s + s′ bounds the total number of
searchers used by GridSearching. In the proof we refer to the classi-
fication of searchers into explorers, cleaners and guards introduced in
Section 3.4.

We first analyze procedure ClearExpansion to give an upper bound on
s. The fact that each rectangle of a frontier contains at most 10

√
n nodes

and Theorem 3.4.1 give that:

number of explorers ≤ 10
√

n,
number of cleaners ≤ 6

√
n + 4.

Thus,

s ≤ 16
√

n + 4. (3.8)

The guards used to protect nodes lying on the (i − 1)-th rectangle are ac-
counted for during the estimation of s′ below.

We now bound the maximal number of searchers used for guarding at
the end of each step t of our search strategy, which we denote by gt. It is
easy to see that gt ≤ 10

√
n if t belongs to phase 0.

Let us now take any step t that belongs to an i-th phase, where i > 0 and
denote by t′ the last step of the phase i− 1 and by C the active checkpoint
in step t′. From Lemma 3.5.7 we know that gt′ ≤ ωt′(C) + 10

√
n ≤ 20

√
n.

The latter inequality follows from the fact that all nodes in E(C, t′) belong
to the j-th rectangle of the frontier that contains C, j ≤

√
n, and the number

of nodes in this rectangle is at most 10
√

n.
We know now that every phase starts with at most 20

√
n guards. If t is

the first step of an active interval of some checkpoint, then by Lemma 3.5.1
and Remark 3.5.1 we have that gt ≤ gt′ ≤ 20

√
n. But if t is a step inside

some active interval, then an active checkpoint can reach at most 10
√

n
new nodes that need to be guarded. Note that by Lemma 2, the nodes
of subsequent expansions of a checkpoint that need to be guarded do not
accumulate, that is, we only guard the one of the last expansion. Because in
one step only one checkpoint can be active that leads us to conclusion that
for every step t we have gt ≤ 30

√
n. Therefore, we obtain that s′ ≤ 30

√
n.

Thus, we obtain s + s′ ≤ 46
√

n + 4 = O(
√

n) as required.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

70 Chapter 3. On-line Search in Two-Dimensional Environment

3.6 Unknown Size of the Graph

The algorithm we have described needs to know an upper bound on the
size of the underlying partial grid network G. In this section we design a
procedure called ModGridSearching that performs the search using O(

√
n)

searchers and having no prior information on the network. The procedure
is based on a standard technique: guessing an upper bound on n by dou-
bling potential estimate each time. More about applications of the doubling
technique in designing on-line and off-line approximation algorithms can
be found in [35].

The procedure ModGridSearching is composed of a certain number of
rounds. In round i, procedure GridSearching first introduces c

√
2i new

searchers called i-th team, where c is the constant from the asymptotic
notation in Theorem 3.5.1. Then, a call to GridSearching is made, where
procedure GridSearching is using only the searchers of the i-th team.
The outcome can be twofold. The procedure may succeed in search-
ing the entire graph and in such case the i-th round is the last one and
ModGridSearching is completed, or the procedure may encounter a sit-
uation in which it would be forced to use more than c

√
2i searchers to

continue. In such case GridSearching stops, the i-th round ends and
the (i + 1)-th round will follow. Once the i-th round is completed, the
searchers of the i-th team stay idle indefinitely. We point out that during
the execution of an i-th round, i > 1, procedure GridSearching using the
searchers of the i-th team is ignoring the fact that the network may be
partially clear as a result of the work done in previous rounds. Moreover,
the searchers of j-th team for each j < i are not used and thus also ignored
during i-th round.

We close this section by giving an upper bound on the number of
searchers that need to be used in the presented modified version of our
algorithm.

Theorem 3.6.1. The distributed on-line algorithm ModGridSearching clears
(starting at an arbitrary homebase) in a connected and monotone way any un-
known underlying partial grid network using O(

√
n) searchers. The algorithm

receives no prior information on the network.

Proof. Let n be the number of nodes of the partial grid network, which is
unknown to our procedure. The number of rounds m fulfills 2m−1 < n ≤
2m, i.e., m = dlog2 ne. At the end of i-th round, c

√
2i searchers need to

stay in their last positions till the end of our procedure and are not used
in subsequent rounds. This means that the total number of searcher s is

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.7. Conclusions 71

upper bounded by a sum of searchers used in every round:

s ≤ c
√

2 + c
√

22 + · · ·+ c
√

2dlog2 ne = c
dlog2 ne

∑
j=1

(√
2
)j

=
√

2c
1−
√

2
dlog2 ne

1−
√

2
=

√
2c√

2− 1

(√
2dlog2 ne − 1

)
. (3.9)

Because
√

n ≤
√

2dlog2 ne <
√

2n, we conclude

s <
√

2c√
2− 1

(√
2n− 1

)
⇒ s = O(

√
n).

3.7 Conclusions

3.7.1 Motivation

There exists a number of studies of graph searching problems in the graph-
theoretic context. Much less is known for geometric scenarios. It turns out
that the geometric (or continuous) analogue of graph searching is challeng-
ing to analyze. More precisely, in the recently introduced continuous ver-
sion [97, 117] the input geometric shape is searched by using line segments
or curves (that form a barrier separating contaminated and clear area) in-
stead of searchers. The corresponding optimization criterion is then the to-
tal length of this barrier. It can be observed that computing optimal strate-
gies even for some simple shapes turns out to be quite non-trivial [117].

The class of graphs we have selected to study in this chapter is mo-
tivated by the following arguments. First, on-line (monotone) searching
turns out to be difficult in terms of achievable upper bound on the number
of searchers even in simple topologies like trees. This suggest that some
additional information is needed to perform on-line search efficiently and
our work shows that, informally speaking, a two-dimensional sense of di-
rection is enough to search a graph in asymptotically almost optimal way.
Our second motivation comes from approaching the problem of geometric
search by considering its discrete analogues, i.e., by modeling via graph
theory. We give a short sketch to give an overview as the problem of mod-
eling is out of scope of this work and we only refer to some recent works on
the subject [3, 14, 97, 117]. Consider a continuous search problem in which

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

72 Chapter 3. On-line Search in Two-Dimensional Environment

FIGURE 3.10: An example of the construction of a partial grid network.

k searchers initially placed at the same location need to capture the fugi-
tive hiding in an arbitrary polygon that possibly has holes. The polygon is
not known a priori to the searchers. The fugitive is considered captured in
time t when it is located at distance at most r from some searcher at time
point t. (The distance r can be related to physical dimensions of searchers
and/or their visibility range, etc.)

Consider the following transition from the above continuous searching
problem of a polygon to a discrete one. Overlap the coordinate system
with the polygon in such a way that the origin coincides with the original
placement of the searchers. Then, place nodes on all points with coordi-
nates, which are multiples of r and lie in the polygon. Connect two nodes
with an edge if the edge is contained in the polygon. In this way we ob-
tain a partial grid network. In this brief sketch we omit potential problems
that may arise in such modeling, like obtaining disconnected networks or
having ‘blind spots’, i.e., points in the polygon that cannot be cleared by
using the above nodes and edges only. We say that a partial grid network
G covers the polygon if G is connected and for each point p in the polygon
there exist a node of G in distance at most r from p. See Figure 3.10 for an
example.

Note that any search strategy S ′ for a polygon P can be used to ob-
tain a search strategy S for underlying partial grid network G as follows.
For each searcher s used in S ′ introduce four searchers s1, . . . , s4 that will
‘mimic’ its movements by going along edges of G. More precisely, the
searchers s1, . . . , s4 will ensure that at any point, if s is located at a point
(x, y), then s1, . . . , s4 will reside on nodes with coordinates (bx/rc, by/rc),

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.7. Conclusions 73

(bx/rc, dy/re), (dx/re, by/rc), (dx/re, dy/re). In this way, area protected
by s in S ′ is always protected by four searchers in S . This allows us to state
the following.

Observation 3.7.1. Let P be a polygon and let G by an underlying partial grid
network that covers P. Then, there exists a search strategy for G using k searchers
such that its execution in G results in clearing P and k = O(p), where p is the
minimum number of searchers required for clearing P (in a continuous way).

3.7.2 Open Problems

In view of the lower bound shown in [93] that even in such simple net-
works as trees each distributed on-line algorithm may be forced to use
Ω(n/ log n) times more searchers than the connected search number of the
underlying network, one possible line of research is to restrict attention
to specific topologies that allow to obtain algorithms with good provable
upper bounds. This work gives one such an example. An interesting re-
search direction is to find other non-trivial settings in which distributed
on-line search can be conducted efficiently. Also, we leave a logarithmic
gap in our approximation ratio. Since there exist grids that require Ω(

√
n)

searchers the gap can be possibly closed by analyzing the grids that require
few (e.g. O(log n)) searchers.

The above questions related to network topologies can be stated more
generally: what properties of the on-line model are crucial for such a search
for fast and invisible fugitive to be efficient? This work and also a recent
one [27] suggest that a ‘sense of direction’ may be one such a factor. Pos-
sibly interesting directions may be to analyze the influence of visibility on
search scenarios.

We finally note that the only optimization criterion that was of interest
in this work is the number of searchers. This coincides with the research
done in off-line search problems where this was the most important crite-
rion giving nice ties between graph searching theory and structural graph
theory. However, one may consider adding different optimization criteria
like time or the total distance.D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

75

Chapter 4

Finding Small-width
Connected Path
Decompositions

Since the famous ‘graph minor’ project by Robertson and Seymour that
started with [137], the notions of treewidth and pathwidth received grow-
ing interest and a vast amount of results has been obtained. The pathwidth,
informally speaking, allows us to say how closely an arbitrary graph re-
sembles a path. This concept proved to be useful in designing algorithms
for various graph problems, especially in the case when the pathwidth of
an input graph is small (e.g. fixed), in which case quite often a variant of
the well-known dynamic programming approach that progresses along a
path decomposition of the input graph turns out to be successful.

Several modifications to pathwidth have been proposed and in this
chapter we are interested in the connected variant in which one requires
that a path decomposition (X1, . . . , Xl) of a graph G satisfies: the vertices
X1 ∪ · · · ∪Xi induce a connected subgraph in G for each i ∈ {1, . . . , l}. This
version of the classical pathwidth problem is motivated by several pursuit-
evasion games, including, but not limited to, edge search, node search or
mixed search [99, 132, 146]. More precisely, computing the minimum num-
ber of searchers needed to clean a given graph G in the node search game
(i.e., computing the node search number of G) is equivalent to computing
the connected pathwidth of G. Moreover, a connected path decomposition
can be easily translated into the corresponding node search strategy that
cleans G and vice versa.

For more about different search numbers, connected search strategies
and computing the search numbers see survey on the decontamination
problem in Section 2.1 (in particular subsections 2.1.1, 2.1.2 and 2.1.5).

This chapter is constructed as follows: we start with giving the motiva-
tion for our research and in the following section we recall the definition

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

76 Chapter 4. Finding Small-width Connected Path Decompositions

of connected pathwidth and related terms used in this chapter. Section 4.3
provides a polynomial-time algorithm for determining whether the con-
nected pathwidth of an arbitrary input graph G is at most k, where k is
a fixed integer. The algorithm is inspired by the algorithms for comput-
ing minimum-length path decompositions by Dereniowski, Kubiak, and
Zwols [50]. We also use the notation from this paper. Then, Section 4.4
contains the analysis of the algorithm (its correctness and running time).
We finish with some open problems in Section 4.5.

4.1 Motivation

The connectivity constraint for pathwidth is natural and useful in graph
searching games [9, 68, 82]. The connectivity is in some cases implied by
potential applications (e.g., security constraints may enforce the clean, or
safe, area to be connected) or it is a necessity, like in distributed or on-line
versions of the problem [22, 27, 93, 121].

Our second motivation comes from connections between pathwidth
and connected pathwidth. More specifically, [47] implies that for any graph
G, these parameters differ multiplicatively only by a small constant. This
implies that an approximation algorithm for connected pathwidth imme-
diately provides an approximation algorithm for pathwidth with asymp-
totically the same approximation ratio. This may potentially lead to ob-
taining better approximations for pathwidth since, informally speaking,
the algorithmic search space for connected pathwidth is for some graphs
much smaller than that for pathwidth. On the other hand, we do not know
any algorithm computing the connected pathwidth in time O∗((2− ε)n),
for any ε > 0. Thus, despite this smaller algorithmic search space, it is
not clear how these two problems algorithmically differ in the context of
designing exact algorithms.

During the GRASTA 2017 workshop, Fedor V. Fomin [75] raised an
open question, whether we can verify in polynomial time, if the connected
pathwidth of a given graph is at most k, for a fixed constant k. In this
chapter we answer this question in the affirmative.

4.2 Definitions

Let G = (V(G), E(G)) be a simple graph. We recall the definition of a path
decomposition.

Definition 4.2.1. A path decomposition of a simple graph G = (V(G), E(G))
is a sequence P = (X1, . . . , Xl), where Xi ⊆ V(G) for each i ∈ {1, . . . , l}, and

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.2. Definitions 77

A.
⋃l

i=1 Xi = V(G),

B. for each {u, v} ∈ E(G) there exists i ∈ {1, . . . , l} such that u, v ∈ Xi,

C. for each i, j, k with 1 ≤ i ≤ j ≤ k ≤ l it holds that Xi ∩ Xk ⊆ Xj.

The width of a path decomposition P is width(P) = maxi∈{1,...,l} |Xi| − 1.
The pathwidth of G, denoted by pw(G), is the minimum width over all path
decompositions of G.

We say that a path decomposition P = (X1, . . . , Xl) is connected if the
subgraph G[X1∪ · · · ∪Xi] is connected for each i ∈ {1, . . . , l}. The connected
pathwidth of a graph G, denoted by cpw(G), is the minimum width taken
over all connected path decompositions of G.

Finally, a connected partial path decomposition of a graph G is a con-
nected path decomposition (X1, . . . , Xi) of some subgraph H of G, where
NG(V(G) \V(H)) ⊆ Xi. In other words, in the latter condition we require
that each vertex of H that has a neighbor outside H belongs to the last bag
Xi. Intuitively, a connected partial path decomposition of G can be poten-
tially a prefix of some connected path decomposition of G. Also note that if
(X1, . . . , Xl) is a connected path decomposition, then for each i ∈ {1, . . . , l},
the sequence (X1, . . . , Xi) is a connected partial path decomposition of G,
where H = G[X1 ∪ · · · ∪ Xi].

In our analysis we use the following intermediate notion between arbi-
trary and connected path decompositions.

Definition 4.2.2. Given I ⊆ V(G), a (partial) path decomposition P =
(X1, . . . , Xl) of G is I-connected if for each i ∈ {1, . . . , l} each connected com-
ponent H of G[X1 ∪ · · · ∪ Xi] contains a vertex from I and this vertex belongs to
the first bag in which H appears in P .

In other words, if P = (X1, . . . , Xl) is a partial path decomposition or
a prefix of one, then the subgraph of G induced by the union of bags of
P may have several connected components and each of them must have
a vertex in I . Moreover, if one looks at the path decomposition of such a
connected component H derived from P , i.e. at the path decomposition
obtained from (X1 ∩ V(H), . . . , Xl ∩ V(H)) by removing the empty bags,
then such a decomposition starts with a bag containing a vertex in I . Note
that if P is connected then there is only one such connected component.
See Figure 4.1 for an illustration.

In our analysis, we will assume that the path decompositions we con-
sider have the property that each bag introduces at most one new vertex,
i.e., for P = (X1, . . . , Xl) it holds |Xi+1 \ X1| ≤ 1 for each i ∈ {1, . . . , l− 1}.
This property can be easily reestablished whenever needed (a folklore).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

78 Chapter 4. Finding Small-width Connected Path Decompositions

X2

v1

v3

v4

v5

v6

v2
X1

FIGURE 4.1: An illustration of I-connectivity; empty circles denote vertices
from the set I . A partial path decomposition P = (X1, X2) is I-connected,
as every connected subgraph of G[X1] and G[X1 ∪ X2] contains a vertex from

I as required in Definition 4.2.2.

4.3 The Algorithm

We will present an algorithm that decides whether, for a connected input
graph G and a set I , there exists an I-connected path decomposition of
width at most k− 1 (thus k is the maximum bag size of the connected path
decomposition to be computed). In the following, G, I and k are hence
fixed. Note that we may without loss of generality assume that the first bag
in a connected path decomposition to be computed has only one vertex.

We start by informally sketching the high-level idea of the algorithm.
Then, Sections 4.3.1 and 4.3.2 give the algorithm and Section 4.3.3 gives a
summary of our method. We use a dynamic programming approach. To
that end we introduce a set of states, so that each state encodes some partial
path decomposition of G. If a transition from one state to another is possi-
ble, then this certifies that the partial path decomposition corresponding to
one state can be extended to (i.e., is a prefix of) a partial path decomposi-
tion corresponding to the other state. We will verify whether the transition
is possible using a recursive procedure. The need to ensure consistency of
solutions found in recursive calls is the reason why we consider a more
general problem of finding I-connected path decompositions.

Finally, we will show that each transition can be checked in polynomial
time and that it is enough to consider only polynomially many states. This
eventually leads to an algorithm with a desired complexity.

For any S ⊆ V(G), we say that a subgraph H of G is an S-branch if H is
a connected component of G− S and NG(V(H)) = S. For any S ⊆ V(G),
define B(S) to be the set of all S-branches. A set S is called a bottleneck if
the number of S-branches is at least 2k + 1, as it guarantees us the existence
of at least one special branch called an in-branch, which will be defined
formally in the next section. Observe that each connected component of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.3. The Algorithm 79

G− X, for any X ⊆ V(G), is an S-branch for exactly one non-empty subset
S of X.

Let us mention that S-branches are also known as full components asso-
ciated with S (see e.g. Bouchitté and Todinca [29]).

4.3.1 States

By a potential state we mean a triple (X, {BS}S⊆X, { f BS}S⊆X), consisting of:

− a non-empty set X ⊆ V(G) with |X| ≤ k,

− a subset BS ⊆ B(S) of cardinality at most 2k, chosen for every non-
empty S ⊆ X,

− a function f BS : B(S) → {0, 1}, chosen for every non-empty S ⊆ X.
We additionally require that if H, H′ ∈ B(S) \ BS, then f BS(H) =
f BS(H′).

The exact meaning of BS will be explained later on, but let us present some
intuition. In Lemma 4.4.1 we show that for every path decomposition P ,
the vertices of all but at most 2k S-branches appear in bags of P in a cer-
tain, well-structured way. The set BS and the function f BS will be used to
describe the structure of the remaining, badly behaving S-branches.

Observe that the set X may be chosen in at most nk ways and the num-
ber of choices of S is at most 2k. For every S, the number of S-branches is
at most n, so BS can be chosen in at most n2k ways. The function f BS can be
chosen in at most 2|BS| · 2 ≤ 22k+1 ways. Therefore, the number of potential
states is at most nk · 2k · n2k · 22k+1 = O(n3k), i.e., polynomial in n, where
the asymptotic notation hides the factor that depends on k.

With a potential state s = (X, {BS}S⊆X, { f BS}S⊆X) we associate the fol-
lowing notions. By bag(s) we denote the set X. By cover(s) we denote the
set of vertices

X ∪
⋃

S⊆X,S 6=∅

 ⋃
H∈B(S) : f BS (H)=1

V(H)

 .

By Gs we denote the subgraph of G induced by cover(s). We say that
two states w, s are indistinguishable if cover(w) = cover(s) and bag(w) =
bag(s). Otherwise the states are distinguishable. In particular, indistinguish-
able states can only differ by the choice of BS. We note that for such two
distinguishable states it may hold that cover(w) = cover(s) but bag(w) 6=
bag(s).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

80 Chapter 4. Finding Small-width Connected Path Decompositions

Example. In the example in Figure 4.1 we can consider two states: s and w
with bags bag(s) = X1 and bag(w) = X2. There exists one {v1}-branch H1 =
G − {v1}, two {v2}-branches: H2 = G[{v1}] and H3 = G[{v3, v4, v5, v6}],
one {v6}-branch H4 = G − {v6} and two {v2, v6}-branches: H5 = G[{v4}]
and H6 = G[{v3, v5}]. We notice that the set of {v1, v2}-branches is empty.
The state s is equal to (X1, {{H1}, {H2, H3}, ∅}, { f1, f2, f∅}) and the state w is
(X2, {{H2, H3}, {H4}, {H5, H6}}, { f2, f3, f4}), such that f∅ is a function with
empty domain, f1(H1) = f2(H3) = f3(H4) = f4(H5) = f4(H6) = 0 and
f2(H2) = 1. We notice that cover(s) = {v1, v2} and cover(w) = {v1, v2, v6}.

Let v be a vertex from cover(s) which has a neighbor u /∈ cover(s). We
argue that v ∈ bag(s). Otherwise, if v /∈ bag(s), then both v and u belong
to the same S-branch for some S ⊆ bag(s). Thus, they are either both in
cover(s), or outside it. From this it follows that every vertex v ∈ cover(s),
which has a neighbor u /∈ cover(s), must belong to bag(s). Let us denote
the set of such vertices v by border(s). We have proved:

Observation 4.3.1. For each potential state s it holds that border(s) ⊆ bag(s).

We say that a potential state s is a state if each connected component of
Gs contains a vertex in I .

We introduce a Boolean table Tab, indexed by all states. For a state s,
the value of Tab[s] will be set to true by our algorithm if and only if there
exists some I-connected partial path decomposition P = (X1, X2, . . . , Xl)
of G with H = Gs, such that width(P) ≤ k− 1 and Xl = bag(s). We will
use a dynamic programming to fill the table Tab. Then, we will conclude
that G has an I-connected path decomposition of width at most k − 1 if
and only if Tab[s] = true for some state s with cover(s) = V(G).

Observe that such a final state exists, since for s = (X, {BS}S, { f BS}S),
we have cover(s) = V(G) if and only if f BS(H) = 1 for every S and H.
However, the astute reader may notice that in our representation we might
have not included some I-connected partial path decompositions and it
could be possible that we do not find a solution, even though it exists. We
will show that if cpw(G) ≤ k − 1, then there exists a special type of an
I-connected path decomposition of width at most k− 1, called a structured
path decomposition (defined later), which can be found using our algorithm
because, as we will argue, our table Tab does not ‘omit’ any structured path
decompositions.

4.3.2 Extension Rules

Let us introduce a total ordering ≺ on the set of states. We say that w ≺ s
if |cover(w)| < |cover(s)|, or |cover(w)| = |cover(s)| and |bag(w)| >

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.3. The Algorithm 81

|bag(s)|. If |cover(w)| = |cover(s)| and |bag(w)| = |bag(s)|, then we re-
solve such a tie arbitrarily.

We initialize Tab by setting Tab[s] = true for every state s, such that
cover(s) = bag(s) = {v}, for some v ∈ I , while for the remaining states
s we initialize Tab[s] to be f alse. In particular for each s with |cover(s)| =
1 and cover(s) = bag(s) ∈ I , we have Tab[s] = true. In our dynamic
programming algorithm, we process states according to the ordering ≺
and fill the table Tab using two extension rules: step extension and jump
extension.

Step extension for distinguishable states w, s with w ≺ s and |cover(s)| >
1: if Tab[w] = true and

(S1) each connected component of G[bag(s)] contains a vertex from
bag(w) ∪ I ,

(S2) border(w) ⊆ bag(s),

(S3) cover(s) = cover(w) ∪ bag(s),

(S4) bag(s) ∩ cover(w) ⊆ bag(w),

then set Tab[s] to true.

Jump extension for distinguishable states w = (X, {BS}S⊆X, { f BS}S) and
s = (X, {BS}S⊆X, {gBS}S) with w ≺ s and |cover(s)| > 1: if Tab[w] =
true and there exists a bottleneck set S′ ⊆ X, such that

(J1) f BS′ (H) = 0 and gBS′ (H) = 1 for every H ∈ B(S′) \ BS′ ,

(J2) f BS′ (H) = gBS′ (H) for every H ∈ BS′ ,

(J3) f BS(H) = gBS(H) for every non-empty S 6= S′, S ⊆ X, and
H ∈ B(S),

(J4) for each H ∈ B(S′) \ BS′ there exists an ((NG(S′) ∩V(H)) ∪ I)-
connected path decomposition PH of H of width at most k −
|X| − 1,

then set Tab[s] to true.

Let us present some intuitions behind these extension rules. In step ex-
tension, if w corresponds to some I-connected partial path decomposition
P = (X1, X2, . . . , Xl = bag(w)), then s corresponds to an I-connected par-
tial path decomposition P ′ = (X1, X2, . . . , Xl , Xl+1 = bag(s)) (we extend P
by adding a single bag, namely bag(s)). Also note, that each new vertex in

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

82 Chapter 4. Finding Small-width Connected Path Decompositions

Xl+1, i.e., one that is not in Xl , is (due to (S1)) connected by a path consist-
ing of vertices from Xl+1 to a vertex in Xl or I , as required in I-connected
path decompositions.

In jump extension, if the state w corresponds to some I-connected par-
tial path decomposition P = (X1, X2, . . . , Xl), then the state s corresponds
to an I-connected partial path decomposition P ′ = (X1, X2, . . . , Xl , Xl+1,
Xl+2, . . . , Xl+l′), where

− (
⋂l+l′

i=l Xi) = Xl = Xl+l′ ,

− P ′′ := (Xl+1 \ Xl , Xl+2 \ Xl , . . . , Xl+l′ \ Xl) is a (not necessarily
connected) path decomposition of the graph induced by some S′-
branches, for some S′ ⊆ Xl . These are the S′-branches H in (J1) and
P ′′ is obtained by ‘concatenating’ the path decompositions from (J4).

Note that although a path decomposition PH in (J4) may not be connected,
we ensure (by definition of I-connectivity) that each connected component
of the subgraph induced by each prefix of PH has a vertex from NG(S′) ∩
V(H) or from I . Hence it contains a neighbor of S′ or a vertex from I ,
ensuring the required I-connectivity of the resulting path decomposition.
Figure 4.1 presents an example of step extension from state s to state w, i.e.,
these states fulfill the conditions of the step extension.

4.3.3 Summing Up

Let us recall how the algorithm works. We introduce a Boolean table Tab,
indexed by all states. We initialize Tab by setting Tab[s] = true for every
state s, such that cover(s) = bag(s) = {v}, for some v ∈ I , while for the
remaining states s we initialize Tab[s] to be f alse.

Then we process the states with respect to the ordering ≺, checking
whether a step extension or a jump extension can be applied to set Tab[s] =
true. We terminate when we find a state corresponding to a feasible solu-
tion (i.e., when we set Tab[s] = true for some state s with cover(s) = V(G)),
or when we have processed all states. In the latter case we report that a so-
lution does not exist.

We note that the algorithm will be subsequently switching some entries
of Tab from f alse to true, and hence until the completion of the algorithm it
is understood that the value f alse of a particular entry of Tab does not pro-
vide any information as to whether a corresponding path decomposition
exists.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.4. The Analysis 83

4.4 The Analysis

Let us start by introducing some more definitions and additional notation.
Let P = (X1, X2, . . . , Xl) be a path decomposition of G. We say that a
connected subgraph H of G is contained in an interval [i, j] of P for some
1 ≤ i ≤ j ≤ l, if V(H) ∩ Xt 6= ∅ if and only if t ∈ {i, . . . , j}. Note that
this definition is valid since it follows that for a connected subgraph H,
the subset of indices t such that V(H) ∩ Xt 6= ∅ is indeed an interval. If
H is contained in [i, j], then we denote these endpoints of the interval as
i = α(H,P) and j = β(H,P). If P is clear from the context, we will often
write shortly α(H) := α(H,P) and β(H) := β(H,P).

For an I-connected path decomposition P = (X1, X2, . . . , Xl) and a set
S, we say that an S-branch H is an in-branch if S ⊆ Xα(H) and S ⊆ Xβ(H).
The lemma below gives us a lower bound on the number of in-branches of
S.

Lemma 4.4.1. For every set S and a path decomposition P = (X1, X2, . . . , Xl),
at most 2k S-branches are not in-branches.

Proof. Consider an S-branch H, which is not an in-branch. This means that
S 6⊆ Xα(H) or S 6⊆ Xβ(H).

First, consider H, such that S 6⊆ Xα(H). Let t be the minimum index
such that S ⊆ X1 ∪ X2 ∪ · · · ∪ Xt. Let v ∈ S be a vertex in Xt \ (X1 ∪ X2 ∪
· · · ∪ Xt−1), it exists by the definition of t. Recall that v is a neighbor of
some vertex w of H, so, since P is a path decomposition, there must be a
bag Xi containing both v and w. Since Xt is the first bag, where v appears,
we observe that i ≥ t and thus β(H) ≥ t.

Suppose now that α(H) > t. Note that since S 6⊆ Xα(H), there is some
u ∈ S \ Xα(H). Recall that u is a neighbor of some vertex from H. However,
since u ∈ X1 ∪ X2 ∪ · · · ∪ Xt and u /∈ Xα(H), the vertex u does no appear in
any bag containing a vertex of H, so P cannot be a path decomposition of
G. Thus α(H) ≤ t.

Therefore, the bag Xt contains at least one vertex from H. Since S-
branches are vertex-disjoint and |Xt| ≤ k, we observe that there are at most
k S-branches H, such that S 6⊆ Xα(H).

Now consider an S-branch H, such that S ⊆ Xα(H) and S 6⊆ Xβ(H). Let
t′ be the maximum index such that S ⊆ Xt′ ∪ · · · ∪ Xl .

Analogously to the previous case, we observe that α(H) ≤ t′ (by the
maximality of t′) and β(H) ≥ t′, because S 6⊆ Xβ(H). Thus the bag Xt′

contains at least one vertex from H, which shows that the number of S-
branches H, such that S ⊆ Xα(H) and S 6⊆ Xβ(H), is at most k. Therefore the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

84 Chapter 4. Finding Small-width Connected Path Decompositions

total number of S-branches, that are not in-branches is at most 2k, which
completes the proof.

Recall that a non-empty set S is a bottleneck if |B(S)| > 2k. Thus
Lemma 4.4.1 implies the following:

Corollary 4.4.1. If P = (X1, . . . , Xl) is a path decomposition and S is a bottle-
neck, then the following properties hold:

A. S has at least one in-branch,

B. there is i, such that S ⊆ Xi,

C. |S| ≤ k.

These properties justify the following definition.

Definition 4.4.1. For a bottleneck S ⊆ V(G), let t1(S,P) (respectively
t2(S,P)) be the minimum (respectively maximum) index i such that i = α(H,P)
(i = β(H,P), respectively) for some S-branch H (respectively H), which is an
in-branch.

Note that the definition of an in-branch implies that S ⊆ Xt1(S,P) ∩
Xt2(S,P). The interval I(S,P) = [t1(S,P), t2(S,P)] is called the interval of S.
Again, we will often write shortly t1(S), t2(S), and I(S), if P is clear from
the context.

For a bottleneck S we can refine the classification of S-branches, which
are not in-branches. We say that an S-branch H, which is not an in-branch,
is

− a pre-branch if α(H) < t1(S),

− a post-branch if α(H) ≥ t1(S) and β(H) > t2(S).

By Bx(S,P) we denote the set of all x-branches for S, where x ∈
{pre, in, post}. Again, if P is clear from the context, we will write Bx(S) in-
stead of Bx(S,P). By C(S) we denote the set of all connected components
of G− S, that are not S-branches.

Example. The graph G in Figure 4.2 illustrates the above concepts. The se-
quence X1, X2, . . . , X16 forms a connected path decomposition of G. The only
bottleneck set S consists of two vertices denoted by circles. (In this example we
take k = 3.) There are 13 S-branches: one pre-branch (G[X1 ∪ X2 \ S]), eleven
in-branches (G[Xi \ S] for i ∈ {4, 5, . . . , 14}), and one post-branch (G[(X15 ∪
X16) \ S]). The interval of S is equal to I(S,P) = [4, 14] and the component

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.4. The Analysis 85

SX1

X2

X15

X16

X3 X4

X5

X14

FIGURE 4.2: An illustration of a two-vertex bottleneck set S and the corre-
sponding S-branches.

G[X3 \ S] is not an S-branch, because some vertices in S do not have a neighbor
in this component.

For a subgraph H of G, we say that H waits in an interval [i, j] of P if

V(H) ∩ Xi = V(H) ∩ Xi+1 = · · · = V(H) ∩ Xj.

We say that a path decomposition P is S-structured if each subgraph C that
is in C(S) or is a post- or a pre-branch of S waits in I(S,P). The main tech-
nical tool in our approach is the following result concerning the structure
of I-connected path decompositions. The proof of the lemma is provided
after giving several technical facts that we need.

Lemma 4.4.2. If there exists an I-connected path decomposition P , then there is
also an I-connected path decomposition P ′ of width at most width(P) such that
P ′ is S-structured for every bottleneck S.

We define cmin(S,P) as the minimum index i ∈ I(S,P), for which the
size of the set

Xi ∩

 ⋃
H∈Bpre(S)∪Bpost(S)∪C(S)

V(H)


is minimum. Also, set X∗ :=

(⋃
H∈Bpre(S)∪Bpost(S)∪C(S) V(H)

)
∩ Xcmin(S,P) to

be this minimum-size set.
Let Γ be the set of all I-connected path decompositions of G and S be

the set of all bottlenecks of G. We will define a function F : S × Γ → Γ,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

86 Chapter 4. Finding Small-width Connected Path Decompositions

which for given S ∈ S and P ∈ Γ transforms P into an S-structured I-
connected path decomposition of width at most width(P). For simplic-
ity of notation, from now on t1 = t1(S,P), t2 = t2(S,P), and cmin =
cmin(S,P), whenever S and P are clear from the context. Let Bin(S,P) =
{H1, . . . , Hlin}, where the in-branches are ordered according to their first
occurrences in P , that is, α(H1) ≤ · · · ≤ α(Hlin). Let

d = ∑
H∈Bin(S)

(β(H)− α(H) + 1) .

In other words, d is the sum of lengths of intervals in which the in-branches
H are contained in the path decomposition P = (X1, X2, . . . , Xl).

For each in-branch Hi, i ∈ {1, . . . , lin}, we define the following se-
quence:

Pi :=
(

Xα(Hi) ∩V(Hi), . . . , Xβ(Hi) ∩V(Hi)
)

.

Since P is an I-connected path decomposition of G, it is straightforward
to observe that Pi is a (NG(S) ∩V(Hi))∪ I-connected path decomposition
of Hi. We will denote the elements of Pi by

Pi =
(

Xi
1, . . . , Xi

β(Hi)−α(Hi)+1

)
.

Then, let us define a sequence P∗ as follows:

P∗ :=©lin
i=1 Pi,

where© denotes the concatenation of sequences. Observe that the length
of P∗ is exactly d. We will denote the elements of P∗ by P∗ =

(
X∗1 , . . . , X∗d

)
.

Define Bin to be the set of vertices of the in-branches of S, i.e.,
Bin :=

⋃
H∈Bin(S,P) V(H). Now, we define a path decomposition F(S,P) =(

X′1, . . . , X′l+d+1

)
as follows (see Figure 4.3):

X′i =



Xi for i ∈ {1, . . . , t1 − 1}; (4.1)
Xi \ Bin for i ∈ {t1, . . . , cmin − 1}; (4.2)
Xcmin \ Bin for i = cmin; (4.3)
X∗ ∪ X∗i−cmin

∪ S for i ∈ {cmin + 1, . . . , cmin + d}; (4.4)

Xcmin \ Bin for i = cmin + d + 1; (4.5)
Xi−d−1 \ Bin for i ∈ {cmin + d + 2, . . . , t2 + d + 1}; (4.6)
Xi−d−1 i ∈ {t2 + d + 2, . . . , l + d + 1}. (4.7)

Observe that F(S,P) is obtained from P by a modification of the interval

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.4. The Analysis 87

[t1, t2] of P . Indeed, we notice that the prefix (X1, X2, . . . , Xt1−1) and the
suffix (Xt2+1, Xt2+2, . . . , Xl) of P are just copied into F(S,P) without any
changes (see conditions (4.1) and (4.7)). All components of G − S, apart
from the in-branches, are covered by bags on positions up to cmin, see (4.2)
and (4.3), and after position cmin + d, see (4.6), and they wait for d + 1
steps in the interval [cmin + 1, cmin + d + 1] of F(S,P) — see (4.4)–(4.5). The
interval [cmin + 1, cmin + d] is used in (4.4) to cover all in-branches, one by
one, in the order of their appearance in P . Intuitively, two bags without
any vertices of in-branches are present on positions cmin and cmin + d + 1
to ensure that for any other bottleneck S′, such that I(S,P) (I(S′,P),
we have that cmin(S′,P) 6∈ I(S,P), see (4.3) and (4.5). (The appropriate
details are in the proofs.) Figure 4.3 illustrates the conversion from P to
P ′ := F(S,P) for a bottleneck S. Notice that the interval of S in P ′ is given
by t1(S,P ′) = cmin + 1 and t2(S,P ′) = cmin + d, and it is possibly different
than [t1, t2]. In the next lemma we show that F(S,P) has all necessary
properties.

Lemma 4.4.3. For any I-connected path decomposition P and a bottleneck
S, P ′ = F(S,P) is an I-connected path decomposition with width(P ′) ≤
width(P).

Proof. Let us recall the notation: P := (X1, . . . , Xl), P ′ = F(S,P) =
(X′1, . . . , X′l′), t1 = t1(S,P) and t2 = t2(S,P), Bin :=

⋃
H∈Bin(S,P) V(H).

Moreover, define

Bnot-in :=

 ⋃
H∈Bpre(S,P)∪Bpost(S,P)∪C(S)

V(H)

 .

Also, recall that X′i = Xi, 1 ≤ i < t1 and X′i = Xi−d−1, for all t2 + d + 2 ≤
i ≤ l′.

First, we want to show that P ′ satisfies the conditions in Defini-
tion 4.2.1.

Let {u, v} be an edge of G. Since P is a path decomposition, u, v ∈ Xi
for some i. If i < t1, then u, v ∈ X′i = Xi. If i > t2, then u, v ∈ X′i+d+1 = Xi.

So suppose that u, v ∈ Xi for i ∈ [t1, t2]. Note that this means that
u, v ∈ Bin ∪ S or u, v ∈ Bnot-in ∪ S. If u, v ∈ Bnot-in ∪ S, then we have

(i) u, v ∈ X′i , if i ≤ cmin;

(ii) u, v ∈ X′i+d+1, otherwise.

Finally, consider the case that, say, u ∈ Bin and v ∈ Bin ∪ S (if both
u, v ∈ S, then we are at the previous case). This means that u is a vertex of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

88 Chapter 4. Finding Small-width Connected Path Decompositions

t2(S, P)t1(S,P)

Hpre
1

Hpre
2

Hpre
3

H in
1

H in
2

H in
3

Hpost
1

Hpost
2

cmin

C1

C2

C3

(A) S-branches for a path decomposition P before transformation.

t2(S,P) + d+ 2t1(S,P)

Hpre
1

Hpre
2

Hpre
3

H in
1 H in

2 H in
3

Hpost
1

Hpost
2

t1(S,P ′)

C1

C2

C3

t2(S,P ′)

cmin + d+ 1cmin

(B) New bags are inserted into P in which all components apart from in-branches
wait in the interval of S in P ′, i.e., C2, C3, Hpre

2 wait in [t1(S,P ′), t2(S,P ′)].

FIGURE 4.3: Illustration of the conversion from P to P ′ = F(S,P) for a bot-
tleneck S. For simplification, S is assumed to only have 8 S-branches and 3
components, which are denoted by letters H and C, respectively, with appro-

priate indices.

some in-branch Hs ∈ Bin(S,P), so it appears in some bag of Ps and thus
of P∗. This implies that u, v ∈ X′j for some j ∈ [cmin + 1, cmin + d]. This
implies that P ′ satisfies conditions A and B from Definition 4.2.1.

Now let us verify that the condition C is also satisfied, i.e., for every
vertex v and indices i < s < j, such that v ∈ X′i ∩ X′j we have v ∈ X′s.
Clearly the condition is satisfied for every v and j < t1 or i > t2, since
these parts of P ′ are just copied from P without any modifications. The
situation is very similar if i ≤ t2 and j ≥ t1 and v ∈

(
S ∪ Bnot-in) \ X∗. If

v ∈ X∗, then v is included in all bags X′s for s ∈ [cmin, cmin + d + 1], so the
condition C follows from the correctness of P . Finally, if v is a vertex of
some Ha ∈ Bin(S,P), then the condition C follows from the property C
that holds for the path decomposition Pa.

We now show that width(P ′) ≤ width(P). Let c1 = |X∗| and c2 =
max

i=t1,...,t2

∣∣Bin ∩ Xi
∣∣, and let k = width(P) + 1 = max

i=1,...,l
|Xi|. Observe that

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.4. The Analysis 89

each X′i for i /∈ {t1, . . . , t2 + d + 1} is an exact copy of some Xj, so |X′i | ≤ k.
Moreover, each X′i for i ∈ {t1, . . . , cmin} ∪ {cmin + d + 1, . . . , t2 + d + 1}was
obtained from some Xj by removal of vertices of Bin, so again we have
|Xi| ≤ k. Finally, for i ∈ {cmin + 1, . . . , cmin + d} we have∣∣X′i ∣∣ = |S|+ |X∗|+ ∣∣X∗i−cmin

∣∣ ≤ |S|+ c1 + c2.

However, by the definition of P∗, we observe that |S|+ c1 + c2 ≤
∣∣Xj
∣∣ for

some j ∈ {t1, . . . , t2}. Therefore, width(P ′) ≤ width(P).
Finally, recall that P is I-connected. Consider any connected compo-

nent H of the subgraph G[X′1 ∪ · · · ∪ X′i] for an i ∈ {1, . . . , l′}. We argue
that H has a vertex in X′α(H,P ′) ∩ I as required in an I-connected path de-
composition. Denote j′ = α(H,P ′). We consider a few cases following the
definition of P ′ in (4.1)-(4.7).

Suppose first that j′ < t1 or j′ ≥ t2 + d + 2. Denote j = j′ when j′ < t1
and j = j′− d− 1 when j′ ≥ t2 + d+ 2. Then, X′1 ∪ · · · ∪X′j′ = X1 ∪ · · · ∪Xj

and X′j′ = Xj. Thus, for such j′,

X′α(H,P ′) ∩V(H) = X′j′ ∩V(H) = Xj ∩V(H) = Xα(H,P) ∩V(H).

Since P is I-connected, Xα(H,P) ∩ V(H) ∩ I 6= ∅ which completes the
proof for this choice of j′.

Suppose now that t1 ≤ j′ < t2 + d + 2. Denote for brevity Z = X′j′ ∩
V(H). Since each bag of P introduces at most one new vertex, Z has one
vertex, call it v. Note that v is not adjacent to a vertex in S. Otherwise the
fact that S ⊆ X′j′ would imply that v and also its neighbor in S belong to
H, which would contradict |Z| = 1. Also, v /∈ S because S ⊆ X′t1−1 and
v /∈ X′t1−1. Thus, informally speaking, we have proved that that H is a
connected component in G− S that starts in P ′ with the vertex v and this
vertex is not adjacent to any vertex in S. Note that the path decompositions
P andP ′ when restricted to H are identical, (Xα(H,P) ∩V(H), . . . , Xβ(H,P) ∩
V(H)) = (X′α(H,P ′) ∩ V(H), . . . , X′β(H,P ′) ∩ V(H)). This implies in particu-
lar that G[X1 ∪ · · · ∪ Xα(H,P)] also has a connected component that consists
of only the vertex v. Since, P is I-connected, v ∈ I . This implies that H
has a vertex in X′α(H,P ′) ∩ I , i.e., this set consists of v.

Observe that every connected component H of G− S is either contained
in I(S,P ′) (which means that H is an in-branch) or waits in I(S,P ′) (for all
other H).

Observation 4.4.1. For any P and a bottleneck S, the path decomposition
F(S,P) is S-structured.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

90 Chapter 4. Finding Small-width Connected Path Decompositions

Now we want to define a series of transformations, which start with an
arbitrary I-connected path decomposition P and transform it into an I-
connected path decomposition with no larger width, which is S-structured
for every S ∈ S . For this, we will apply the F-transformations for all bot-
tlenecks. In order to do this we need some technical lemmas about the
structure of bottlenecks and their branches.

Lemma 4.4.4. Let S and S′ be two bottlenecks, such that S′ (S. There exists
an S′-branch H such that

⋃
H′∈B(S) V(H′)∪ S \ S′ ⊆ V(H) and every S′-branch

H′, different than H, is a non-branch connected component of G− S.

Proof. Let S, S′ ∈ S such that S′ (S. Clearly S intersects some connected
component of G − S′. Since every S-branch H′′ is connected and S \ S′ ⊂
NG(V(H′′)), we observe that two connected components of G− S′ can not
be distinctive, i.e., there exists a connected component H of G − S′ such
that

⋃
H′∈B(S) V(H′) ∪ S \ S′ ⊆ V(H).

To see that H is an S′-branch, consider a vertex s′ ∈ S′. By assumption,
S′ ⊆ S and hence s′ is also a vertex of S. Thus, s′ has a neighbor in every
S-branch H′, and thus in H. See Figure 4.4 for an illustration.

Now consider an S′-branch H′′ 6= H. If every vertex of S \ S′ is adjacent
to some vertex of H′′, then H′′ is an S-branch, a contradiction. Thus, H′′ is
a connected component of G− S, which is not an S-branch.

S′-branch H
S

S ′

B(S)
C(S)

B(S′) \ {H} C(S′)

C(S)

FIGURE 4.4: An illustration for Lemma 4.4.4. S and S′ are bottlenecks, such
that S′ (S. All S-branches are subgraphs of an S′-branch H and every S′-
branch, different than H, is a connected component of G − S, which is not an

S-branch.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.4. The Analysis 91

Lemma 4.4.5. For any two bottlenecks S and S′, if S′ * S, then there exists
exactly one connected component H of G− S such that S′ ⊆ S ∪V(H).

Proof. Let S, S′ ∈ S such that S′ * S. Clearly S′ intersects some connected
component of G − S. Suppose that S′ has a non-empty intersection with
two connected components H and H′ of G− S. Thus, since every S′-branch
H′′ is connected and NG(V(H′′)) = S′, we observe that H′′ contains a ver-
tex of S (otherwise H, H′ would not be two distinct components). Since
S′-branches are vertex-disjoint, this implies that the number of such S′-
branches is at most |S|, which is in turn at most k by Corollary 4.4.1. How-
ever, this contradicts the assumption that S′ is a bottleneck.

The next remark is a straightforward consequence of Lemma 4.4.4 and
Lemma 4.4.5.

Remark 4.4.1. Let S and S′ be bottlenecks such that S′ * S and S * S′. Let H be
the connected component of G− S, such that S′ ⊆ S∪V(H). There exists exactly
one connected component C of G − S′ such that

⋃
H′∈B(S)\H V(H′) ∪ S \ S′ ⊆

V(C). Moreover, all S′-branches but possibly C are subgraphs of H.

See Figure 4.5 for the illustration for Lemma 4.4.5 and Remark 4.4.1.

C

S

S ′

B(S)
C(S)

B(S′)

S ′ C(S′)
H

(A) S \ S′ 6= ∅ and S ∩ S′ 6= ∅.

C S

S ′

B(S)

C(S)

B(S′) C(S′)

H

(B) S ∩ S′ = ∅.

FIGURE 4.5: An illustration of two cases in Lemma 4.4.5 and Remark 4.4.1; S
and S′ are bottlenecks. All S-branches (apart from H, which is a connected
component of G− S, which may or may be not an S-branch) are subgraphs of

C and S′ ⊆ S ∪V(H).

We say two bottlenecks S and S′ are well-nested in P if

(i) I(S′,P) (I(S,P) or

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

92 Chapter 4. Finding Small-width Connected Path Decompositions

(ii) I(S,P) ⊆ I(S′,P) or

(iii) I(S,P) ∩ I(S′,P) = ∅.

Observe that the ordering of S, S′ in the definition above matters.

Lemma 4.4.6. For any I-connected path decomposition P and bottlenecks S, S′,
if P is S′-structured, then S and S′ are well-nested in P . Moreover, if S (S′,
then either I(S,P) ∩ I(S′,P) = ∅ or I(S′,P) ⊆ I(S,P).

Proof. Let P = (X1, . . . , Xl) be an I-connected path decomposition of G
and let S, S′ ∈ S . Suppose P is S′-structured. Let us assume that I(S′,P)∩
I(S,P) 6= ∅, we will show that either I(S′,P) (I(S,P) or I(S,P) ⊆
I(S′,P).

Case A: S′ (S. By Lemma 4.4.4, there exists an S′-branch H such
that for every S-branch H′ it holds that S \ S′ ∪ V(H′) ⊆ V(H), and
thus [α(H′), β(H′)] ⊆ [α(H), β(H)]. Recall that t1(S) = α(H′1) and
t2(S) = β(H′2) for some in-branches H′1, H′2 ∈ B(S), so I(S,P) =
[t1(S), t2(S)] ⊆ [α(H), β(H)]. Consider two subcases.

Subcase A1: α(H) ∈ I(S′,P). Since P is S′-structured, we observe
that H is an in-branch for S′, which implies that I(S,P) ⊆ [α(H), β(H)] ⊆
I(S′,P).

Subcase A2: α(H) /∈ I(S′,P). First, observe that if α(H) > t2(S′),
then t1(S) > t2(S′) and thus I(S,P) ∩ I(S′,P) = ∅, which contradicts
our assumption. Analogously, if β(H) < t1(S′), we again obtain that
I(S,P) ∩ I(S′,P) = ∅. Therefore assume that α(H) < t1(S′) ≤ β(H).
Observe that this implies that H is a pre-branch for S′ and, since P is S′-
structured, H waits in I(S′,P). In particular (S \ S′) ∩ Xt1(S′) = (S \ S′) ∩
Xt1(S′)+1 = . . . = (S \ S′) ∩ Xt2(S′). Since I(S′,P) ∩ I(S,P) 6= ∅, it is neces-
sary that t1(S) ≤ t1(S′) (otherwise t1(S) > t2(S′)). Thus, t1(S) ≤ t1(S′) ≤
t2(S′) ≤ t2(S) (recall H waits in I(S′,P)). Summing up, if S′ (S, then
either I(S′,P) (I(S,P) or I(S,P) ⊆ I(S′,P), which completes the proof
for this case.

Case B: S′ * S. By Lemma 4.4.5, there exists exactly one connected com-
ponent H of G− S such that S′ ⊆ S ∪V(H). Since S′ * S, we observe that
V(H) ∩ S′ 6= ∅.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.4. The Analysis 93

If H is an S-branch that is an in-branch in P , then

I(S′,P) ⊆ [α(H,P), β(H,P)] ⊆ I(S,P).

We observe that I(S′,P) ⊆ I(S,P) is equivalent to I(S′,P) (I(S,P) or
I(S′,P) = I(S,P), thus S and S′ are well-nested in P . So assume that H is
a connected component of G− S, that is not an in-branch for S (it may still
be a pre- or a post-branch). We consider now two subcases.

Subcase B1: S (S′. By Lemma 4.4.4, all S-branches possibly except
for H are not S′-branches and all S′-branches are subgraphs of H.

Because P is S′-structured, every S-branch but possibly H waits in
I(S′,P). In particular, every in-branch H′′ for S does wait in I(S′,P). Thus,
for every such an in-branch H′′ it holds that I(S′,P) ⊆ [α(H′′), β(H′′)] or
I(S′,P)∩ [α(H′′), β(H′′)] = ∅. Note that the second condition implies that
I(S′,P) ∩ I(S,P) = ∅, which contradicts our assumption. Therefore we
obtain that I(S′,P) ⊆ [α(H′′), β(H′′)] ⊆ I(S,P). Note that this shows the
second claim of the lemma.

Subcase B2: S \ S′ 6= ∅. Let C be the connected component of G− S′,
for which it holds

⋃
H′∈B(S)\H V(H′) ∪ S \ S′ ⊆ V(C), whose existence is

guaranteed by Remark 4.4.1.
If C is an in-branch for S′, we observe that I(S,P) ⊆ [α(C), β(C)] ⊆

I(S′,P), because P is S′-structured. On the other hand, if C is not an in-
branch for S′, then all in-branches of S wait in I(S′,P). This is because all
subgraphs but in-branches of S′ wait in I(S′,P), and every in-branch for S
is vertex-disjoint with every in-branch for S′, since they are all contained in
V(C) ∪ S′. Thus, since I(S,P) ∩ I(S′,P) 6= ∅, we conclude that I(S′,P) ⊆
I(S,P), which completes the proof.

In the next lemma, we show that we can apply a series of F-transfor-
mations, one for each bottleneck, so that the structure obtained in pre-
vious F-transformations is not ’destroyed’ during the subsequent F-
transformations.

Lemma 4.4.7. Let S, S′ be bottlenecks and let P be an S-structured I-connected
path decomposition. Let P ′ = F(S′,P).

A. If I(S′,P) ⊆ I(S,P), then P ′ is S-structured and I(S′,P ′) ⊆ I(S,P ′).

B. If t2(S,P) < t1(S′,P), then P ′ is S-structured and t2(S,P ′) <
t1(S′,P ′).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

94 Chapter 4. Finding Small-width Connected Path Decompositions

C. If t2(S′,P) < t1(S,P), then P ′ is S-structured and t2(S′,P ′) <
t1(S,P ′).

Proof. First, let us prove point A, i.e. we assume that I(S′,P) ⊆ I(S,P). If
S′ = S, then the results are obvious, so we consider two cases.

Case A: S′ (S. Observe that by Lemma 4.4.6 we obtain that I(S′,P) ∩
I(S,P) = ∅ or I(S,P) ⊆ I(S′,P), which leads to the equality I(S,P) =
I(S′,P). There exists an S′-branch H, such that

⋃
H′∈B(S) V(H′) ∪ S \ S′ ⊆

V(H) (Lemma 4.4.4). Because I(S,P) = I(S′,P), we conclude that H is
the only in-branch for S′. The path decomposition P is S-structured, so
every connected component of G− S′, different than H, waits in I(S′,P) =
I(S,P). Thus, the transformation F(S′,P) does not make any changes to
bags Xt1(S,P), Xt1(S,P)+1, . . . , Xt2(S,P), i.e., I(S,P ′) = I(S′,P ′).

Case B: S′ * S. By Lemma 4.4.5, there exists exactly one connected com-
ponent H of G − S such that S′ ⊆ S ∪ V(H). The assumption I(S′,P) ⊆
I(S,P) implies that some vertex of H appears for the first time in P in the
interval I(S,P), i.e, H does not wait in I(S,P). Moreover, it implies that
t1(S,P) ≤ α(H)P ≤ β(H,P) ≤ t2(S,P) due to our general assumption
that each bag introduces at most one new vertex. This implies that H is
an in-branch for S. We are going to show now that every S′-branch H′,
which is an in-branch, is a subgraph of H. If S (S′, then we obtain it
immediately from Lemma 4.4.4, so let S \ S′ 6= ∅. Let C be a connected
component of G− S′, such that

⋃
H′∈B(S)\H V(H′) ∪ S \ S′ ⊆ V(C), whose

existence is guaranteed by Remark 4.4.1. Recall that C might or might not
be an S′-branch, but for sure it is not an in-branch for S′, because then
I(S,P) (I(S′,P), which is a contradiction. Thus, by Remark 4.4.1, every
in-branch for S′ is a subgraph of H.

Because every in-branch for S′ is a subgraph of H, we conclude that
I(S′,P) ⊆ [α(H,P), β(H,P)] and the only changes made by the trans-
formation F(S′,P) concern the vertices of H ∈ Bin(S). Every connected
component of G − S, apart from in-branches (for S′), waits in I(S′,P ′), so
F(S′,P) is S-structured and I(S′,P ′) ⊆ [α(H,P ′), β(H,P ′)] ⊆ I(S,P ′).

We notice that the prefix (X1, X2, . . . , Xt1(S′,P)−1) and suffix (Xt2(S′,P)+1,
Xt2(S′,P)+2, . . . , Xl) of P are just copied into P ′ without any changes. Thus,
cases B and C hold as well.

In the following lemma it is crucial that the path decompositionP is not
only S-structured but has been obtained by applying the transformation
described in (4.1)-(4.7) to P0. In particular, the bags added in (4.3) and (4.5)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.4. The Analysis 95

will play a crucial role in ensuring that the path decomposition returned
by F(S′,P) remains S-structured.

Lemma 4.4.8. Let S, S′ be bottlenecks and let P0 be any I-connected path decom-
position. Let P = F(S,P0) and P ′ = F(S′,P). If I(S,P) (I(S′,P), then P ′
is S-structured and I(S,P ′) ⊆ I(S′,P ′) or I(S,P ′) ∩ I(S′,P ′) = ∅.

Proof. Let P = (X1, . . . , Xl) be an I-connected path decomposition of G,
let S, S′ ∈ S and P ′ = F(S′,P). Moreover, assume that P = F(S,P0) for
some I-connected path decomposition P0. In particular, this implies that
P is S-structured. Finally, assume that I(S,P) (I(S′,P).

Case A: S′ (S. By Lemma 4.4.4 there exists an S′-branch H such that⋃
H′∈B(S) V(H′) ∪ S \ S′ ⊆ V(H). If H is an in-branch for S′ then I(S,P) ⊆

[α(H,P), β(H,P)] (I(S′,P). However, recall that F-transformation ap-
plied to S′ and P does not change the structure of the bags restricted to
H (or any other in-branch of S′). Therefore we conclude that I(S,P ′) ⊆
[α(H,P ′), β(H,P ′)] (I(S′,P ′) and P ′ is S-structured.

Now assume that H is a pre-branch or a post-branch for S′. From the
construction of P we have that cmin(S′,P) 6∈ I(S,P). Because every in-
branch H′ for S′ either waits in I(S,P) or [α(H′,P), β(H′,P)] ∩ I(S,P) =
∅, we obtain that I(S,P ′) ∩ I(S′,P ′) = ∅ and P ′ is S-structured.

Case B: S′ * S and S * S′. By Lemma 4.4.5 there exists exactly one con-
nected component H of G − S such that S′ ⊆ S ∪ V(H). Because V(H) ∩
S′ 6= ∅ we have that I(S′,P) ⊆ [α(H,P), β(H,P)]. We observe that H
cannot be an in-branch for S, otherwise I(S′,P) ⊆ [α(H,P), β(H,P)] ⊆
I(S,P), which contradicts the assumption that I(S,P) (I(S′,P). Thus,
H 6∈ Bin(S).

From the facts that P is S-structured and I(S′,P) ⊆ [α(H,P), β(H,P)],
we observe that H waits in I(S,P). By Remark 4.4.1 there exists a con-
nected component C of G− S′ such that

⋃
H′∈B(S)\H V(H′)∪ S \ S′ ⊆ V(C).

Because H is not an in-branch for S, all in-branches of S are subgraphs of
C. If C is an in-branch for S′ then I(S,P) ⊆ [α(C,P), β(C,P)] (I(S′,P).
Because F-transformation does not change bags inside one in-branch, we
have that I(S,P ′) ⊆ [α(C,P ′), β(C,P ′)] (I(S′,P ′) and P ′ is S-structured.
On the other hand, assume that C is not an in-branch for S′. From con-
struction of P we have that cmin(S′,P) 6∈ I(S,P) Because every in-branch
H′ for S′ either waits in I(S,P) or [α(H′,P), β(H′,P)] ∩ I(S,P) = ∅, we
obtain that I(S,P ′) ∩ I(S′,P ′) = ∅ and P ′ is S-structured.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

96 Chapter 4. Finding Small-width Connected Path Decompositions

Case C: S (S′. From Lemma 4.4.4 there exists an S-branch H such
that

⋃
H′∈B(S′) V(H′) ∪ S′ \ S ⊆ V(H), i.e., I(S′,P) ⊆ [α(H,P), β(H,P)].

We observe that H cannot be an in-branch for S, otherwise I(S′,P) ⊆
[α(H,P), β(H,P)] ⊆ I(S,P), which contradicts the assumption that
I(S,P) (I(S′,P).

Let then H be a pre-branch or a post-branch for S, which means that
H waits in I(S,P) (notice that it is impossible that [α(H,P), β(H,P)] ∩
I(S,P) = ∅, because then I(S′,P) ∩ I(S,P) = ∅). From construction
of P we have that cmin(S′,P) 6∈ I(S,P). Because every in-branch H′ for
S′ either waits in I(S,P) or [α(H′,P), β(H′,P)] ∩ I(S,P) = ∅, we obtain
that I(S,P ′) ∩ I(S′,P ′) = ∅ and P ′ is S-structured.

Now we are ready to prove Lemma 4.4.2.

Proof of Lemma 4.4.2. Let P be an I-connected path decomposition. Let
S = {S1, S2, . . . , Sn′} be the set of all bottlenecks. We define a path de-
composition P ′ := Pn′ in the following recursive way:

P0 = P ;
Pi = F(Si,Pi−1), for i ∈ {1, . . . , n′}.

We are going to prove now that Pq is Sj-structured and Si, Sj are well-
nested in Pq for every 1 ≤ j ≤ q ≤ n′ and 1 ≤ i ≤ n′.

Induction on q. If q = 1, then obviously j = 1. By Observation 4.4.1, Pq
is Sq-structured. Thus, by Lemma 4.4.6, Sq and Si are well-nested in Pq for
every 1 ≤ i ≤ n′. So assume that q > 1 and the claim holds for q− 1.

Let j ∈ {1, . . . , q − 1}. For every Sj we have, by the induction as-
sumption, that Sq, Sj are well-nested in Pq−1 and Pq−1 is Sj-structured. By
Lemma 4.4.8, if I(Sj,Pq−1) (I(Sq,Pq−1), then Pq = F(Sq,Pq−1) is Sj-
structured. By Lemma 4.4.7, if I(Sq,Pq−1) ⊆ I(Sj,Pq−1) or I(Sj,Pq−1) ∩
I(Sq,Pq−1) = ∅, then Pq = F(Sq,Pq−1) is Sj-structured.

Because Pq is Sj-structured, then from Lemma 4.4.6 for any i ∈
{1, . . . , n′} we have that Si, Sj are well-nested in Pq.

So P ′ is S-structured for every bottleneck S ∈ S . Note that Lemma 4.4.3
ensures that P ′ is an I-connected path decomposition of width at most
width(P), which finishes the proof.

Now we are ready to show the correctness of our algorithm. We will
prove it in two steps.

Lemma 4.4.9. If G has an I-connected path decomposition of width at most k− 1,
then Tab[s] = true for some state s such that cover(s) = V(G).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.4. The Analysis 97

Proof. Suppose that G has an I-connected path decomposition of width k−
1. By Lemma 4.4.2, there exists an I-connected path decomposition P =
(X1, . . . , Xl) that has width k− 1 and is S-structured for each bottleneck S.

By Lemma 4.4.6, the set S of all bottlenecks with relation S ≺ S′ if
and only if I(S,P) ⊆ I(S′,P) forms a partial order (assuming that any
ties, i.e. when I(S,P) = I(S′,P), are resolved arbitrarily). Let S1, . . . , St
be the maximal elements with respect to this partial order. Note that for
i 6= j, I(Si,P) ∩ I(Sj,P) = ∅ and for any bottleneck S′ /∈ {S1, . . . , St} we
have I(S′,P) ⊆ I(Si,P) for some i ∈ {1, . . . , t}. Assume without loss of
generality that the ‘maximal’ bottlenecks are ordered according to the left
endpoints of their intervals,

t1(S1) ≤ t1(S2) ≤ · · · ≤ t1(St).

We show how to arrive at the desired state s. To that end we argue, by
induction on j, that for each

j ∈ J := {1, . . . , l} \
t⋃

i=1

{t1(Si), . . . , t2(Si)− 1}

there exists a state sj such that cover(sj) = G[X1 ∪ · · · ∪ Xj], bag(sj) = Xj
and Tab[sj] = true.

Since the first bag of P consists of a vertex in I , this clearly holds for
j = 1 so take j > 1 and assume that the claim is true for each j′ ∈ J ∩
{1, . . . , j− 1}. We consider two cases.

Case A: j /∈ I(Si,P) for each i ∈ {1, . . . , t}. Hence we have j − 1 ∈ J.
This implies, according to Lemma 4.4.1, that for each bottleneck S, either
there are at most 2k S-branches H such that α(H) ≤ j, or there are at most
2k S-branches such that j ≤ β(H). Thus, there exists a state sj such that
cover(sj) = G[X1 ∪ · · · ∪Xj] and bag(sj) = Xj. The step extension rule and
Tab[sj−1] = true, which holds by the induction hypothesis, imply Tab[sj] =
true as required.

Case B: j ∈ I(Si,P) for some bottleneck Si. By the definition of the set
J, j = t2(Si). Hence, the preceding index of j in the set J is j′ = t1(Si)− 1.
Again, by the definition of I(Si,P), Lemma 4.4.1, and the maximality of
Si with respect to the partial order, we have that for each bottleneck set S
either at most 2k S-branches H satisfy α(H) ≤ j′, or at least |B(Si′)| − 2k
S-branches H are contained in [1, j′], i.e., satisfy β(H) ≤ j′, depending
whether t2(S) ≤ j′ or t1(S) > j′. Thus, there exists a state sj such that

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

98 Chapter 4. Finding Small-width Connected Path Decompositions

cover(sj) = G[X1 ∪ · · · ∪ Xj] and bag(sj) = Xj. Consider the jump exten-
sion rule constructed for S′ = Si. For the set BS′ in (J1) and (J2) take all
S′-branches that are not in-branches, i.e., those that are covered in [j′ + 1, j]
in P . Note that each S-branch of each bottleneck S 6= Si such that S ⊆ Xj′

waits in the interval I(Si,P) because P is Si-structured, which ensures
the condition (J3). Condition (J4) holds because the decomposition PH
in (J4) exists which is certified by the decomposition P , namely PH =
(Xα(H) ∩ V(H), . . . , Xβ(H) ∩ V(H)). Thus, Tab[j′] = true (which holds by
the induction hypothesis) ensures that Tab[j] = true.

Finally observe that l ∈ J, cover(sl) = G[X1 ∪ · · · ∪ Xl] = V(G) and
Tab[sl] = true. Thus, s = sl is the required state.

Lemma 4.4.10. For any state s, if Tab[s] = true, then Gs has an I-connected
path decomposition of width at most k− 1.

Proof. Proof by induction on the position of s in the ordering ≺. First, let
cover(s) = {v} for some v ∈ V(G) (notice that such states are smallest,
according to ≺). If v ∈ I , then Tab[s] was set true in the initialization step.
This is justified by considering connected path decomposition consisting
of a single bag {v}, which is a proper connected path decomposition of the
single-vertex graph ({v}, ∅). On the other hand, if v /∈ I , then Tab[s] is
never set true, as the extension rules apply only to states with |cover(s)| >
1.

Now suppose that |cover(s)| ≥ 2, and the Lemma holds for all states
w ≺ s. Since Tab[s] = true, its value must have been set by one of the
extension rules. Consider two cases.

Case 1: Tab[s] was set by step extension. Consider the state w. If
bag(s) 6⊆ bag(w), then since by (S4), bag(s) ∩ cover(w) ⊆ bag(w), we
have that bag(s) 6⊆ cover(w). Therefore, cover(s) = cover(w) ∪ bag(s)
implies that |cover(s)| > |cover(w)|, which means that w ≺ s. On the
other hand, if bag(s) ⊆ bag(w), we have cover(s) = cover(w) due to (S3).
However, since s and w, are distinguishable, we have bag(s) (bag(w), so
|bag(s)| < |bag(w)| and thus w ≺ s.

So, by the inductive assumption, Tab[w] was set properly and there
exists an I-connected path decomposition P = (X1, X2, . . . , Xl) of Gw that
has width at most k − 1, where Xl = bag(w). Let Xl+1 := bag(s) and let
P ′ := (X1, X2, . . . , Xl , Xl+1).

We claim that P ′ is a path decomposition of Gs. Indeed,
⋃l+1

i=1 Xi =⋃l
i=1 Xi ∪ Xl+1 = cover(w) ∪ bag(s) = cover(s). Now, consider an edge

vu of Gs. If both v, u belong to cover(w), they appear in some Xi for i ≤ l

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.4. The Analysis 99

(by the inductive assumption). If both v, u belong to bag(s), we are done
too. Finally, if v ∈ cover(w) and u ∈ bag(s) \ cover(w), we know from (S2)
that v ∈ border(w) ⊆ bag(s), so we are again in the previous case. Now
suppose for a contradiction that there are some 1 ≤ i < j ≤ l, such that Xi ∩
Xl+1 6⊆ Xj. This means that bag(s) = Xl+1 contains a vertex of cover(w) \
bag(w), which is a contradiction with (S4).

Moreover, since width(P) ≤ k − 1 and |bag(s)| ≤ k, we have
width(P ′) ≤ k− 1. Finally we prove that P ′ is I-connected. Consider any
connected component H of G[X1 ∪ · · · ∪ Xi] for some i ∈ {1, . . . , l + 1}. If
α(H,P ′) ≤ l, then Xα(H,P) ∩ V(H) = Xα(H,P ′) ∩ V(H) contains a vertex
from I because P is I-connected. Otherwise α(H,P ′) = l + 1. Then
clearly i = l + 1 and H is a connected component of G[Xl+1]. By (S1), H
contains a vertex from I . Thus, P ′ is I-connected. This justifies setting
Tab[s] = true.

Case 2: Tab[s] was set by jump extension. Let w = (X, {BS}S, { f BS}S),
s = (X, {BS}S, {gB

S}S) and let S′ ⊆ X be defined as in the definition of
the jump extension. To simplify the notation, set B′ := B(S′) \ BS′ =
{H1, H2, . . . , Hm}. Observe that since S′ is a bottleneck, we have |B(S′)| ≥
2k + 1, thus there is at least one H ∈ B′. Since V(H) 6⊆ cover(w) and
V(H) ⊆ cover(s) by (J1) and (J3), we have |cover(w)| < |cover(s)|
and thus w ≺ s. So, by the inductive assumption, Tab[w] was set
properly to be true and there exists an I-connected path decompo-
sition P = (X1, X2, . . . , Xl) of Gw with width at most k − 1, where
Xl = X = bag(w). By (J4), for every H ∈ B′ there is a path decomposition
PH = (XH

1 , XH
2 , . . . , XH

l(H)) of width at most k − |X| − 1, such that XH
1

contains a neighbor of S′ or a vertex in I , i.e., PH is (NG(S′) ∩V(H)) ∪ I-
connected.

We claim that

P ′ = P ◦
(

m

∏
i=1

l(Hi)

∏
j=1

(Xl ∪ XHi
j)

)
◦ Xl ,

where both ◦ and ∏ denote concatenation of appropriate sequences, is an
I-connected path decomposition of Gs of width at most k− 1.

First, observe that cover(s) = cover(w) ∪ ⋃H∈B′ V(H) due to (J2)
and (J3). By the definition of P and decompositions PH for H ∈ B′, we
observe that P ′ covers exactly cover(s).

Now consider an edge vu of Gs. If both vertices v, u belong to cover(w),
or to V(H) for some H ∈ B′, then, by the definition of P and PH, both v
and u appear in some bag of the decompositionP ′. If v ∈ cover(w) and u ∈

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

100 Chapter 4. Finding Small-width Connected Path Decompositions

V(H) for some H ∈ B′, then we know that v ∈ border(w) and therefore
v ∈ Xl , so both vertices appear in every bag containing u. Finally, we
observe that there are no edges joining vertices from different S′-branches.

The third condition of the definition of path decomposition follows di-
rectly from the definition of P and PH and the fact that subgraphs H are
S′-branches.

Observe that |Xi| ≤ k for i ≤ l (by the definition ofP), and since |XH
j | ≤

k− |X| for every H and j, we have |X ∪ XH
j | ≤ k, so width(P ′) ≤ k− 1.

Denote P ′ = (X1, . . . , Xl , Xl+1, . . . , Xl′). Consider any connected com-
ponent H of G[X1 ∪ · · · ∪ Xi for some i ∈ {1, . . . , l′}. If i ≤ l, then H has
a vertex from Xα(H,P ′) ∩ I = Xα(H,P) ∩ I as required. So, let i > l. If H
is contained in some subgraph in B′, then by (J4), (NG(S′) ∩V(H)) ∪ I-
connected and hence H has a vertex from Xα(H,P ′) ∩ I . If H is not con-
tained in any subgraph from B′, then again by (J4), H has a vertex in Xl .
But then, by I-connectivity of P , H has a vertex in Xα(H,P ′) ∩ I . Thus, P ′
is I-connected.

This completes the proof.

Combining Lemmas 4.4.9 and 4.4.10, we obtain the following corollary.

Corollary 4.4.2. The algorithm is correct, i.e., the value of Tab[s] is true for some
state s with cover(s) = V(G) if and only if cpw(G) ≤ k− 1.

Now let us estimate the computational complexity of our algorithm.

Lemma 4.4.11. For every fixed k ≥ 1, a graph G with n vertices, and I ⊆ V,
there is an algorithm deciding in time f (k) · nO(k2) whether G has an I-connected
path decomposition of width at most k− 1, where f is a function depending on k
only.

Proof. We do induction on k. First, observe that for a connected graph G,
cpw(G) = 0 if and only if G is a single-vertex graph. Moreover, cpw(G) =
1 if and only if G is a caterpillar, and optimal connected path decomposi-
tions of caterpillars have very simple structure, so we can verify in polyno-
mial time whether there is an I-connected one.

So assume that k ≥ 2 and that the claim holds for k − 1. For given
G and I , we run the dynamic programming algorithm that we described
in Section 4.3. The correctness of the algorithm follows from Corollary
4.4.2. Now let us estimate its computational complexity. Recall that the
total number of states is O(n3k), so the total number of pairs of states is
O(n6k). For each pair of states we check if one of the two extension rules
can be applied.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.5. Open Problems 101

Observe that for each state s, we can compute cover(s), bag(s) and
border(s) in polynomial time. Thus checking if the step extension can be
applied can also be done in polynomial time.

Now consider the possible jump extension from a state w to a state
s. Verifying the first three conditions can be clearly done in polynomial
time. We check in (J4) if the appropriate path decomposition PH of each
S′-branch H exists by calling the algorithm recursively with the initial set
(NG(S′) ∩V(H)) ∪ I . By the inductive assumption, this can be done in
total time bounded by nO(1) · f ′(k− 1)nc·(k−1)2

, for some function f ′ and a
constant c′. This gives total time complexity

nO(1) · n6k · f ′(k− 1) · nc′(k−1)2
= f (k) · nO(k2)

for some function f .

Now, the main result of the paper follows easily from Lemma 4.4.11.

Theorem 4.4.1. For every fixed k ≥ 1, there is an algorithm deciding in time
f (k) · nO(k2) whether cpw(G) ≤ k− 1, for some function f depending on k only,
i.e., in time polynomial in n.

Proof. For every vertex s∗ ∈ V, we run the dynamic programming algo-
rithm for I = {s∗}, i.e., we exhaustively guess a vertex in the first bag
of some fixed solution. By Lemma 4.4.11, the total running time is as
claimed.

Let us point out that we did not try to optimize the dependence of the
degree of the polynomial function in Theorem 4.4.1 on k, as we were only
interested in finding a polynomial algorithm.

4.5 Open Problems

As pointed out, both pathwidth and connected pathwidth are asymptot-
ically the same for an arbitrary graph G, namely cpw(G)/pw(G) ≤ 2 +
o(1). However, there are several open questions regarding the complexity
of exact algorithms for connected pathwidth. One such immediate ques-
tion that is a natural next step in the context of our work is whether con-
nected pathwidth is FPT with respect to this parameter. We conjecture that
this is indeed the case.

Conjecture 4.5.1. Determining whether a given graph with n vertices has con-
nected pathwidth at most k can be done in time f (k) · nO(1), for some function f ,
i.e., the problem is FPT with respect to k.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

102 Chapter 4. Finding Small-width Connected Path Decompositions

Also, it is not known if connected pathwidth can be computed faster
than in time O∗(2n) for an arbitrary n-vertex graph (recall that this is pos-
sible for pathwidth).

Finally, let us point out that the notion of connected pathwidth ap-
peared in the context of pursuit-evasion games called node search, edge
search or mixed search. A challenging and long-standing open question
related to those games is whether their connected variants belong to NP.
See [9] for more details regarding this question.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

103

Part II

Exploration

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

105

Chapter 5

Minimizing the Cost of Team
Exploration

A group of mobile agents has to explore a graph in the cost-optimal way,
where the cost is understood as the total distance traversed by agents cou-
pled with the cost of invoking them. This model describes well the real life
problems, where every traveled unit costs (e.g., used fuel or energy) and
entities costs itself (e.g., equipping new machines or software license cost).

This chapter is constructed as follows: in the next section we introduce
the necessary notation and formally define the problem. The further two
sections present results for rings. In Section 5.2 the cost-optimal algorithm
for the off-line setting is presented, whereas in Section 5.3 a 2-competitive
algorithm in the on-line setting is described. It is also proved, that for a
positive invoking cost and any on-line algorithm there exist a ring, which
force the algorithm to produce at least 3/2 times higher cost than the op-
timal, off-line one. Section 5.4 contains the cost-optimal algorithm and its
analysis for trees in the off-line setting, while Section 5.5 provides the proof
that no algorithm can perform better on trees in the on-line setting than
DFS. In other words, the competitive ratio for every on-line algorithm is
no less than 2. We finish this chapter with the summary and a future out-
look, and suggest areas of further research. The extended abstract of the
results presented in this chapter has been published in [129].

5.1 The Model

Let G be a class of simple, undirected, edge-weighted, connected graphs.
For every G = (V(G), E(G), w) ∈ G we denote the sets of vertices and
edges of G as V = V(G) and E = E(G), respectively, n = |V| and a weight
function w : E → R+. The sum of all weights of a subgraph H of G is

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

106 Chapter 5. Minimizing the Cost of Team Exploration

denoted by w(H) = ∑e∈E(H) w(e). For every tree T and the pair of ver-
tices v, u ∈ V(T) we denote a path between them as PT(v, u) and omit
the bottom index, when a graph is clear from the context. For any tree T
and vertex v ∈ V(T) we define branch as a subtree rooted in a child c of v
enlarged by the vertex v and edge (v, c).

We assume, for simplicity, that in one step only one agent can perform a
move. In other words, a strategy S is a sequence of moves of the following
two types: (1) traversing an edge by an agent and (2) invoking a new agent
in the homebase. In this model we consider only vertex-exploration, which
we refer shortly as to exploration. The edge-exploration for rings is not an
interesting problem (one agent has to traverse simple each edge) and for
trees it is identical to the vertex-exploration. Agents are being invoked
in one homebase and after the exploration, they do not have to return to
their starting position. Let S be a strategy constructed for some graph G,
k ∈ N+ be the number of agents used by S (notice that k is not fixed) and
di ∈ R+ ∪ {0} the distance traversed by the i-th agent during the execution
of S , i ∈ {1, . . . , k}. Let q be the invoking cost. We define the cost of S
as c(S) = kq + ∑k

i=1 di. In other words, cost is understood as the sum
of invoking costs and the total distance traversed by entities. Intuitively,
before exploring any vertex, the algorithm, which computes the strategy
needs to decide what is more profitable: invoke a new agent (and pay for
it q) or use an agent already present in the graph. The number of agents,
that can be invoked, is unbounded. The goal is to find an algorithm, which
for any graph G computes the cost-optimal strategy.

In the on-line setting it is assumed that an agent, which occupies the
vertex v, knows the length of edges incident to v and the status of vertices
adjacent to v, i.e., if they have been already explored. We assume that
agents can freely communicate with each other regardless of their location.

Our algorithms are stated as centralized, but because they run in the
synchronous settings and in the global communication model, they can be
easily converted to the distributed ones. Indeed, as every agent knows its
id and positions of all other agents on a graph, it can compute its next move
using a presented algorithm.

5.2 Rings in the Off-line Setting

Let C ⊂ G be a class of undirected, edge-weighted rings. For every C =
(V, E, w) ∈ C of order n, we denote the vertices as V = {vi, i ∈ {0, . . . , n−
1}} and edges as E = {ei = {vi, vi+1}, i ∈ {0, . . . , n − 2}} ∪ en−1 =

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.2. Rings in the Off-line Setting 107

{vn−1, v0}. Without loss of generality, let a homebase of C be in v0. We
define the problem in the off-line setting as follows:

Off-line Ring Problem Statement

Find an algorithm that for any given ring C with a homebase h and
the invoking cost q computes a strategy of the minimum cost.

Note that, in the cost-optimal solution exactly one of the edges does
not have to be traversed. Indeed, because every vertex has to be explored,
in order to minimize the cost, agents can omit only one edge. Procedure
RingOffline finds in O(n) steps, which edge is optimal to omit. If this
edge is incident to the homebase, then only one agent is used, which sim-
ply traverses the whole ring without it (lines 8-9 and 18-19). Otherwise,
depending on the cost q, there might be one or two agents in use. Let e
be an omitted edge and let C′ = C\e, i.e., C′ is a tree rooted in v0 with
two leaves. We denote as vmin and vmax the closer and further, respectively,
leaf in C′. If the invoking cost q is lower than dC′(v0, vmin), then it is more
efficient to invoke two agents, which traverse two paths PC′(v0, vmin) and
PC′(v0, vmax) (lines 11-14). On the other hand, if q ≥ dC′(v0, vmin), then only
one agent is used, which traverses the path PC′(v0, vmin) twice (lines 15-17).

We give a formal statement of the procedure RingOffline and make an
observation about its cost-optimality.

Observation 5.2.1. For any invoking cost q and ring C, the strategy S , returned
by the procedure RingOffline is cost-optimal.

Proof. Let C be any ring, q any invoking cost and S the strategy returned
by the procedure RingOffline for C and q. Because every vertex has to be
explored, exactly one edge does not have to be traversed. Our procedure
computes for every edge e ∈ E(C), the optimal cost ce of exploring C′ =
C\e. If e is incident to the homebase, then C′ is a path with a homebase in
one of its ends. Thus, the cost-optimal strategy uses one agent and ce =
q + w(C′). If e is not incident to the homebase, then C′ is a path with a
homebase in one of its internal vertices. Thus, the cost-optimal strategy
uses one or two agents. In the first case, an agent has to traverse to the
closer end of C′ and then along the whole path. In the second case, each of
the agents traverses from the homebase to one of the end vertices. Thus,
ce = min{q + d′ + w(C′), 2q + w(C′)}, where d′ is the distance between the
homebase and the closer end vertex in C′. At the end RingOffline chooses
an edge, which deleting leads to the lowest cost and sets the corresponding
strategy.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

108 Chapter 5. Minimizing the Cost of Team Exploration

Procedure RingOffline

Input: Ring C, homebase v0, invoking cost q
Result: Strategy S

1: Ci ← C\ei, i ∈ {0, . . . , n− 1}
2: vmin

i ← a vertex v ∈ {vi, vi+1} for which dCi(v0, v) is minimum,
i ∈ {1, . . . , n− 2}

3: vmax
i ← a vertex v ∈ {vi, vi+1} for which dCi(v0, v) is maximum,

i ∈ {1, . . . , n− 2}
4: ci ← q + w(Ci), i = 0, n− 1
5: ci ← min{2q + w(Ci), q + dCi(v0, vmin

i) + w(Ci)}, i ∈ {1, . . . , n− 2}
6: Let imin be the index of the minimum element of {ci, i ∈ {0, . . . , n− 1}}
7: Add a move to S : invoke an agent a1 in v0
8: if imin == 0 then
9: Add a sequence of moves to S : traverse by a1 path

PCimin
(v0, v1)

10: else if imin > 0 and imin < n− 1 then
11: if 2q + w(Ci) < q + dCi(v0, vmin

imin
) + w(Ci) then

12: Add a sequence of moves to S : traverse by a1 path
PCimin

(v0, vmin
imin

)
13: Add a move to S : invoke an agent a2 in v0
14: Add a sequence of moves to S : traverse by a2 path

PCimin
(v0, vmax

imin
)

15: else
16: Add a sequence of moves to S : traverse by a1 path

PCimin
(v0, vmin

imin
)

17: Add a sequence of moves to S : traverse by a1 path
PCimin

(vmin
imin

, vmax
imin

)

18: else
19: Add a sequence of moves to S : traverse by a1 path PCimin

(v0, vn−1)

20: return S

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.3. Rings in the On-line Setting 109

5.3 Rings in the On-line Setting

In this subsection we present a 2-competitive algorithm RingOnline, which
for any unknown ring C produces in O(n) moves an exploration strategy.
We also prove the lower bound of 3/2 for the competitive ratio for any
q > 0. We define the problem in the on-line setting as follows:

On-line Ring Problem Statement

Find an algorithm that for any given invoking cost q computes a cost-
optimal strategy for every a priori unknown ring C.

We start by giving the informal description of the procedure RingOnline.
Let S be the strategy returned by the procedure RingOnline for a given
homebase v0, invoking cost q and some ring C. Firstly S invokes an agent
a1 in v0 and denotes as e1 and e−1 edges incident to v0, with the lower and
higher weight respectively (lines 4-5). Agent a1 traverses first e1 and then
continues the exploration process as long as it is profitable, i.e., the cost of
traversing the next edge is less or equal to the invoking cost plus w(e−1)
(lines 7-10). If at some point a new agent is invoked, then it traverses the
edge e−1 (lines 11-16). We notice here that the lines 11-16 are executed at
most once, as these are initial moves for the second agent. Later, the greedy
approach is performed: an edge with lesser weight is traversed either by
a1 (lines 7-10) or by a2 (lines 17-21). Below we give a formal statement of
the procedure RingOnline.

The next lemma says that for any invoking cost and any ring algorithm
RingOnline returns the solution at most twice worse than the optimum,
which is tight.

Lemma 5.3.1. The algorithm RingOnline is 2-competitive.

Proof. Let C ∈ C be any ring for which the cost-optimal, off-line strategy
S opt uses two agents or omits an edge incident to the homebase. We no-
tice that procedure RingOnline computes the cost-optimal strategy for C.
However, the situation is different otherwise.

Let now C ∈ C be any ring with the homebase in v0 for which the
cost-optimal strategy uses one agent and omits the edge not incident to
the homebase. Let q be any invoking cost and S be a strategy returned by
the procedure RingOnline. Denote as emax the edge of C of the maximum
weight and as e′ the edge incident to v0 of the bigger weight. Let e be an
omitted edge in the cost-optimal off-line strategy and vmin be the closer
leaf in the tree C\e rooted in v0. The cost-optimal strategy S opt uses one
agent, that traverses firstly to the vmin, then returns to the homebase and

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

110 Chapter 5. Minimizing the Cost of Team Exploration

Procedure RingOnline

Input: Homebase v0, invoking cost q
Result: Strategy S

1: ir ← 1
2: il ← −1
3: s← 1
4: Add a move to S : invoke an agent a1 in v0
5: Denote as e1 and e−1 edges adjacent to v0, with the lower and higher

weight respectively
6: while Graph is not explored do
7: while (w(eil) + q · s) ≥ w(eir) and graph is not explored do
8: Add a move to S : traverse eir by a1
9: Denote the unexplored edge incident to the vertex occupied

by a1 as eir+1
10: ir ← ir + 1
11: if s == 1 and (w(e−1) + q) < w(eir) then
12: Add a move to S : invoke an agent a2 in v0
13: Add a move to S : traverse e−1 by a2
14: Denote the unexplored edge incident to the vertex occupied

by a2 as e−2
15: il ← −2
16: s← 0
17: if s == 0 then
18: while w(eil) < w(eir) and graph is not explored do
19: Add move to S : traverse eil by a2
20: Denote the unexplored edge incident to the vertex occupied

by a2 as eil−1
21: il ← il − 1
22: return S

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.3. Rings in the On-line Setting 111

explores the rest of the ring apart from the edge e. Thus, its cost can be
lower bounded by:

c(S opt) = q + w(C\e) + dC\e(v0, vmin) > q + w(C\e).

If q + w(e′) < w(emax), then S uses two agents and omits emax, i.e.,

c(S) = 2q + w(C\emax).

On the other hand, if q + w(e′) ≥ w(emax), then S invokes one agent,
which traverses the whole ring apart from e′, i.e,

c(S) = q + w(C\e′) = q + w(C\emax) + w(emax)− w(e′) ≤
≤ 2q + w(C\emax).

This leads to the following upper bound for the competitive ratio

2q + w(C\emax)

q + w(C\e) ≤ 2q + w(C\e)
q + w(C\e) ≤ 2. (5.1)

The bound of 2 can be reached for the three vertices ring C′ ∈ C, where
w(e0) = w(e2) = 1 and w(e1) = q for q large enough. Indeed, we notice
that although both strategies, S and S opt, invoke only one agent, in the
cost-optimal solution it traverses the edge e0 twice instead of traversing
the edge e1, i.e., c(S opt) = q + 3 and c(S) = 2q + 1, which finishes the
proof.

The theorem below shows that for any positive invoking cost and any
on-line algorithm there exist a ring for which the strategy computed by this
algorithm achieves at least 3/2 times higher cost than the optimal one.

Theorem 5.3.1. For any invoking cost q > 0 and any on-line algorithm A, which
computes strategies for rings, the competitive ratio is at least 3/2.

Proof. Let ε be a small positive number, such that ε� q and q mod ε = 0.
Let C1, C2 ⊂ C be two classes of rings constructed as follows. For every
i ∈ {3, 4, . . .} we add to the class C1 a ring Ci

1 of order i with a homebase
in v0 and set the weights of all edges as ε. For every positive integer i and
j ∈ {i + 2, i + 3, . . .} we add to the class C2 a ring C(i,j)

2 of order j with
homebase in v0. We set the weights of all edges, apart from (vi, vi+1) with
the weight 2q, as ε. Let C ′ = C1 ∪ C2.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

112 Chapter 5. Minimizing the Cost of Team Exploration

We are going to show that for any on-line algorithm A, there exists a
ring C ∈ C ′, for which there exists a strategy S ′, such that c(S) ≥ 3

2 c(S ′),
where S is a strategy computed by A for C. Ring C is being build during
the execution of the algorithm by an adversary.

Let Gi, i ∈ N, be an explored part of the graph at the end of the i-th
move, starting from G0 = v0. Firstly, one agent a1 is invoked in v0 and
explores some part of a ring. Let j1 ∈ N be a move in which the second
agent a2 is invoked (we set j1 as infinity, if an algorithm decides to use only
one agent in a strategy). For every i < j1, if during the i-th move a1 explores
a new edge (v, v′) of the weight ε, a new vertex u and edge (v′, u) are added
by an adversary. The weight of (v′, u) is set as ε, if w(PGi(v0, v′)) < q, and
2q, if w(PGi(v0, v′)) = q. We consider two cases. In the first one, when the
new agent is invoked only edges of the length ε are visible. In the second
case, a1 reaches a vertex incident to the edge of the weight 2q before the
second agent is invoked or a1 explores the graph on its own.

Case A: in the move j1 only edges of the length ε are visible. We can treat Gj1
as a tree rooted in v0, where v0 has two branches. Denote the number of
vertices in them as 1 ≤ h1 < q and 0 ≤ h2 ≤ h1 (where by h2 = 0, we
understand that Gj1 is a path of the length ε · h1 starting in v0). We omit
the case when a2 is invoked in the second move (i.e., h1 = h2 = 0), as then
competitive ratio of at least 2 can be easily obtained (e.g., for a triangle with
edges of the weight ε). An adversary chooses a ring C = Ch1+h2+2

1 from the
class C1. See Figure 5.1a for the illustration.

We notice that |V(C)| = h1 + h2 + 2 and |V(Gj1)| = h1 + h2 + 1. In order
to explore Gj1 , a1 traversed at least twice the path PGj1

(v0, vh1+2) (possible
empty if h2 = 0) and once PGj1

(v0, vh1). Then, in the j1-th move the second
agent is invoked, which generates the extra cost q. In order to explore
the whole C, at least one extra move of cost ε has to be done (e.g., a1 can
traverse from vh1 to vh1+1). Thus, the total cost of exploring C by S can be
lower bounded by

c(S) ≥ 2q + ε(2h2 + h1 + 1).

Let S ′ be a strategy, which explores C by visiting all vertices exactly
once with one agent. This leads to the following upper bound of the cost-
optimal solution

c(S opt) ≤ c(S ′) = q + ε(h1 + h2 + 1).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.3. Rings in the On-line Setting 113

As εh1 < q and h2 ≥ 0, we obtain the following lower bound of the
competitive ratio

lim
ε→0

c(S)
c(S opt)

≥ lim
ε→0

2q + ε(h1 + 2h2 + 1)
q + ε(h1 + h2 + 1)

≥ lim
ε→0

2q + q + 2 · 0 + ε

q + q + 0 + ε
=

= lim
ε→0

3q + ε

2q + ε
=

3
2

. (5.2)

Case B: a1 reaches a vertex incident to the edge of the weight 2q before the sec-
ond agent is invoked or a1 explores the graph on its own. Let j2 be the move
in which a1 explores the vertex incident to the edge of the weight 2q. We
can treat Gj2 as a tree rooted in v0, where v0 has two branches. Denote
the number of vertices in them as h1 = q/ε and 0 ≤ h2 < h1. An adver-
sary chooses a ring C = C(h1+h2+2,h1)

2 from the class C2. See Figure 5.1b for
the illustration. Let S ′ be a strategy, which uses one agent, which firstly ex-
plores vertices v0, vh1+h2+1, vh1+h2 , . . . , vh1+1, then returns to v0 and explores
the rest of C omitting the edge of the weight 2q. This leads to the following
upper bound of the cost-optimal solution

c(S opt) ≤ c(S ′) = q + 2ε(h2 + 1) + εh1 = 2q + 2ε(h2 + 1).

In the j2-th move only one vertex of C is not explored by S : vh1+1, which
is incident to the edges of the weights ε and 2q, and agent a1 occupies the
vertex vh1 . The remaining vertex can be either explored by a1 or by a newly
invoked agent a2.

Subcase B1: a1 explores the vertex vh1+1. In the cheapest solution agent
a1 returns to v0 and traverses the path v0, vh1+h2+1, vh1+h2 , . . . , vh1+1 of the
length ε(h2 + 1). Thus, the total cost of exploring C by S can be lower
bounded by

c(S) ≥ q + ε(2h2 + 2h1 + h2 + 1) = 3q + ε(3h2 + 1),

which leads to the following competitive ratio

lim
ε→0

c(S)
c(S opt)

≥ lim
ε→0

3q + 3εh2 + ε

2q + 2εh2 + 2ε
=

3
2

. (5.3)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

114 Chapter 5. Minimizing the Cost of Team Exploration

Subcase B2: a newly invoked agent a2 explores the vertex vh1+1. The total cost
of exploring C by S can be lower bounded by

c(S) ≥ (q + 2εh2 + εh1) + (q + εh2 + 1) = 3q + 3εh2 + ε,

giving the same bound of 3
2 and finishing the proof.

v0

v1

v2

ε

vh1

vh1+1

vh1+2

vh1+h2

vh1+h2+1

0 < εh1 < q 0 ≤ h2 ≤ h1ε

ε ε

ε

ε

(A) Ring Ch1+h2+2
1 ∈ C1.

v0

v1

v2

vh1

ε2q

vh1+1

vh1+2

vh1+h2

vh1+h2+1

εh1 = q εh2 < q

ε ε

ε ε

(B) Ring C(h1+h2+2,h1)
2 ∈ C2.

FIGURE 5.1: Illustration of rings from the classes C1 and C2; black dotes and solid
lines denote already explored part of the graph, whereas circles and dashed lines

stand for the unvisited part of the rings.

At the end we observe, that for q = 0 and any ring the strategy returned
by the procedure RingOnline is cost-optimal.

5.4 Trees in the Off-line Setting

Let T = (V, E, w) ∈ G be a tree rooted in a homebase r and L(T) be the set
of all leaves in T. For every v ∈ V we denote by Tv a subtree of T rooted in
v, c(v) list of its children and p(v) its parent vertex.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.4. Trees in the Off-line Setting 115

Vertex v ∈ V is called a decision vertex if |c(v)| ≥ 2 and an internal vertex
if |c(v)| = 1 and v is different from the root. We say that an agent terminates
in v ∈ V, if v is its last visited vertex. We state the problem in the off-line
setting formally:

Off-line Tree Problem Statement

Find an algorithm that for any given tree T with a homebase at its
root and the invoking cost q computes a strategy of the minimum
cost.

5.4.1 The Algorithm

In order to simplify our algorithm, a compressing operation on a tree T is
proceeded. Let v ∈ V(T) be a decision vertex and u ∈ V(T) be a decision
vertex, a leaf or the root. The new tree T′ is obtained by substituting ev-
ery path PT(v, u), which apart from u and v consists only internal vertices,
with a single edge e = {v, u}. The weight of e is set as the weight of the
whole path, i.e., w(e) = w(PT(v, u)). See Figure 5.2 for an example of the
compressing operation.

r
1

1

1

1

1
1

1
2

2

2

2

2

2
3

3 3

3
3

3
4

(A) The original tree T.

6
r

3
1 3

24
5

5 4
2

5
1

(B) Tree T after the compressing op-
eration.

FIGURE 5.2: The compressing operation on an exemplary tree T. The new tree
T′ has no internal vertices.

Observation 5.4.1. In every cost-optimal strategy if an agent enters a subtree
Tv, it has to explore at least one leaf in it.

Proof. Let T be any tree, v ∈ V and a be an agent, which at some point
occupies v. If a returns to p(v) or terminates before exploring at least one
leaf in Tv, then its moves inside Tv can be omitted. Indeed, in this situation
a has reached vertices either (1) already explored, or (2) one lying on the
path between v and an unexplored leaf, which will be visited later anyway
(by a or any other agent).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

116 Chapter 5. Minimizing the Cost of Team Exploration

Observation 5.4.2. In every cost-optimal strategy once an agent leaves any sub-
tree, it never comes back to it.

Proof. Let T be any tree rooted in r and v ∈ V different than r. By contra-
diction, let S be the cost-optimal strategy for T, in which an agent a after
leaving Tv returns to it. Denote as la the leaf in which a terminates (not nec-
essarily la ∈ L(Tv)). We split the walk W(r, la) traversed by a into parts.
We define:

− W1(r, p(v)) as a walk that a traverses until it reaches v, excluding v;

− W2(v, v) as a walk that a traverses inside Tv before it leaves it;

− W3(p(v), v) as a walk that a traverses after leaving Tv and before
reaching v;

− W4(v, la) as a walk that a traverses after W3(p(v), v).

In other words

W(r, la) = W1(r, p(v)) ◦ (p(v), v) ◦W2(v, v)◦
◦ (v, p(v)) ◦W3(p(v), v) ◦W4(v, la).

The total weight is then the following sum:

w(W(r, la)) = w(W1(r, p(v))) + w((p(v), v)) + w(W2(v, v))+

+ w((v, p(v))) + W3(p(v), v) + w(W4(v, la)).

Let S′ be a strategy in which a traverses: (1) W1(r, p(v)), (2) W3(p(v), v),
(3) W2(v, v) and (4) W4(v, la). Then

w(W(r, la)) = w(W1(r, p(v))) + W3(p(v), v)+

+ w(W2(v, v)) + w(W4(v, la))

and S ′(T) < S(T), which is a contradiction that S is cost-optimal.

Remark 5.4.1. Let v be any internal vertex. It is never optimal for an agent,
which occupies v, to return to the previously occupied vertex in its next move.

Proof. Let T be any tree and v ∈ V be any internal vertex. Assume that at
some step of the optimal strategy, agent a occupies v. If the last traversed
edge of a is {p(v), v}, then it follows directly from Observation 5.4.1. On
the other hand, the remark is true otherwise from Observation 5.4.2.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.4. Trees in the Off-line Setting 117

In other words, it is always optimal for agents to continue movement
along the path once entered. Thus, if we find the optimal strategy for com-
pressed tree T′, then we can easily obtain the optimal strategy for T. The
only difference is that instead of walking along one edge {v, u} in T′, the
agent has to traverse the whole path PT(v, u) in T. From now on, till the
end of this subsection, whenever we talk about trees, we refer to its com-
pressed version.

For all vertices v ∈ V(T) we consider a labeling Λv, which is a triple
(k, ul , uc), where k stands for the minimum number of agents needed to
explore the whole subtree Tv by any cost-optimal strategy. The second one,
ul , is the furthest leaf from v in Tv (if there is more than one, then v is
chosen arbitrary) and uc is the child of v, such that ul ∈ Tuc . We will refer
to this values using the dot notation, e.g., the number of agents needed to
explore tree rooted in v is denoted by Λv.k. The set of labels for all vertices
is denoted by Λ = {Λv, v ∈ V(T)}.

Procedures

The algorithm is built on the principle of dynamic programming: first the
strategy is set for leaves, then gradually for all subtrees and finally for
the root. We present three procedures: firstly, labeling Λ is calculated by
SetLabeling, which is the main core of our algorithm. Once labels for all
the vertices are set, the procedure SetStrategy builds a strategy based on
them. The main procedure CostExpl describes the whole algorithm.

Procedure SetLabeling for every subtree Tv, calculates and returns la-
beling Λv. We give a formal statement of the procedure and its infor-
mal description followed by an example. Firstly, for every leaf v label
Λv = (1, v, null) is set, as one agent is sufficient to explore v. Then, by
recursion, labels for the ancestors are set until the root r is reached. Let
us describe now how the labeling for the vertex v is established based on
the labeling of its children (main loop, lines 9-16). Firstly, the number of
needed agents for v is increased by the number of needed agents for its
child u (line 10). Then, if the distance between v and the furthest leaf in Tu
(i.e., d(v, Λu.ul)) is less or equal to the distance from the root r to v plus the
invoking cost q, the number of required agents is reduced by 1 (lines 12-
13). Intuitively, it is more efficient to reuse this agent, than to invoke a new
one from r. As we show formally later at most one agent can be returned,
and it can happen only if Λu.k = 1. Meanwhile the child of v, which is an
ancestor of the furthest leaf in Tv is being set (lines 14-16). See the formal
statement of the procedure and an example on the Figure 5.3.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

118 Chapter 5. Minimizing the Cost of Team Exploration

Procedure SetLabeling

Input: Tree T, vertex v, invoking cost q, labeling Λ

Result: Updated Λ

1: if v ∈ L(T) then
2: Λv ← (1, v, null)
3: return Λ

4: for each u ∈ c(v) do
5: Invoke Procedure SetLabeling for T, u, q and Λ

6: k, dmax ← 0
7: umax

c ← null
8: dr ← d(r, v) + q
9: for each u ∈ c(v) do

10: k← k + Λu.k
11: d← d(v, Λu.ul)
12: if Λu.k == 1 and d ≤ dr then
13: k← k− 1
14: if d > dmax then
15: dmax ← d
16: umax

c ← u
17: k← max{1, k}
18: Λv ← (k, Λumax

c .ul , umax
c)

19: return Λ

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.4. Trees in the Off-line Setting 119

r
4

2 1

1

2
3

1

(1, u8, ·)

(1, u4, ·) (1, u5, ·)
(1, u6, ·)

u3

u9

u6

u1 u2

u4 u5

u8

3 1
u7

(1, u9, ·)

(1, u7, ·)

(A) Firstly, labels for leaves are set.

r
4

2 1

1

2
3

1

(1, u8, ·)

(1, u4, ·) (1, u5, ·)
(1, u6, ·)

u3

u9

u6

u1 u2

u4 u5

u8

3 1
u7

(1, u9, ·)

(1, u7, ·)

(1, u8, u8)

(2, u6, u6)

(B) Then, gradually labels are being
set for the ancestors, until the root is

reached.

r
4

2 1

1

2
3

1

(1, u8, ·)

(1, u4, ·) (1, u5, ·)
(1, u6, ·)

u3

u9

u6

u1 u2

u4 u5

u8

3 1
u7

(1, u9, ·)

(1, u7, ·)

(1, u8, u8)

(2, u6, u6)
(1, u8, u3)

(C)

r
4

2 1

1

2
3

1

(1, u8, ·)

(1, u4, ·) (1, u5, ·)
(1, u6, ·)

u3

u9

u6

u1 u2

u4 u5

u8

3 1
u7

(1, u9, ·)

(1, u7, ·)

(1, u8, u8)

(2, u6, u6)
(1, u8, u3)

(3, u8, u1)

(D) Three agents are required to ex-
plore this tree in the cost-optimal

way.

FIGURE 5.3: An example of the performing of the procedure SetLabeling,
where q = 0.

Procedure SetStrategy builds a strategy for a given subtree Tv based on
the labeling Λ. If v ∈ V(T)\L(T), then for each of its child u, firstly, the
required number of agents is sent to u (line 7) and then the strategy is set
for u (line 8). Lastly, for all children u of v (apart from the one, which has
to be visited as the last one) if it is efficient for the agent, which finished
exploration of Tu in Λu.ul , to come back to v, then the ‘return’ sequence
of moves is added (lines 9-10). It is crucial that for every v the subtree
TΛv.uc is explored as the last one, but the order of the remaining subtrees
is not important (line 5). To summarize, we give a formal statement of the
algorithm.

Procedure CostExpl consists of two procedures presented in the previ-
ous subsections. Firstly, SetLabeling is being invoked for the whole tree
T. And then the strategy S is being calculated from the labeling Λ by the
procedure SetStrategy. We observe that CostExpl finds a strategy in O(n)
time. To summarize, we give a formal statement of the algorithm.

5.4.2 Analysis of the Algorithm

In this subsection, we analyze the algorithm by providing the necessary
observations and lemmas and give the lower and upper bounds. Firstly,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

120 Chapter 5. Minimizing the Cost of Team Exploration

Procedure SetStrategy

Input: Tree T, vertex v, invoking cost q, labeling Λ, strategy S
Result: Strategy S

1: if v 6∈ L(T) then
2: if v == r then
3: Add a move to S : invoke Λr.k agents in r
4: dr ← d(r, v) + q
5: Let c1, . . . , cl be children of v, where cl = Λv.uc
6: for i ∈ {1, . . . , l} do
7: Add a sequence of moves to S : traverse {v, ci} by Λci .k agents
8: Invoke Procedure SetStrategy for T, ci, q, Λ and S
9: if d(v, Λci .ul) ≤ dr and ci 6= Λv.uc then

10: Add a sequence of moves to S : send an agent back from
Λci .ul to v

Procedure CostExpl

Input: Tree T, invoking cost q
Result: Strategy S

Invoke Procedure SetLabeling for T, r, q and ∅; set Λ as an output
Invoke Procedure SetStrategy for T, r, q, Λ and ∅; set S as an output
Return S

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.4. Trees in the Off-line Setting 121

let us make a simple observation about the behavior of agents in the cost-
optimal strategies.

Observation 5.4.3. In every cost-optimal strategy all agents terminate in leaves
and every leaf is visited exactly once.

Proof. Let T be any tree and S be the cost-optimal strategy for T in which an
agent a terminates in v ∈ V(T)\L(T). By Observation 5.4.1 agent a has ex-
plored at least one leaf. Let u ∈ L(T) be the last explored leaf by a. Notice,
that every vertex visited by a after it leaves u lies on a path between root
and some other leaf, which means that either it has been already explored
or will be later by some other agents. Thus, these moves are unnecessary
and S(T) is not minimal. The latter part of the observation is obvious.

In our strategies, subtrees Tv of the maximum height d(r, v) + q are al-
ways explored by one agent. The next observation says that in the cost-
optimal solution this agent finishes in the furthest leaf of Tv.

Observation 5.4.4. If S is a cost-optimal strategy that uses one agent, then, then
this agent terminates in one of the furthest leaves.

Proof. Let T be any tree rooted in r. Let S be the cost-optimal strategy for
T, in which an agent a terminates in leaf l (Observation 5.4.3). Thanks
to Observation 5.4.2 we notice that agent a simply performs DFS on T
truncated by moves from l to r. In other words, the total cost is equal
to 2w(T)− d(r, l), thus l should be the furthest leaf.

Let v ∈ V(T) different then root. Lemma 5.4.1 guarantees us that after
the exploration of Tv at most one agents returns to p(v). Lemma 5.4.2 and
Theorem 5.4.1 present our main results.

Lemma 5.4.1. In every cost-optimal strategy if an agent leaves any subtree, it has
explored it on its own.

Proof. Let T be any tree rooted in r and v ∈ V different then r. By contra-
diction, let S be the cost-optimal strategy for T, in which Tv is explored by
at least two agents and at least one of them leaves Tv at some step.

Let A be a group of agents, which terminates in leaves of Tv and B a
group of agents, which visits at least one vertex of Tv, but terminates in
leaves outside Tv. From the assumption we have that |A ∪ B| ≥ 2 and
B 6= ∅. For every a ∈ A ∪ B let ua be the last visited leaf from Tv (which
existence is guaranteed by Observation 5.4.1) and let a terminates in la.
Thanks to the Observation 5.4.2 we can split the walk Wa(r, la) traversed
by every agent a ∈ A ∪ B into parts. We define:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

122 Chapter 5. Minimizing the Cost of Team Exploration

− W1
a (r, p(v)), a ∈ A ∪ B as a walk that a traverses until it reaches v for

the first time, excluding v;

− W2
a (v, ua), a ∈ A ∪ B as a walk that a traverses inside Tv until it ex-

plores ua;

− W3
a (p(v), la), a ∈ B as a walk that a traverses after leaving Tv, exclud-

ing v.

We obtain that,

w(Wa(r, la)) = w(Wa(r, ua)) = w(W1
a (r, p(v)))

+ w((p(v), v)) + w(W2
a (v, ua)),

for every a ∈ A, and

w(Wa(r, la)) = w(W1
a (r, p(v)) + w((p(v), v)) + w(W2

a (v, ua))

+ d(ua, p(v)) + w(W3
a (p(v), la),

for every a ∈ B. We consider two cases.

Case A: A 6= ∅. We choose and arbitrary agent a′ ∈ A and modify its
walk, so after W1

a′(r, p(v)) it traverses all the walks W2
a (v, ua), a ∈ B re-

turning every time to v. All of the agents a ∈ B traverses first W1
a (r, p(v))

and then W3
a (p(v), la), i.e., there is no agent that leaves Tv. Obtained in that

way S ′ is a proper strategy, which explores the whole tree T. Let now L
and L′ be the total distances traversed by agents from A ∪ B in S and S ′,
respectively. We get the following:

L = ∑
a∈A

(
w(W1

a (r, p(v))) + w((p(v), v)) + w(W2
a (v, ua))

)
+

+ ∑
a∈B

(w(W1
a (r, p(v))) + w((p(v), v)) + w(W2

a (v, ua))+

+ d(ua, p(v)) + w(W3
a (p(v), la)), (5.4)

L′ = ∑
a∈A

(
w(W1

a (r, p(v))) + w((p(v), v)) + w(W2
a (v, ua))

)
+

+ ∑
a∈B

(
w(W1

a (r, p(v)) + w(W3
a (p(v), la))

)
+

+ ∑
a∈B

(
w(W2

a (v, ua)) + d(ua, v)
)
< L, (5.5)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.4. Trees in the Off-line Setting 123

which finishes the proof of first case.

Case B: A = ∅. We choose and arbitrary agent a′ ∈ B and modify its
walk, so after W1

a′(r, p(v)) it traverses all the walks W2
a (v, ua), a ∈ B re-

turning every time to v. All of the other agents a ∈ B traverses firstly
W1

a (r, p(v)) and then W3
a (p(v), la), i.e., only a′ leaves Tv. Obtained in that

way S ′ is a proper strategy, which explores the whole tree T. Similarly to
the previous case one can show that c(S ′) < c(S), i.e., we get the contra-
diction that S is cost-optimal.

Lemma 5.4.2. Let Λ be a labeling returned by the procedure SetLabeling for an
arbitrary tree T. Every cost-optimal strategy uses at least Λv.k agents to explore
Tv, v ∈ V(T). 1

Proof. Let T be any tree of the height H rooted in r. By the induction on
the height of a tree h. Firstly, let h = H, i.e., we consider labeling of the set
L(T), which is the base case in our procedure. Any cost-optimal strategy
uses one agent to explore a leaf, thus Λu.k = 1 is correct.

We assume now, that all the labeling is correct for vertices at levels
greater than h and consider vertices on the level h. Notice, that invok-
ing SetLabeling in recursive way guarantees, that before the label on any
vertex is computed, all of its children’s labels are set. Let v be any vertex of
T on level 0 ≤ h < H. The algorithm sets

Λv.k = max

{
∑

u∈c(v)

(
Λu.k− 1(d(v,Λu.ul)≤d(r,v)+q)

)
, 1

}
.

Because once an agent leaves any subtree, it never comes back to it (Obser-
vation 5.4.2), subtrees rooted in the children of v can be explored sequen-
tially. Every Tu, u ∈ c(v) needs Λu.k agents, which is minimal from the
induction assumption. We notice, that after exploring Tu at most one agent
might return to v and be used to explore Tv\Tu (Lemma 5.4.1). It can hap-
pen only if Λu.k = 1. Thus, this agent has to finish in the furthest leaf of Tu
(Observation 5.4.4). The strategy S reuses all agents (apart from the possi-
ble one from the last visited subtree Tu) which finishes the exploration of
Tu in the leaf, which is not ‘too far’, i.e., d(v, Λu.ul) ≤ d(r, v) + q. Indeed,
no other agent can be reused, because if d(v, Λu.ul) > d(r, v) + q, then it is
cheaper to call a new agent from the root. Thus, Λv.k is minimal.

1There exist cost-optimal strategies that can use more than Λv.k agents. Indeed, if
d(v, Λv.ul) = d(r, v) + q reusing the agent and calling a new one generates equal cost.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

124 Chapter 5. Minimizing the Cost of Team Exploration

Theorem 5.4.1. Procedure CostExpl for every tree T returns a strategy, which
explores T in the cost-optimal way.

Proof. Let T be any tree rooted in r, Λ be the labeling computed by
SetLabeling and S be a strategy for T returned by CostExpl. Con-
structing S for every Tv, v ∈ V(T) based on Λ is straightforward. Let
u ∈ c(v)\{Λv.uc}. Firstly, traverse Λu.k agents along {v, u}. Then, set the
strategy for Tu. After the exploration of Tu, if d(v, Λu.ul) ≤ d(r, v) + q,
return an agent from Λu.ul to v. Repeat for every u ∈ c(v)\{Λv.uc} in the
random order. For the last child u = Λv.uc after the exploration of Tu do
not return any agents.

By Lemma 5.4.2 we know that Λv.k is the minimum number of agents
that has to be send to v (or invoked, for v = r). The remaining thing to
prove is that the order of exploring subtrees does not matter as long as the
one with the furthest leaf is visited as the last one. Let

U1 = {u|u ∈ c(v), d(v, Λu.ul) ≤ d(r, v) + q},
U2 = c(v)\U1,
Ti = {Tu|u ∈ Ui}, i ∈ {1, 2},
uc = Λv.uc,
Tc = Tuc .

If U1 = ∅, then Λv.k = ∑u∈c(v) Λu.k and the order of exploration does
not matter. On the other hand, if U2 = ∅, then Λv.k = 1 and the agent has
to finish in the furthest leaf (Observation 5.4.4), i.e., Tc has to be explored
as the last one. Let then U1, U2 6= ∅, we notice that Tc ∈ T2. Our intuition
may say that is better to first explore trees from T1 and then from T2. But
as long as the last tree to visit is from T2, the order of the rest subtrees does
not influence Λv.k or the cost. Let us consider the strategy, which firstly
explores all trees from T1. The total number of required agents is

Λv.k = 1 +

(
∑

u∈U2\{uc}
Λu.k− 1

)
+ Λuc .k = ∑

u∈U2

Λu.k.

This amount does not change for any order of the exploration. Indeed,
after the exploration of a tree from T1 an agent is reused to explore the next
tree, decreasing the same Λv.k by one. See, for example, the strategy in
which first are explored trees from T2\{Tc}. The total number of agents
stays the same, i.e,

Λv.k = ∑
u∈U2

Λu.k + 1 + (Λuc .k− 1) = ∑
u∈U2

Λu.k.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.5. Trees in the On-line Setting 125

At the end we observe, that as trees are explored separately and Λv.k
is the same for any order of the exploration, the total cost is not influenced
either.

Lower and Upper Bounds For any tree T the value of the optimal cost c
is bounded by q + w(T) ≤ c ≤ q + 2w(T)− H. A trivial lower bound is
achieved on the path graph, where one agent traverses the total distance
of w(T). The upper bound can be obtained by performing DFS algorithm
by one entity, which set it on q + 2w(T). Let DFS′ be the modified version
of DFS, such that the agent does not return to the homebase (i.e., termi-
nates in one of the leaves). Then we get an improved upper bound of
q + 2w(T)− H, where H is the height of T, which is tight (e.g., for paths).
It is worth to mention that although DFS′ performs well on some graphs,
it can be twice worse than CostExpl. Let q ≥ 0 be any invoking cost and
K1,n be a star rooted in the internal vertex with edges of the weight l > q.
While DFS′ produces the cost of c′ = q + 2ln − l, the optimal solution is
c = qn + ln. The ratio c′/c grows to 2 with the growth of l and n.

5.5 Trees in the On-line Setting

In this subsection we take a closer look at the algorithms for trees in the
on-line setting. Because the height of tree T is not known, the upper bound
of the cost, set by DFS′, is q + 2w(T)− ε, where ε is some small positive
constant. This leads to the upper bound of 2 for the competitive ratio.
We are going to prove that it is impossible to construct an algorithm that
achieves better competitive ratio than 2. We state the problem in the on-line
setting formally:

On-line Tree Problem Statement

Find an algorithm that for any given invoking cost q computes a cost-
optimal strategy for every a priori unknown tree T.

Denote by T ⊂ G an infinite class of rooted in v0 trees, where every
edge has weight equal to 1. For every integer l ∈ N+, i ∈ {1, . . . , l} and
li ∈ {1, . . . , l}, we add to the class T a tree constructed in the following
way:

− construct l + 1 paths P(vi, vi+1), i ∈ {0, . . . , l} of the length l;

− for every i ∈ {1, . . . , l} construct a path P(u′i, ui) of the length li − 1
(if li = 1, then ui = u′i) and add edge {vi, u′i}.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

126 Chapter 5. Minimizing the Cost of Team Exploration

In other words, every graph in T has a set of decision vertices
{v1, . . . , vl} and set of leaves {vl+1, u1, . . . , ul}. Every decision vertex
has exactly two children, vi is an ancestor of vj and d(vi, vi+1) = l for every
0 ≤ i < j ≤ l + 1. See Figure 5.4.

v0

v1

v2

u1

l1 ≤ l

l

u2 vl

ul

l2 ≤ l

ll ≤ l

l

vl+1

l

FIGURE 5.4: Illustration of graphs from the class T , where l ∈ N+ and li ∈
{1, . . . , l}, i ∈ {1, . . . , l}.

Theorem 5.5.1. For any invoking cost q ≥ 0 and any on-line algorithm A, which
computes strategies for trees, the competitive ratio is at least 2.

Proof. DFS′ is an example of an algorithm at most twice worse than the
best solution, which sets the upper bound. We are going to show that for
any invoking cost q ≥ 0 and any on-line algorithm A, there exists a ring
T ∈ T , for which there exists a strategy S ′, such that c(S) ≥ 2c(S ′), where
S is a strategy computed by A for T. Tree T is being build during the
execution of the algorithm by an adversary. Let l ∈ N+ be any integer.
Values of li, i ∈ {1, . . . , l} are set during the computation of S . For every
vi, i ∈ {1, . . . , l} three cases can occur.

Case A: More than one agent reaches vi before any child of vi is explored. The
value of li is set as 1.

Case B: One of the agents explores one of the branches of vi at the depth 0 ≤ h < l
and the second branch at the depth l, before any other agent reaches vi for the first
time. In this situation an adversary chooses a set of graphs from T for
which the explored vertex at the depth l is vi+1 and li = h + 1. The value
of h might be 0, as it takes place e.g., for DFS.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.5. Trees in the On-line Setting 127

Case C: One of the agents explores two branches of vi at the depth 0 ≤ h1 <
l, 1 ≤ h2 < l, before any other agent reaches vi for the first time. Without loss
of generality, we assume that the branch explored to the level h2 is visited
as the last one. In this situation an adversary chooses a set of graphs from
T for which vertex vi+1 belongs to the branch of vi explored till the level
h2 and li = h1 + 1. Once again, h1 = 0 means that the branch was not
explored at all.

When vl+1 is explored, all li are defined and the set of graphs is nar-
rowed to the exactly one graph, which we denote as T. We claim first that
the distance d0 traversed along the path P(v1, vl+1) is at least 2l2 − l in any
S . Let agent a1 be the one, which explores vl+1 and let k ∈ {0, . . . , l} be the
number of decision vertices visited by more than one agent.

Case A’: k = 0, i.e., T is explored by one agent. In other words, for all vi
holds the Case B. We notice that, whenever a strategy S explores vi+1, i ∈
{1, . . . , l}, exactly one vertex (i.e., leaf ui) on the path P(vi, ui) is unex-
plored. Thus, P(v1, vl+1) has to be traversed at least twice and d0 ≥ 2l2.

Case B’: k = l. Path P(v1, vl) has to be obviously traversed at least twice
and P(vl , vl+1) once, i.e., d0 ≥ 2l(l − 1) + l = 2l2 − l.

Case C’: 0 < k < l. In other words, Tvk+1 is explored by one agent. Paths
P(v1, vk) and P(vk+1, vl+1) are traversed at least twice and P(vk, vk+1) at
least once. Thus, d0 ≥ 2l(k− 1) + 2l(l − k) + l = 2l2 − l.

Now, we have to analyze paths P(vi, ui), i ∈ {1, . . . , l}. We divide
decision vertices into the four groups based on the performance of S :

− V1 = {vi|li = 1, no agent terminates in ui, i ∈ {1, . . . , l}};

− V2 = {vi|li = 1, at least one agent terminates in ui, i ∈ {1, . . . , l}};

− V3 = {vi|li > 1, no agent terminates in any vertices of the path
P(vi, ui), i ∈ {1, . . . , l}};

− V4 = {vi|li > 1, at least one agent terminates in a vertex from the
path P(vi, ui), i ∈ {1, . . . , l}}.

Notice that V1, V2, V3 and V4 form a partition of decision vertices. Let
us denote as di the total distance traversed by all the agents along P(vi, ui)
in S . For any vi ∈ V1 we have di ≥ 2 and vi ∈ V2 we have di ≥ 1. From the
way how T is constructed follows, that if li > 1, then either holds Case B
and h > 0 or Case C and h1 > 0. In both situations path P(vi, p(ui)) is first

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

128 Chapter 5. Minimizing the Cost of Team Exploration

traversed at least twice, leaving ui unexplored. If now, no agent terminates
in any vertex of P(vi, ui), then P(vi, p(ui)) has to be traversed at least twice
more. Thus,

di ≥ 4(li − 1) + 2 ≥ 4li − 2, vi ∈ V3.

On the other hand, if at least one agent terminates in any vertex of
P(vi, ui), then P(vi, p(ui)) can be traversed only one extra time. Which
leads to,

di ≥ 3(li − 1) + 1 ≥ 3li − 2, vi ∈ V4.

Lastly, we have to consider the extra cost d′ generated by agents. Every
invoked agent, which terminates on some path P(vi, ui) has to traverse the
edge {v0, v1}, thus

d′ ≥ (q + l) (|V2|+ |V4|) ≥ |V2|+ l|V4|.

The total cost of exploring T by S can be lower bounded by

c(S) ≥ 2l2 − l + 2|V1|+ |V2|+ ∑
vi∈V3

(4li − 2) + ∑
vi∈V4

(3li − 2) + |V2|+

+ l|V4| ≥ 2l2 − l + 2|V1|+ 2|V2|+ 4 ∑
vi∈V3

li − 2|V3|+ 4 ∑
vi∈V4

li − 2|V4| =

= 2l2 − l + 4
l

∑
i=1

li − 2(|V1|+ |V2|+ |V3|+ |V4|) = 2l2 + 4
l

∑
i=1

li − 3l.

Consider now the following off-line strategy S ′, which explores the
same graph T by using one agent, which after reaching the decision ver-
tex vi, i ∈ {1, . . . , l}, firstly traverses the path P(vi, ui), then returns to vi
and explores further the tree. The agent finally terminates in vl+1. Thus,
the path P(v0, vl+1) of the length (l + 1)l is traversed only once and paths
P(vi, ui), i ∈ {1, . . . , l} twice. The optimal strategy can be then upper
bounded by

c(S opt) ≤ c(S ′) = q + l2 + 2
l

∑
i=1

li + l.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.6. Conclusions 129

This leads to the following competitive ratio

lim
l→∞

c(S)
c(S opt)

≥ lim
l→∞

2l2 + 4
l

∑
i=1

li − 3l

q + l2 + 2
l

∑
i=1

li + l
=

= 2− lim
l→∞

5l + 2q

q + l2 + 2
l

∑
i=1

li + l
= 2, (5.6)

which finishes the proof.

5.6 Conclusions

In this chapter we have proposed a new cost of the team exploration, which
is the sum of total traversed distances by agents and the invoking cost
which has to be paid for every agent. This model describes well the real
life problems, where every traveled unit costs (e.g., used fuel or energy)
and entities costs itself (e.g., equipping new machines or software license
cost). The algorithms, which construct the cost-optimal strategies for any
given edge-weighted ring or tree have been presented. As for the on-line
setting a 2-competitive algorithm for rings is given and lower bounds of
3/2 and 2 of the competitive ratio for rings and trees, respectively, are
proved. While there is very little done in this area, a lot of new ques-
tions have been pondered. Firstly, it would be interesting to consider edge-
and vertex-exploration for other classes of graphs. Intuitively, for some of
them, the problem would be easy and for some might be NP-hard (e.g.,
cliques). Another direction is to look more into the problem in the on-line
setting. It would be highly interesting to close the gap between lower and
upper bounds of the competitive ratio for rings. Another idea is to bound
communication for agents, which will make this model truly distributed.
Lastly, different variation of this model might be proposed, e.g., the invok-
ing cost might increase/decrease with the number of agents in use or time
might be taken under consideration as the third minimization parameter.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

131

Chapter 6

Clearing Directed Subgraphs
by Mobile Agents

Consider a network, after a hacker attack, where all terminals are not func-
tioning properly, leaving a number of facilities disconnected. For a team
of mobile agents (e.g., recovery software programs), distributed within the
network on bases, the main battle is usually first to re-establish connectiv-
ity between these facilities. This motivates us to introduce a number of
(theoretical) Link Up problems in digraphs.

This chapter is constructed as follows: in the next section we introduce
the necessary notation and formally define the problem. In the further Sec-
tion 6.2 it is proved that the Link Up (LU) problem (together with its differ-
ent variations) is fixed-parameter tractable. In particular, we prove that the
LU problem admits a fixed-parameter randomized algorithm with respect
to the total number l of facilities and bases, running in 2O(l) · poly(n) time,
where poly(n) is a polynomial in the order n of the input graph. The proof
relies on the algebraic framework introduced by Koutis in [103], i.e., first
so called the Tree Pattern Embedding Problem is solve, which is described
in Subsection 6.2.1. On the other hand, we show that the LU problem (as
well as some of its variants) is NP-complete, by a reduction from the Set
Cover problem [87] (Section 6.3). Our result on NP-completeness of the
LU problem implies NP-completeness of the Agent Clearing Tree problem
studied in [110], where the complexity status of the latter has been posed
as an open problem. Results presented in this chapter have been published
in [52].

6.1 The Model

Let D be a vertex-weighted digraph with an additional subset of ver-
tices, such that its underlying graph is connected. In other words,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

132 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

D = (V(D), A(D), F, B) is a quadruple, where V = V(D) is a set of
all vertices, A = A(D) set of arcs, F ⊆ V and B : V → N a vertex-weight
function. We define n = |V| and m = |A|.

Recall that the vertices of D correspond to terminals while its arcs cor-
respond to (one-way) transmission links, the set F corresponds to locations
of facilities, and the set B = B−1(N+) corresponds to vertices, called from
now on bases, where a (positive) number of agents is placed (so we shall
refer to the function B as an agent-quantity function). Let k = ∑v∈V B(v) be
the total number of agents placed in the digraph.

The Link Up Problem (LU)

Do there exist k directed walks in D, with exactly B(v) starting points
at each vertex v ∈ V, whose edges induce a subgraph H of D such
that all vertices in F belong to one connected component of the un-
derlying graph of H? Note that the k directed walks may overlap in
vertices and even edges.

The LU problem may be understood as a question, whether for a team
of size k, initially located at bases in B = B−1(N+), where the number of
agents located at v ∈ B is equal to B(v), it is possible to follow k walks in
D clearing their arcs so that the underlying graph of the union of cleared
walks includes a Steiner tree for all facilities in F.

Related work. The Link Up problem is related to the problems of clear-
ing connections by mobile agents placed at some vertices in a digraph,
introduced by Levcopoulos et al. in [110]. In particular, the LU problem is
a generalized variant of the Agent Clearing Tree (ACT) problem where one
wants to determine a placement of the minimum number of mobile agents
in a digraph D such that agents, allowed to move only along directed
walks, can simultaneously clear some subgraph of D whose underlying
graph includes a spanning tree of the underlying graph of D. In [110],
the authors provided a simple 2-approximation algorithm for solving
the Agent Clearing Tree problem, leaving its complexity status open.

All the aforementioned clearing problems are variants of the path cover
problem in digraphs, where the objective is to find a minimum number of
directed walks that cover all vertices (or edges) of a given digraph. With-
out any additional constraints, the problem was shown to be polynomially
tractable by Ntafos and Hakimi in [124]. Several other variants involve
additional constraints on walks as the part of the input, see [11, 86, 102,
105, 123, 124, 125] to mention just a few, some of them combined with re-
laxing the condition that all vertices of the digraph have to be covered by

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.2. The Link Up Problem is Fixed-Parameter Tractable 133

walks. In particular, we may be interested in covering only a given set of
walks that themselves should appear as subwalks of some covering walks
(polynomially tractable [124]). We may also be interested in covering only
a given set of vertex pairs, where both elements of a pair should appear in
the same order and in the same path in a solution (NP-complete even in
acyclic digraphs [125]). Finally, for a given family S of vertex subsets of
D, we may be interested in covering only a representative from each of the
subsets (NP-complete [125]).

A wider perspective locates our link up problems as variants of the
directed Steiner tree problem, where for a given edge-weighted directed
graph D = (V, A), a root r ∈ V and a set of facilities X ⊆ V, the objective is
to find a minimum cost arborescence rooted at r and spanning all facilities
in X (equivalently, there exists a directed path from r to each facility in X)
[33, 153]. For some recent works and results related to this problem, see
e.g. [1, 84, 96]. We also point out to a generalization of the Steiner tree
problem in which pairs of facilities are given as an input and the goal is to
find a minimum cost subgraph which provides a connection for each pair
[33, 65]. For some other generalizations, see e.g. [34, 107, 145, 148, 149].
Finally, we also remark a different cleaning problem introduced in [119]
and related to the variants we study: cleaning a graph with brushes — for
some recent works, see e.g. [28, 32, 88, 120].

Remark. Note that a weaker version of the LU problem with the con-
nectivity requirement removed, that is, when we require each facility only
to be connected to some agents base, admits a polynomial-time solution
by a straightforward reduction to the minimum path cover problem in di-
graphs [124].

Observe that in a border case, all non-zero length walks of agents start
at the same vertex of the input digraph D = (V, A, F, B). Therefore, we
may assume that the number of agents at any vertex is at most n− 1, that
is, B(v) ≤ n− 1 for any v ∈ V, and so the description of any input requires
O(n log n + m) space (recall m ≥ n− 1).

6.2 The Link Up Problem is Fixed-Parameter Tractable

In this section, we prove that the Link Up problem is fixed-parameter trac-
table with respect to the number of facilities and bases. The proof relies
on the key fact (see Lemmas 6.2.1 and 6.2.2 below) that a restricted variant
of the LU problem with the input D can be reduced to the detection of a

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

134 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

particular directed subtree of ‘small’ order in the transitive closure TC(D)
of D.

We solve the latter tree detection problem by a reduction to the problem
of testing whether some properly defined multivariate polynomial has a
monomial with specific properties, essentially modifying the construction
in [104] designed for undirected trees/graphs.

Let us consider the variant of the LU problem, which we shall refer
to as the All-LU problem, where we restrict the input only to digraphs
D = (V, A, F, B) that satisfy B = B−1(N+) ⊆ F. (In other words, bases
can be located only at some facilities.) Observe that D admits a positive
answer to the LU problem if and only if there exists a subset B′ of B \ F
such that the digraph D′ = (V, A, F′, B′), where v ∈ F′ for v ∈ F ∪ B′ and
v /∈ F′ otherwise, and B′(v) = B(v) for v ∈ B′ ∪ (F ∩ B) and B′(v) = 0
otherwise, admits a positive answer to the All-LU problem. Therefore, we
can immediately conclude with the following lemma.

Lemma 6.2.1. Suppose that the All-LU problem can be solved in 2O(l) · poly(n)
time, where l is the number of facilities in the input (restricted) digraph of order
n. Then, the LU problem can be solved in 2O(l′) · poly(n) time, where l′ is the
total number of facilities and bases in the input digraph of order n.

Taking into account the above lemma, we now focus on constructing
an efficient fixed-parameter algorithm for the All-LU problem, with the
restricted input digraph D = (V, A, F, B) satisfying B = B−1(N+) ⊆ F. Let
W be a set of walks (if any) that constitute a positive answer to the All-LU
problem in D. We say thatW is tree-like if all walks inW are strongly arc-
distinct, that is, they are arc-distinct and if there is a walk inW traversing
the arc (u, v) ∈ A, then there is no walk in W traversing its complement
(v, u) ∈ A, and the underlying graph of their union is acyclic and includes
a Steiner tree for F. Notice that if W is tree-like, then all walks in W are
just (simple) paths. See Figure 6.1 for an example.

Lemma 6.2.2. A (restricted) instance D = (V, A, F, B) admits a positive answer
to the All-LU problem if and only if the transitive closure TC(D) = (V, A′, F, B)
of D, with the same subset F and vertex-weight function B, admits a positive
answer to the All-LU problem with a tree-like set of walks whose underlying graph
is of order at most 2|F| − 1.

Since the transitive closure TC(D) = (V, A′, F, B) inherits the subset F and
the function B from the restricted instance D, we emphasize that TC(D) is
a proper (restricted) instance to the All-LU problem.

Proof. (⇐) It follows from the fact that a directed walk in the transitive
closure TC(D) corresponds to a directed walk in D.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.2. The Link Up Problem is Fixed-Parameter Tractable 135

2

(A)

1

(B)

2

(C)

FIGURE 6.1: Example of the definition of tree-like set of walks; black squares
denote bases and black dots denote facilities, which are not bases. There exists

a tree-like set of walks on 6.1c, but not on 6.1a and 6.1b.

(⇒) Assume that the agents initially located at vertices in B, with respect to
the agent-quantity function B, can simultaneously follow k directed walks
π1, . . . , πk whose edges induce a subgraph H of D such that the underlying
graph of H includes a Steiner tree of F. Consider now the same walks in the
transitive closure TC(D). To prove the existence of a tree-like solution of
‘small’ order, the idea is to transform these k walks (if ever needed) into an-
other strongly arc-distinct k walks. The latter walks have the same starting
points as the original ones (thus preserving the agent-quantity function B)
and the underlying graph of their union is a Steiner tree of F (in the under-
lying graph of TC(D)) having at most |F| − 1 non-terminal vertices.

Our transforming process is based on the following 2-step modi-
fication. First, assume without loss of generality that the walk π1 =
(v1, . . . , v|π1|+1) has an arc (vt, vt+1) corresponding to an edge in the un-
derlying graph H of

⋃k
i=1 πi that belongs to a cycle (in H), or both (vt, vt+1)

and its complement (vt+1, vt) are traversed by π1, or there is another
walk traversing (vt, vt+1) or (vt+1, vt), see Figure 6.2 for an illustration. If
t = |π1|, then we shorten π1 by deleting its last arc (vt, vt+1). Otherwise,
if t < |π1|, then we replace the arcs (vt, vt+1) and (vt+1, vt+2) in π1 with
the arc (vt, vt+2) that exists because of the transitive closure. One can
observe that the underlying graph of the new set of walks is connected,
includes a Steiner tree of F, and the vertex v1 remains the starting vertex
of (the new) π1. But, making a walk cycle-free or strongly arc-distinct
may introduce another cycle in the underlying graph, or another multiply
traversed arc, or another arc a such that both a and its complement are
traversed. However, the length of the modified walk always decreases
by one. Consequently, since the initial walks are of the finite lengths, we
conclude that applying the above procedure multiple times eventually
results in a tree-like set Π = {π1, . . . , πk} of walks, being (simple) paths.

Assume now that in this set Π of strongly arc disjoint paths, there is

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

136 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

FIGURE 6.2: Transforming walks into a tree-like set of walks. In the first step
(a-d), applied three times, we first delete the arc (a, b), then replace two arcs
(c, d) and (d, e) with the arc (c, e), and then two arcs (c, e) and (e, f) with the
arc (c, f). In the second step (d-e), we replace two arcs (c, d) and (d, i), two
arcs (c, e) and (e, a), and two arcs (c, f) and (f , g), with the arcs (c, i), (c, a),

and (c, g), respectively.

a non-terminal vertex v of degree at most two in the underlying graph H
of
⋃k

i=1 πi. Without loss of generality assume that v belongs to the path
π1. Similarly as above, if degH(v) = 1, then we shorten π1 by deleting its
last arc. Otherwise, if degH(v) = 2 and v is not the endpoint of π1, then
modify π1 be replacing v together with the two arcs of π1 incident to it by
the arc connecting the predecessor and successor of v in π1, respectively.
Observe that since v was a non-terminal vertex in the underlying graph,
the underlying graph of (the new)

⋃k
i=1 πi is another Steiner tree of F (and

does not include v). Moreover, the above modification keeps paths strongly
arc-distinct and does not change the starting vertex of π1. Therefore, by
subsequently replacing all such non-terminal vertices of degree at most
two, we obtain a tree-like set of k paths in the transitive closure TC(D)
such that the underlying graph of their union is a Steiner tree of F with no
degree two vertices except those either belonging to F or being end-vertices
of exactly two paths (in TC(D)). Therefore, we conclude that the number
of non-terminal vertices in this underlying graph is at most |F| − 1, which
completes our proof of the lemma.

Indeed, the bound is obvious if |F| ≤ 2. So assume now that |F| ≥ 3,
the statement is valid for any set F′ ⊂ V with 0 ≤ |F′| < |F|, and let Π
be a tree-like set of paths in the transitive closure TC(D) such that the un-
derlying graph H of their union is a Steiner tree T of F with no degree two

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.2. The Link Up Problem is Fixed-Parameter Tractable 137

vertices except those either belonging to F or being end-vertices of exactly
two paths. Let v be a non-terminal vertex in H (if no such v exists, then
there is nothing to prove), and let Π′ ⊆ Π be the set of paths ending at
vertex v. By deleting all path arcs with endpoint v for paths in Π′ and by
replacing two consecutive path arcs incident to v by the relevant arc con-
necting the predecessor and successor of v in π, respectively, for any path
π ∈ Π \Π′, we obtain the set Π′ of strongly arc-distinct paths and a non-
trivial partition F1 ∪ · · · ∪ Fr = F such that the underlying graph of their
union consists of r ≥ 2 Steiner trees T1, , . . . , Tr of F1, . . . , Fr, respectively,
all of them with no degree two vertices except those either belonging to F
or being end-vertices of exactly two paths. By induction assumption, each
tree Ti has at most |Fi| − 1 non-terminal vertices, i = 1, . . . , r, and so T has
at most 1 + ∑r

i=1(|Fi| − 1) ≤ |F| − 1 non-terminal vertices since r ≥ 2.

Taking into account the above lemma, a given (restricted) instance D =
(V, A, F, B) of the All-LU problem can be transformed (in polynomial time)
into the answer-equivalent (restricted) instance TC(D) = (V, A′, F, B) of
the tree-like-restricted variant of the All-LU problem in which only tree-like
paths that together visit at most 2|F| − 1 vertices are allowed. Observe that
TC(D) = (V, A′, F, B) admits a positive answer to the tree-like-restricted
All-LU problem if and only if TC(D) has a subtree T = (V(T), A(T)) of
order at most 2|F| − 1 and such that F ⊆ V(T) and all edges of T can
be traversed by at most k agents following arc-distinct paths starting at
vertices in B (obeying the agent-quantity function B). This motivates us to
consider the following problem.

Let D = (V, A, F, B) be a directed graph of order n and size m, with
the subset F of V and a vertex-weight function B : V → N such that
B−1(N+) ⊆ F, and let T = (V(T), A(T), L) be a directed vertex-weighted
tree of order η, with a vertex-weight function L : V(T)→N.

The Tree Pattern Embedding Problem (TPE)

Does D have a subgraph H = (V(H), A(H)) isomorphic to T such
that F ⊆ V(H) and L(v) ≤ B(h(v)) for any vertex v ∈ V(T), where h
is an isomorphism of T and H?

In Subsection 6.2.1, we prove Theorem 6.2.1 given below which states
that there is a randomized algorithm that solves the TPE problem in O∗(2η)
time, where the notation O∗ suppresses polynomial terms in the order n of
the input graph D. We point out that if the order η of T is less than |F| or at
least n + 1, then the problem becomes trivial, and so, in the following, we
assume |F| ≤ η ≤ n.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

138 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

Theorem 6.2.1. There is a randomized algorithm that solves the TPE problem
with high probability in O∗(2η) time.

Suppose that for each vertex v ∈ V(T), the value L(v) corresponds to
the number of agents located at v that are required to simultaneously tra-
verse (clear) all arcs of T, in an arc-distinct manner, and T admits a positive
answer to the TPE problem in the transitive closure TC(D) = (V, A′, F, B).
Then TC(D) admits a positive answer to the tree-like-restricted All-LU
problem, which immediately implies that D admits a positive answer to
the All-LU problem (by Lemma 6.2.2). Therefore, taking into account The-
orem 6.2.1, we are now ready to present the main theorem of this section.
For simplicity of presentation, we now assume that a (restricted) directed
graph D = (V, A, F, B) itself (not its transitive closure) is an instance of the
tree-like-restricted All-LU problem.

Theorem 6.2.2. There is a randomized algorithm that solves the tree-like-
restricted All-LU problem for D = (V, A, F, B) with high probability in
O∗(144|F|) time.

Proof. Keeping in mind Lemma 6.2.2, we enumerate all undirected trees
of order η, where |F| ≤ η ≤ 2|F| − 1 (and η ≤ n); there are O(9|F|) such
candidates [131]. For each such a η-vertex candidate tree, we enumerate
all orientations of its edges, in order to obtain a directed tree; there are 2η−1

such orientations. Therefore, we have O(36|F|) candidates for a directed
oriented tree T of order η, where |F| ≤ η ≤ 2|F| − 1.

For each candidate T = (V(T), A(T)), we determine in O(η) time how
many (at least) agents, together with their explicit locations at vertices in
V(T), are needed to traverse all arcs of T, in an arc-distinct manner. This
problem can be solved in linear time just by noting that the number of
agents needed at a vertex v is equal to max{0, degout(v)− degin(v)} (since
arcs must be traversed in an arc-distinct manner). The locations of agents
define a vertex-weight function L : V(T) → N. We then solve the TPE
problem with the instance D and T = (V(T), A(T), L) in O∗(2η) time by
Theorem 6.2.1.

As already observed, if T admits a positive answer to the TPE problem
for D, then D admits a positive answer to the tree-like-restricted All-LU
problem. Therefore, by deciding the TPE problem for each of O(36|F|) can-
didates, taking into account the independence of any two tests, we obtain
a randomized algorithm for the restricted LU problem with a running time
O∗(144|F|).

Taking into account Lemma 6.2.1, we immediately obtain the following
corollary.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.2. The Link Up Problem is Fixed-Parameter Tractable 139

Corollary 6.2.1. The LU problem admits a fixed-parameter randomized algorithm
with respect to the total number l of facilities and bases, running in 2O(l) ·poly(n)
time, where n is the order of the input graph.

Minimizing the number of used agents. The first natural variation on
the Link Up problem is its minimization variant, which we shall refer to
as the min-LU problem, where for a given input n-vertex digraph D =
(V, A, F, B), we wish to determine the minimum number of agents among
those available at bases in B = B−1(N+) that are enough to guarantee a
positive answer to the (original) Link Up problem in D. We claim that this
problem also admits a fixed-parameter algorithm with respect to the total
number l of facilities and bases, running in time 2O(l)poly(n), and the so-
lution is concealed in our algorithm for the LU problem. Namely, observe
that by enumerating all directed trees of order at most |F|, see the proof
of Theorem 6.2.2, together with the relevant function L, and checking their
embeddability in D, we accidentally solve this minimization problem: the
embeddable tree with the minimum sum ∑v∈V L(v) constitutes the answer
to min-LU problem.

Corollary 6.2.2. The min-LU problem admits a randomized fixed-parameter
algorithm with respect to the total number l of facilities and bases, running in
2O(l) · poly(n) time, where n is the order of the input graph.

Maximizing the number of re-connected facilities. In the case when for
the input digraph D = (V, A, F, B), not all facilities can be re-connected
into one component, that is, D admits a negative answer to the Link Up
problem, one can ask about the maximum number of facilities in F that can
be re-connected by agents located with respect to the agent-quantity func-
tion B [152]; we shall refer to this problem as the max-LU problem. Since
we can enumerate all subsets of F in O∗(2|F|) time, taking into account
Theorem 6.2.2, we obtain the following corollary.

Corollary 6.2.3. The max-LU problem admits a randomized fixed-parameter
algorithm with respect to the total number l of facilities and bases, running in
2O(l) · poly(n) time, where n is the order of the input graph.

No pre-specified positions of agents. Finally, another natural variant of
the Link Up problem is to allow any agents to start at any vertex. Formally,
we define the following problem.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

140 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

The Link Up Problem with Unspecified Bases (LUU)

Given a subset F of V and an integer k ≥ 1, do there exist k directed
walks in a digraph D = (V, A) whose edges induce a subgraph H
of D such that the set F is a subset of the vertex set of H and the
underlying graph of H is connected? Again, let us emphasize that
these k directed walks may overlap in vertices or edges.

We claim that for the LUU problem, there is also a randomized algo-
rithm with the running time 2O(k+l) · poly(n), where l = |F| is the number
of facilities, and n is the order of the input graph. The solution is analo-
gous to that for the LU problem. Namely, one can prove a counterpart of
Lemma 6.2.2 which allows us to restrict ourselves to the restricted variant
where only order O(k + l) tree-like solutions are allowed. Then, the re-
stricted variant is solved also using the algorithm for the TPE problem as
a subroutine: the function B is the constant function B(v) = n, and among
all directed tree candidates, we check only those with ∑v∈V(T) L(v) ≤ k.
We omit details.

Corollary 6.2.4. The LUU problem admits a randomized fixed-parameter algo-
rithm with respect to the number l of facilities and the number k of agents, running
in 2O(k+l) · poly(n) time, where n is the order of the input graph.

Observe that if the number k of available agents is not a part of the in-
put, that is, we ask about the minimum number of walks whose underlying
graph includes a Steiner tree for the set of facilities, then this problem does
not seem to be fixed-parameter tractable with respect to only the number
of facilities. This follows from the fact that the minimum number of agents
is unrelated to the number of facilities in the sense that even for two facil-
ities to be connected, a lot of agents may be required, see Figure 6.3 for an
illustration. However, a weakness of this example is its (weak) connectiv-
ity, and so, without any not strong evidence, we conjecture that if restricted
only to strongly connected digraphs, the aforementioned problem becomes
then fixed-parameter tractable with respect to only the number of facilities.

6.2.1 The Tree Pattern Embedding Problem

In this section, we solve the TPE problem by providing a randomized
polynomial-time algorithm when the parameter η is fixed. Our algorithm
is based on the recent algebraic technique using the concepts of monotone
arithmetic circuits and monomials, introduced by Koutis in [103], devel-
oped by Williams and Koutis in [104, 150], and adapted to some other
graph problems, e.g., [17, 18, 19, 78].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.2. The Link Up Problem is Fixed-Parameter Tractable 141

FIGURE 6.3: Two facilities f1 and f2 require n− 1 agents, where n is the order
of the digraph.

A (monotone) arithmetic circuit is a directed acyclic graph where each
leaf (i.e., vertex of in-degree 0) is labeled either with a variable or a real
non-negative constant (input gates), each non-leaf vertex is labeled either
with + (an addition gate with an unbounded fan-in) or with × (a multiplica-
tion gate with fan-in two), and where a single vertex is distinguished (the
output gate). Each vertex (gate) of the circuit represents (computes) a poly-
nomial — these are naturally defined by induction on the structure of the
circuit starting from its input gates — and we say that a polynomial is rep-
resented (computed) by an arithmetic circuit if it is represented (computed) by
the output gate of the circuit. Finally, a polynomial that is just a product
of variables is called a monomial, and a monomial in which each variable
occurs at most once is termed a multilinear monomial [103, 150].

We shall use a slight generalization of the main results of Koutis and
Williams in [103, 150], provided by them in Lemma 1 in [104], which, in
terms of our notation, can be expressed as follows.

Lemma 6.2.3. ([104]) Let P(x1, . . . , xn, z) be a polynomial represented by a
monotone arithmetic circuit of size s(n) and let t be a non-negative integer. There
is a randomized algorithm that for input P runs in O∗(2kt2s(n)) time and outputs
“YES” with high probability if there is a monomial of the form ztQ(x1, . . . , xn),
where Q(x1, . . . , xn) is a multilinear monomial of degree at most k, in the sum-
product expansion of P, and always outputs “NO” if there is no such monomial
ztQ(x1, . . . , xn) in the expansion.

Taking into account the above lemma, for the input digraph D =
(V(D), A(D), F, B) and directed tree T = (V(T), A(T), L), the idea is to
construct an appropriate polynomial Q(X, z) such that Q(X, z) contains
a monomial of the form z|S|b(X), where b(X) is a multilinear polynomial
with exactly |V(T)| variables in X and S = F ∪ B−1(N+), if and only if
the TPE problem has a solution for the input D and T (see Lemma 6.2.4
below). Intuitively, the fact that b(X) is a multilinear polynomial ensures

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

142 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

that no two vertices of T are mapped into the same vertex of D in the cor-
responding embedding. Moreover, the requirement that b(X) has exactly
|V(T)| variables ensures that no vertex of T is missing in the mapping and
no vertex is mapped twice. Finally, the variable z ‘counts’ the number of
properly mapped vertices according to the functions L in T and B in D.

Polynomial construction. Let D = (V(D), A(D), F, B) be a directed
graph, with a subset F of V(D) and a vertex-weight function B : V(D) →
N, and let T = (V(T), A(T), L) be a directed vertex-weighted tree of order
η, with a vertex-weight function L : V(T)→N. We consider T to be rooted
at a vertex r ∈ V(T), and we remind that for a non-root vertex v of T, p(v)
is a parent of v. Now, for v ∈ V(T), define two sets N+

T (v) and N−T (v):

N+
T (v) =

{
u ∈ V(T)

∣∣ (u, v) ∈ A(T) and u 6= p(v)
}

,

N−T (v) =
{

u ∈ V(T)
∣∣ (v, u) ∈ A(T) and u 6= p(v)

}
.

The idea is to treat T as a ‘pattern’ that we try to embed into the digraph
D, with respect to a subset F and functions B, L. Denote S = F ∪ B−1(N+)
for brevity. We say that T has an S-embedding into D if the following holds
(these are the formal conditions that need to be satisfied for the embedding
to be correct):

A. There exists an injective function (homomorphism) f : V(T)→ V(D)
such that if (u, v) ∈ A(T), then (f (u), f (v)) ∈ A(D).

B. S ⊆ f (V(T)), where f (V(T)) = { f (v)
∣∣ v ∈ V(T)}.

C. L(v) ≤ B(f (v)) for any v ∈ V(T).

First, for S ⊆ V(D), w ∈ V(D) and u ∈ V(T), we introduce a particular
indicator function, used for fulfilling Conditions B and C:

zS (u, w) =


z, if w ∈ S and L(u) ≤ B(w),
1, if w /∈ S and L(u) ≤ B(w),
0, otherwise, i.e., if L(u) > B(w).

Next, following [104], we define a polynomial Q(X, T) that we then use
to test existence of a desired S-embedding of T in D. Namely, we root T
at any vertex r ∈ V(T). Now, a polynomial Qu,w(X), for a subtree Tu of
T rooted at u ∈ V(T) and for a vertex w ∈ V(D), is defined inductively
(in a bottom up fashion on T) as follows. For each u ∈ V(T) and for each

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.2. The Link Up Problem is Fixed-Parameter Tractable 143

w ∈ V(D): if u is a leaf in T, then

Qu,w(X) = zS (u, w) · xw, (6.1)

and if u is not a leaf in T, then

Qu,w(X) =


zS (u, w) · xw ·Q+

u,w(X), if N−T (u) = ∅,
zS (u, w) · xw ·Q−u,w(X), if N+

T (u) = ∅,
zS (u, w) · xw ·Q+

u,w(X) ·Q−u,w(X), otherwise,

(6.2)

where

Q+
u,w(X) = ∏

v∈N+
T (u)

(
∑

(w′,w)∈A(D)

Qv,w′(X)

)
, (6.3)

Q−u,w(X) = ∏
v∈N−T (u)

(
∑

(w,w′)∈A(D)

Qv,w′(X)

)
. (6.4)

Finally, the polynomial Q(X, z) is as follows:

Q(X, z) = ∑
w∈V(D)

Qr,w(X). (6.5)

We have the following lemma.

Lemma 6.2.4. The polynomial Q(X, z) contains a monomial of the form
z|S|b(X), where b(X) is a multilinear polynomial with exactly η variables in
X, if and only if the η-vertex tree T has an S-embedding into D.

Proof. Consider a vertex u of T and assume that the subtree Tu is of order j.
By a straightforward induction in the size of a subtree we state the follow-
ing observation. A monomial, call it zqxw1 · · · xwj for this subtree Tu, where
wi ∈ V(D) for each i ∈ {1, . . . , j}, is present in Qu,w1(X) if and only if the
three following conditions hold.

A. There exists a homomorphism fu from the vertices of Tu to w1, . . . , wj
such that fu(u) = w1.

B. |S ∩ {w1, . . . , wj}| ≤ q and the equality holds if w1, . . . , wj are pair-
wise different.

C. L(v) ≤ B(fu(v)) for any vertex v of Tu.

The fact that fu is a homomorphism follows from the observation that, dur-
ing construction of Qu,w1(X) in (6.3) and (6.4), a neighbor v of u is mapped

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

144 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

to a node w′ of D in such a way that if (v, u) ∈ A(T) then (w′, w) ∈ A(D)
(see (6.3)), and if (u, v) ∈ A(T) then (w, w′) ∈ A(D) (see (6.4)). Condi-
tions B and C are ensured by appropriate usage of the indicator function
in (6.1), namely, if u is mapped to w in a homomorphism corresponding
to Qu,w(X), then we add the multiplicative factor of z to Qu,w(X) provided
that L(v) ≤ B(w).

Thus, we obtain that Q(X, z) has a multilinear polynomial z|S|xw1 · · · xwη

if and only if T has an S-embedding into D.

Observe that the polynomial Q(X, z) and the auxiliary polynomials
Q+

u,w(X), Q−u,w(X) can be represented by a monotone arithmetic circuit of
size polynomial in the order n of the input digraph D. To start with, we
need n + 1 input gates for the variables corresponding to vertices of D,
and the auxiliary variable z. With each of the aforementioned polynomi-
als, we associate a gate representing it, which gives in total O(ηn) such
gates. In order to implement the recurrences defining the polynomials, as-
suming unbounded fan-in of addition gates, we need O(n) auxiliary gates
for each recurrence involving large products. Thus, the resulting circuit
is of size O(n3). Hence, by Lemma 6.2.3 combined with Lemma 6.2.4, we
conclude that the existence of an S-embedding of the η-vertex tree T into
D can be decided in O∗(2η) time. Consequently, we obtain Theorem 6.2.1
by the definition of an S-embedding.

Remark. The above approach can be adapted to the case when we want
to embed a directed forest T = (V, A, F, B) of order η into a directed graph.
All we need is to build a relevant polynomial for each rooted directed tree-
component of T, and then to consider the product S(X, T) of these poly-
nomials, asking about the existence of a monomial of the form z|S|b(X),
where b(X) is a multilinear polynomial with exactly η variables in X. Also,
by a similar approach, we may consider and can solve (simpler) variants of
our embedding problem without the weight function subset F or without
the weight functions B and L; details are omitted.

We finish this section by giving two examples with full computations.

Example 1. Consider digraph D = (V(D), A(D), F, B) and tree T =
(V(T), A(T), L) like on the Figure 6.4.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.2. The Link Up Problem is Fixed-Parameter Tractable 145

w1 w2

w3

w4
w5

w6

(A) D = (V(D), A(D), F, B) is a
directed graph, with a subset F of
V(D) and a vertex-weight function

B : V(D)→N.

u1 = r u2

u3

u4

u5

(B) T = (V(T), A(T), L) is a rooted
in u1, directed vertex-weighted tree

of order 5.

FIGURE 6.4: Illustration for the first example, where F = {w4, w6},
B−1(N+) = {w1}, k = ∑v∈V(D) B(v) = B(w1) = 3 and L−1(0) = V(T).

From which we conclude the set S = {w1, w4, w6}.

Let T be rooted in u1. For every v ∈ V(T) sets N+
T (v) and N−T (v) are

equal to:

N+
T (u1) = ∅ N−T (u1) = {u3};

N+
T (u2) = ∅ N−T (u2) = {u3};

N+
T (u3) = {u2} N−T (u3) = {u4};

N+
T (u4) = ∅ N−T (u4) = {u5};

N+
T (u5) = ∅ N−T (u5) = ∅.

Firstly, we compute the value of appropriate polynomials for leaves.
For every leaf u ∈ {u2, u5} in T and for every w ∈ V(D) we have:

Qu,w(X) = zS (u, w)xw.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

146 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

Then we construct them for every other vertex from V(T). Because
N+

T (u1) = ∅ and N−T (u) = {u3}, for every w ∈ V(D) we have

Qu1,w(X) = zS (u1, w)xwQ−u1,w(X) =

= zS (u1, w)xw ∏
v∈N−T (u1)

(
∑

(w,w′)∈A(D)

Qv,w′(X)

)
=

= zS (u1, w)xw ∑
(w,w′)∈A(D)

Qu3,w′(X),

which leads to

Qu1,w1(X) = zS (u1, w1)xw1 Qu3,w3(X)

Qu1,w2(X) = zS (u1, w2)xw2 Qu3,w3(X)

Qu1,w3(X) = zS (u1, w3)xw3 (Qu3,w4(X) + Qu3,w5(X))

Qu1,w4(X) = zS (u1, w4)xw4 Qu3,w6(X)

Qu1,w5(X) = zS (u1, w5)xw5 Qu3,w6(X)

Qu1,w6(X) = 0.

Because N−T (u3) 6= ∅ and N+
T (u3) 6= ∅, for every w ∈ V(D) we have

Qu3,w(X) = zS (u3, w)xwQ+
u3,w(X)Q−u3,w(X),

where

Q+
u3,w(X) = ∏

v∈N+
T (u3)

(
∑

(w′,w)∈A(D)

Qv,w′(X)

)
= ∑

(w′,w)∈A(D)

Qu2,w′(X),

Q−u3,w(X) = ∏
v∈N−T (u3)

(
∑

(w′,w)∈A(D)

Qv,w′(X)

)
= ∑

(w′,w)∈A(D)

Qu4,w′(X).

That leads to the following polynomials:

Qu3,w1(X) = 0
Qu3,w2(X) = 0
Qu3,w3(X) = zS (u3, w3)xw3(Qu2,w1(X) + Qu2,w2(X))·

· (Qu4,w4(X) + Qu4,w5(X))

Qu3,w4(X) = zS (u3, w4)xw4 Qu2,w3(X)Qu4,w6(X)

Qu3,w5(X) = zS (u3, w5)xw5 Qu2,w3(X)Qu4,w6(X)

Qu3,w6(X) = 0.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.2. The Link Up Problem is Fixed-Parameter Tractable 147

The last vertex to analyze is u4, for which N+
T (u4) = ∅. For every

w ∈ V(D) we have

Qu4,w(X) = zS (u4, w)xwQ−u4,w(X) =

= zS (u4, w)xw ∏
v∈N−T (u4)

(
∑

(w,w′)∈A(D)

Qv,w′(X)

)
=

= zS (u4, w)xw ∑
(w,w′)∈A(D)

Qu5,w′(X),

which leads to

Qu4,w1(X) = zS (u4, w1)xw1 Qu5,w3(X) = zS (u4, w1)xw1 zS (u5, w3)xw3

Qu4,w2(X) = zS (u4, w2)xw2 Qu5,w3(X) = zS (u4, w2)xw2 zS (u5, w3)xw3

Qu4,w3(X) = zS (u4, w3)xw3 (Qu5,w4(X) + Qu5,w5(X)) =

= zS (u4, w3)xw3 (zS (u5, w4)xw4 + zS (u5, w5)xw5)

Qu4,w4(X) = zS (u4, w4)xw4 Qu5,w6(X) = zS (u4, w4)xw4 zS (u5, w6)xw6

Qu4,w5(X) = zS (u4, w5)xw5 Qu5,w6(X) = zS (u4, w5)xw5 zS (u5, w6)xw6

Qu4,w6(X) = 0.

Going now ’backwards’ we can compute the missing values for u3:

Qu3,w3(X) = zS (u3, w3)xw3 zS (u5, w6)xw6(zS (u2, w1)xw1 + zS (u2, w2)xw2)·
· (zS (u4, w4)xw4 + zS (u4, w5)xw5)

Qu3,w4(X) = zS (u3, w4)xw4 zS (u2, w3)xw3 · 0 = 0
Qu3,w5(X) = zS (u3, w5)xw5 zS (u2, w3)xw3 · 0 = 0.

And for u1:

Qu1,w1(X) = zS (u1, w1)xw1 zS (u3, w3)xw3 zS (u5, w6)xw6 ·
· (zS (u2, w1)xw1 + zS (u2, w2)xw2)(zS (u4, w4)xw4 + zS (u4, w5)xw5)

Qu1,w2(X) = zS (u1, w2)xw2 zS (u3, w3)xw3 zS (u5, w6)xw6 ·
· (zS (u2, w1)xw1 + zS (u2, w2)xw2)(zS (u4, w4)xw4 + zS (u4, w5)xw5)

Qu1,w3(X) = zS (u1, w3)xw3 · 0 = 0
Qu1,w4(X) = 0
Qu1,w5(X) = 0.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

148 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

Finally, for S = {w1, w4, w6}, we have

Q(X, T) = ∑
w∈V(D)

Qu1,w(X) = z2xw1 xw3 xw6(zxw1 + xw2)(zxw4 + xw5)+

+ zxw2 xw3 xw6(zxw1 + xw2)(zxw4 + xw5). (6.6)

We notice that there exist monomials with exactly 5 (the order of T)
variables from X and variable z in the power of |S| = k = 3, which means
that a tree T can be S-embedded into D. Moreover, the form of Q(X, T)
tells us a little bit more about this embedding. After multiplying variables
from Qu1,w1(X) and Qu1,w2(X), we obtain two identical monomials:

z3xw1 xw2 xw3 xw4 xw6 .

This means that there exists two solutions: (1) u1 mapped into w1 and
(2) u1 mapped into w2. Polynomial Q(X, T) contains no more monomi-
als of the form z3b(X), which means that these are the only existing solu-
tions. Indeed, although tree T could be also embedded into D using ver-
tices w1, w2, w3, w5, w6 it would not be appropriate solution, while it does
not include w4 from S .

Example 2. Consider digraph D = (V(D), A(D), F, B) and tree T =
(V(T), A(T), L) like on the Figure 6.5.

w1 w2

w3

w4
w5

w6

(A) D = (V(D), A(D), F, B) is a
directed graph, with a subset F of
V(D) and a vertex-weight function

B : V(D)→N

u1 = r u2

u3

u4
u5

u6

(B) T = (V(T), A(T), L) is a rooted
in u1, directed vertex-weighted tree

of order 6.

FIGURE 6.5: Illustration for the second example, where F = {w4, w6},
B−1(N+) = {w1}, k = ∑v∈V(D) B(v) = B(w1) = 3 and L−1(0) = V(T).

From which we conclude the set S = {w1, w4, w6}.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.2. The Link Up Problem is Fixed-Parameter Tractable 149

Let T be rooted in u1. For every v ∈ V(T) sets N+
T (v) and N−T (v) are

equal to:

N+
T (u1) = ∅ N−T (u1) = {u3};

N+
T (u2) = ∅ N−T (u2) = {u3};

N+
T (u3) = {u2, u4} N−T (u3) = {u5};

N+
T (u4) = ∅ N−T (u4) = {u3};

N+
T (u5) = ∅ N−T (u5) = {u6};

N+
T (u6) = ∅ N−T (u6) = ∅.

Firstly, we compute the value of appropriate polynomials for leaves.
For every leaf u ∈ {u2, u4, u6} in T and for every w ∈ V(D) we have:

Qu,w(X) = zS(u, w)xw.

Then we construct them for every other vertex from V(T). Because
N+

T (u1) = ∅ and N−T (u1) = {u3}, for every w ∈ V(D) we have

Qu1,w(X) = zS(u1, w)xwQ−u1,w(X) =

= zS(u1, w)xw ∏
v∈N−T (u1)

(
∑

(w,w′)∈A(D)

Qv,w′(X)

)
=

= zS(u1, w)xw ∑
(w,w′)∈A(D)

Qu3,w′(X),

which leads to

Qu1,w1(X) = zS(u1, w1)xw1 Qu3,w3(X)

Qu1,w2(X) = zS(u1, w2)xw2 Qu3,w3(X)

Qu1,w3(X) = zS(u1, w3)xw3 (Qu3,w4(X) + Qu3,w5(X))

Qu1,w4(X) = zS(u1, w4)xw4 Qu3,w6(X)

Qu1,w5(X) = zS(u1, w5)xw5 Qu3,w6(X)

Qu1,w6(X) = 0.

Because N−T (u3) 6= ∅ and N+
T (u3) 6= ∅ for every w ∈ V(D) we have

Qu3,w(X) = zS(u3, w)xwQ+
u3,w(X)Q−u3,w(X),

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

150 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

where

Q+
u3,w(X) = ∏

v∈N+
T (u3)

(
∑

(w′,w)∈A(D)

Qv,w′(X)

)
=

= ∑
(w′,w)∈A(D)

Qu2,w′(X) ∑
(w′,w)∈A(D)

Qu4,w′(X),

Q−u3,w(X) = ∏
v∈N−T (u3)

(
∑

(w′,w)∈A(D)

Qv,w′(X)

)
= ∑

(w′,w)∈A(D)

Qu5,w′(X).

That leads to:

Qu3,w1(X) = 0
Qu3,w2(X) = 0
Qu3,w3(X) = zS(u3, w3)xw3(Qu2,w1(X) + Qu2,w2(X))·

· (Qu4,w1(X) + Qu4,w2(X))(Qu5,w4(X) + Qu5,w5(X))

Qu3,w4(X) = zS(u3, w4)xw4 Qu2,w3(X)Qu4,w3(X)Qu5,w6(X)

Qu3,w5(X) = zS(u3, w5)xw5 Qu2,w3(X)Qu4,w3(X)Qu5,w6(X)

Qu3,w6(X) = 0.

The last vertex to analyze is u5, for which is N+
T (u5) = ∅. For every

w ∈ V(D) we have

Qu5,w(X) = zS(u5, w)xwQ−u5,w(X) =

= zS(u5, w)xw ∏
v∈N−T (u5)

(
∑

(w,w′)∈A(D)

Qv,w′(X)

)
=

= zS(u5, w)xw ∑
(w,w′)∈A(D)

Qu6,w′(X),

which leads to

Qu5,w1(X) = zS(u5, w1)xw1 Qu6,w3(X) = zS(u5, w1)xw1 zS(u6, w3)xw3

Qu5,w2(X) = zS(u5, w2)xw2 Qu6,w3(X) = zS(u5, w2)xw2 zS(u6, w3)xw3

Qu5,w3(X) = zS(u5, w3)xw3 (Qu6,w4(X) + Qu6,w5(X)) =

= zS(u5, w3)xw3 (zS(u6, w4)xw4 + zS(u6, w5)xw5)

Qu5,w4(X) = zS(u5, w4)xw4 Qu6,w6(X) = zS(u5, w4)xw4 zS(u6, w6)xw6

Qu5,w5(X) = zS(u5, w5)xw5 Qu6,w6(X) = zS(u5, w5)xw5 zS(u6, w6)xw6

Qu5,w6(X) = 0.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.3. The Link Up Problem is Hard 151

Going now ’backwards’ we compute the missing values for u3:

Qu3,w3(X) = zS(u3, w3)xw3 zS(u6, w6)xw6(zS(u2, w1)xw1 + zS(u2, w2)xw2)·
· (zS(u4, w1)xw1 + zS(u4, w2)xw2)(zS(u5, w4)xw4 + zS(u5, w5)xw5)

Qu3,w4(X) = zS(u3, w4)xw4 zS(z2, w3)xw3 zS(z4, w3)xw3 · 0 = 0
Qu3,w5(X) = zS(u3, w5)xw5 zS(z2, w3)xw3 zS(z4, w3)xw3 · 0 = 0.

And for u1:

Qu1,w1(X) = zS(u1, w1)xw1 zS(u3, w3)xw3 zS(u6, w6)xw6 ·
· (zS(u2, w1)xw1 + zS(u2, w2)xw2)(zS(u4, w1)xw1 + zS(u4, w2)xw2)·
· (zS(u5, w4)xw4 + zS(u5, w5)xw5)

Qu1,w2(X) = zS(u1, w2)xw2 zS(u3, w3)xw3 zS(u6, w6)xw6 ·
· (zS(u2, w1)xw1 + zS(u2, w2)xw2)(zS(u4, w1)xw1 + zS(u4, w2)xw2)·
· (zS(u5, w4)xw4 + zS(u5, w5)xw5)

Qu1,w3(X) = zS(w3)xw3 · 0 = 0
Qu1,w4(X) = 0
Qu1,w5(X) = 0.

Finally, for S = {w1, w4, w6} we have

Q(X, T) = ∑
w∈V(D)

Qu1,w(X) = z2xw1 xw3 xw6(zxw1 + xw2)
2(zxw4 + xw5)+

+ zxw2 xw3 xw6(zxw1 + xw2)
2(zxw4 + xw5). (6.7)

Observe that Q(X, T) does not contain monomials of the form z3b(X),
which means that the given tree T can not be S-embedded into D.

6.3 The Link Up Problem is Hard

In this section, we prove that the Link Up problem is NP-complete by de-
scribing a polynomial-time reduction from the Set Cover problem.

Let U = {u1, . . . , un} be a set of n items and let S = {S1, . . . , Sm} be a
family of m sets containing the items in U , i.e., each St ⊆ U , such that each
element in U belongs to at least one set from S . A k-element subset of S ,
whose union is equal to the whole universe U , is called a set cover of size k.

The Set Cover Problem (SC)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

152 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

Given U ,S and a positive integer k, does there exist a set cover of a
size k?

The Set Cover problem is well known to be NP-complete [87]. We are
going to prove that for a given U = {u1, . . . , un}, S = {S1, . . . , Sm} and
an integer k, there exists a set cover of size k if and only if there is a solu-
tion for the LU problem in the appropriately constructed acyclic digraph
DSC = (V, A, F, B). Basically, in this graph, for each element u ∈ U , there
is a gadget Cu being the union of the number of ‘vertical’ paths equal to
the number of sets that u appears in. Also, there is one ‘spanning’ gadget
including m ‘horizontal’ paths PHt, t ∈ {1, . . . , m}, each of which visits the
relevant gadget Cu if the element u belongs to the set St. In our construc-
tion, all vertices are facilities, and snow teams are located only at source
vertices, one team at each source vertex (see details below).

In the following, we assume U = {1, . . . , n} and that elements in St =
{x1, . . . , x`(t)} are sorted in the ascending order, where `(t) denotes the size
of St, t ∈ {1, . . . , m}. Also, we denote a solution to the set cover problem
with the input 〈U ,S , k〉 by X I which is encoded as a subset of {1, . . . , m},
where t ∈ X I if and only if St belongs to the k-element subset of S form-
ing the set cover. Finally, for simplicity of presentation, we denote a set
{1, . . . , l} of indices by [l].

Digraph construction. For i ∈ U , let Ii be the set of all indices of subsets
from S which contain i: Ii = {j

∣∣ i ∈ Sj}. First, for every i ∈ U , we intro-
duce the following four sets of vertices (see Figure 6.6 for an illustration):

− Ui = {ui} ∪
{

ui,j : j ∈ Ii
}

,

− U′i =
{

u′i,j : j ∈ Ii

}
,

− Vi =
{

vi,j : j ∈ Ii
}

,

− V ′i =
{

v′i,j : j ∈ Ii

}
.

Next, we introduce an additional set Z = {z, z1, . . . , zk} of vertices cor-
responding to the input integer k. Finally, for every i ∈ U and j ∈ Ii, we
create a directed path PVi,j = (ui,j, ui,, u′i,j, vi,j, v′i,j); we refer to these paths
as vertical. Observe that for i ∈ U , the union

⋃
j∈Ii

V(PVi,j) induces the di-
rected subgraph which we shall refer to as the i-th element component Ci.
This finishes the first step of our construction.

For the second step (see Figure 6.7 for an illustration), for t ∈ [m],
we consider the set St = {x1, . . . , x`(t)} — recall that the elements in St

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.3. The Link Up Problem is Hard 153

S1

S2

S3

S4

v1,1 v3,1 v4,1

v2,2 v3,2

v2,3 v4,3 v5,3

v3,4 v4,4 v5,4

v′3,4

u3

u3,1u3,2u3,4

v′3,2

v′3,1v′1,1

v′2,2

v′2,3

v′4,1

v′4,3

v′4,4

v′5,3

v′5,4

u1 u2 u4 u5

u1,1 u2,2 u2,3 u4,1u4,3u4,4 u5,3 u5,4

u′
1,1

u′
2,2

u′
2,3

u′
3,1

u′
3,2

u′
3,4

u′
4,1

u′
4,3

u′
4,4

u′
5,3

u′
5,4

C1 C2 C3 C4 C5

FIGURE 6.6: Step 1: construction of the element components. Here, U =
{1, 2, 3, 4, 5} and S = {S1, S2, S3, S4}, where S1 = {1, 3, 4}, S2 = {2, 3},
S3 = {2, 4, 5} and S4 = {3, 4, 5}. The corresponding sets of indices are:
I1 = {1}, I2 = {2, 3}, I3 = {1, 2, 4}, I4 = {1, 3, 4} and I5 = {3, 4}. For
k = 2, there exists a set cover X I = {1, 3} of size 2, consisting of the sets S1

and S3.

are sorted in the ascending order — and construct a directed path PHt =
(z, vx1,t, vx2,t, . . . , vx`(t),t); these paths are called horizontal. Next, we add k
additional arcs, namely, for each l ∈ [k], we add the arc (zl , z).

With our 2-step construction, we have built the directed graph DSC =
(V, A), where

V =
⋃

i∈[n]
V(Ci) ∪ Z

A =
{
(zi, z)

∣∣ i ∈ [k]
}
∪
⋃

i∈[n]
E(Ci) ∪

⋃
i∈[m]

E(PHi).

We finalize our construction by defining the subset F of V and the function
B : V →N. Specifically, we set F = V , and B(v) = 1 if and only if v ∈ V is
a source vertex in DSC:

B(v) =

{
1, if v ∈

{
ui,j
∣∣ i ∈ U , j ∈ Ii

}
∪ {z1, . . . , zk}

0, otherwise.

Therefore, F = V and B = B−1(N+) is the set of all source vertices in
DSC. In particular, there is exactly one agent at each source vertex of DSC,
and so k = ∑v∈V B(v) = |s(DSC)|, which equals to k + ∑m

i=1 |Si| by the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

154 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

S1

S2

S3

S4

v1,1 v3,1 v4,1

v2,2 v3,2

v2,3 v4,3 v5,3

v3,4 v4,4 v5,4

z
z1

z2

C1 C2 C3 C4 C5

FIGURE 6.7: (Cont. Figure 6.6) Step 2: four horizontal paths connecting all
components and two new source vertices z1, z2 are added (recall k = 2).

construction of DSC.
Clearly, our reduction takes polynomial time. The order of DSC is equal

to 4 · ∑m
i=1 |Si| + n + k + 1 = O(nm + k), its size also equals O(nm + k),

and the descriptions of the set F and the function B require O(nm + k)
space either. Finally, observe that DSC is acyclic and its underlying graph
is connected. The latter observation follows from the fact that S is a family
of sets whose union is U , and each element in U belongs to at least one set
from S .

6.3.1 Direct Implication

First, we are going to prove the direct implication.

Lemma 6.3.1. Let 〈U ,S , k〉 be an instance of the SC problem. If there exists a set
cover of size k for U and S , then there exists a solution to the LU problem for the
digraph DSC = (V, A, F, B).

Proof. (See Figure 6.8 for an illustration.) Let X I = {ξ(1), . . . , ξ(k)} be a
solution to the SC problem for 〈U ,S , k〉. We now construct a solutionW to
the LU problem to consist of the following paths:

PVi,j = (ui,j, ui,, u′i,j, vi,j, v′i,j), for i ∈ U , j ∈ Ii,

and

(zt, z) ◦ PHξ(t) = (zt, z, vx1,ξ(t), vx2,ξ(t), . . . , vx`(t),ξ(t)), for t ∈ [k],

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.3. The Link Up Problem is Hard 155

S1

S2

S3

S4

v1,1 v3,1 v4,1

v2,2 v3,2

v2,3 v4,3 v5,3

v3,4 v4,4 v5,4

z
z1

z2

C1 C2 C3 C4 C5

FIGURE 6.8: (Cont. Figure 6.7) The fact that the set cover contains all elements
in U guarantees that the corresponding subgraph H of D is connected. For
k = 2, there exists a set cover X I = {1, 3} of size 2, corresponding to sets S1

and S3, respectively.

where x1, . . . , x`(t) are the (ordered) elements of the set St ∈ S , with |St| =
`(t).

Clearly, by the construction, the set W consists of k = |s(DSC)| paths
that together cover all vertices of DSC and each of which starts at a distinct
vertex in B = B−1(N+). Thus, it remains to prove that these paths induce
a subgraph H of DSC whose underlying graph is connected. First, by the
definition of the paths PVi,j, observe that each element component induces
a subgraph whose underlying graph is connected. Hence, it is enough
to argue that for each element component Ci, where i ∈ U , there exists
a directed path in H that connects z with a vertex of Ci. Suppose for a
contradiction that this is not the case for the i-th element component Ci, for
some i ∈ U . That means that no vertex vi,j, for any j ∈ Ii, is lying on any
of the chosen horizontal paths in H. But that means, by the choice of the
horizontal paths and the fact that X I is a solution to the SC problem, that i
does not belong to

⋃
j∈X I Sj, a contradiction.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

156 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

6.3.2 Converse implication

In this subsection, to complete the NP-completeness proof of the LU prob-
lem, we are going to prove the converse implication, in a sequence of lem-
mas. Recall that in our digraph DSC = (V, A, F, B), we have

s(DSC) = {z1, . . . , zk} ∪
⋃
i∈U
{ui,j

∣∣ j ∈ Ii},

and we set B(v) = 1 for each v ∈ s(DSC) and B(v) = 0 otherwise, and so
k = |s(DSC)|. Thus, keeping in mind that DSC is acyclic, any solution W
to the LU problem for DSC consists of k paths that start at distinct source
vertices in s(DSC); in the following, π(v) ∈ W denotes the unique path of
W that starts at a source vertex v ∈ s(DSC).

Lemma 6.3.2. Suppose that the LU problem admits a positive answer for the
input graph DSC. Then, there exists a solution {π(v)

∣∣ v ∈ s(DSC)} to the LU
problem for DSC such that for each i ∈ U and j ∈ Ii, V(π(ui,j)) ⊆ V(Ci).

Proof. LetW be a solution to the LU problem for DSC and assume that in
W , for some i ∈ U and j ∈ Ii, we have π(ui,j) = (ui,j, ui, u′i,j′ , vi,j′ , vi′,j′) ◦ P
for some (possibly empty) path P, that is, the arc (vi,j′ , vi′,j′) ∈ A(π(ui,j))
and so π(ui,j) ‘leaves’ Ci at vi,j′ by visiting vertex vi′,j′ , for some i′ > i.
We will argue that we may obtain another solution to the LU problem in
which V(π(ui,j)) ⊆ V(Ci) as required by the lemma. The idea is to modify
two paths in W maintaining the following invariant: each path that is a
subgraph of an element component remains a subgraph of this element
component. Thus, since this modification can be repeated for any i ∈ U
and j ∈ Ii, this is sufficient to prove our claim.

Since F = V, we have v′i,j′ ∈ F and hence there exists another path
π(v) ∈ W for some v ∈ s(DSC) such that π(v) = P′ ◦ (vi,j′ , v′i,j′), for
some path P′ in DSC. We then modify the set W of paths by removing
the two paths π(ui,j) and π(v), and then adding the following two paths:
(ui,j, ui, u′i,j′ , vi,j′ , v′i,j′) and P′ ◦ (vi,j′ , vi′,j′) ◦ P.

Observe that any two paths that start at vertices in Ui \ {ui} have only
the vertex ui in common — this is due to the fact that the vertices in U′i
are only reachable with paths that start at vertices in Ui \ {ui} and |U′i | =
|Ui \ {ui}| = |B−1(1) ∩ V(Ci)|. Consequently, the vertex set V(π(v)) of
the original path π(v) is not a subset of a single element component, and
hence, after the modification, each path whose vertex set is a subset of an
element component keeps this property as required. Clearly, all vertices of
D are covered in the new solution and, since the two new paths also share

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.3. The Link Up Problem is Hard 157

the vertex vi,j′ , the modified set of paths also induces a connected spanning
subgraph of the underlying graph of D.

Lemma 6.3.3. Suppose that the LU problem admits a positive answer for the
input graph DSC. Then, there exists a solution {π(v)

∣∣ v ∈ s(DSC)} to the LU
problem for DSC such that:

a) for each i ∈ U and j ∈ Ii, we have π(ui,j) = PVi,j;

b) for each t ∈ [k], we have π(zt) = (zt, z) ◦ PHl for some l ∈ [m].

Before we proceed with the proof of Lemma 6.3.3, note that Property
(a) implies that the paths π(ui,j), where i ∈ U and j ∈ Ii, visit all and only
vertices of all components Ci, i ∈ U . Therefore, since these components
have no vertices in common, the underlying graph becomes connected
only thanks to the paths π(v), v ∈ Z \ {z}, which Property (b) refers to.

Proof. (a) Consider any solution, say W , to the LU problem for DSC and
assume that in W , for some i ∈ U and j ∈ Ii, we have π(ui,j) 6= PVi,j;
we shall refer to π(ui,j) as well as to any other path π(ui′,j′) such that
π(ui′,j′) 6= PVi′,j′ as inconsistent. By Lemma 6.3.2, π(ui,j) ⊆ V(Ci) and
hence there exists j′ ∈ Ii \ {j} such that π(ui,j) = (ui,j, ui, u′i,j′ , vi,j′ , v′i,j′).
Then, again by Lemma 6.3.2 and the fact that each vertex in U′i (in partic-
ular u′i,j) has to belong to some path π(v) ∈ W , v ∈ Ui \ {u}, there exists
in W another inconsistent path π(ui,j′′) = (ui,j′′ , ui, u′i,j, vi,j, v′i,j) for some
j′′ ∈ Ii \ {j}. Now, we modify the solution by substituting π(ui,j) := PVi,j
and π(ui,j′′) := (ui,j′′ , ui, u′i,j′ , vi,j′ , v′i,j′). Clearly, the two new paths still
share vertex ui and cover exactly the same vertices as the two original ones.
Therefore, the modified set of paths is also a solution to the LU problem,
moreover, with less number of inconsistent paths.

By repeating the above replacement argument a finite number of times,
if ever needed, we obtain the desired solution satisfying Property (a).

(b) Consider any solution, say W , to the LU problem for DSC satisfying
already proved Property (a). Consider any t ∈ [k]. If π(zt) ∈ W ends at a
vertex of some horizontal path PHl for some l ∈ [m] and π(zt) 6= (zt, z) ◦
PHl , then we just extend π(zt) to have π(zt) = (zt, z) ◦ PHl . Otherwise,
by the construction of DSC, we must have π(zt) = (zt, z) ◦ P ◦ (vi,l , v′i,l) for
some i ∈ U , where P is a subpath of PHl for some l ∈ [m]. By the choice of
W , the arc (vi,l , v′i,l) belongs to the (consistent) path π(ui,j) = PVi,j for some
j ∈ Ii, and hence the path π(zt) can be replaced by: π(zt) := (zt, z) ◦ PHl .
Since P is a subpath of the new path π(zt), we conclude that the new set

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

158 Chapter 6. Clearing Directed Subgraphs by Mobile Agents

of paths is also a solution to the LU problem for DSC, and moreover, it
maintains the property that π(ui,j) = PVi,j for each i ∈ U and j ∈ Ii.

Therefore, by repeating the above replacement argument a finite num-
ber of times, if ever needed, we obtain the desired solution satisfying both
Properties (a) and (b)

Now, we are going to prove our final lemma.

Lemma 6.3.4. If there is a solution to the LU problem for DSC = (V, A, F, B),
then there exists a set cover of size k for the set system (U ,S).

Proof. By Lemma 6.3.3, any solution to the LU problem can be modified
to be composed of the following paths: π(ui,j) = PVi,j for each i ∈ U and
j ∈ Ii, and π(zt) = (zt, z) ◦ PHξ(t) for each t ∈ [k], where ξ(t) ∈ [m].
Now, we claim that the set X I = {ξ(1), . . . , ξ(k)} is a set cover solution
for the instance 〈U ,S , k〉. Indeed, since our solution to the LU problem is
valid, for each i ∈ U there exists t ∈ [k] such that vi,j is a vertex of π(zt),
since otherwise, in the underlying simple graph induced by our solution,
no vertex in Ci is connected by a path to the vertex z. Thus, i ∈ Sξ(t) which
completes the proof.

Note that the LU problem is clearly in NP and, as already observed,
the construction of DSC is polynomial in the input size to the SC problem.
Hence, by combining Lemmas 6.3.1 and 6.3.4, we obtain the following re-
sult.

Theorem 6.3.1. The LU problem is strongly NP-complete even for directed
acyclic graphs D = (V, A, F, B) with F = V and B(v) = 1 if v is a source vertex
in D and B(v) = 0 otherwise.

No pre-specified positions of agents. We claim that the Link Up problem
with Unspecified bases is also NP-complete. The reduction is exactly the
same as for the LU problem. All we need is to observe that if facilities
are located at all vertices of the input digraph, then the number of agents
sufficient to solve the LUU problem is bounded from below by the number
of source vertices in the digraph, since there must be at least one agent
at each of its source vertices. Furthermore, without loss of generality we
may assume that in any feasible solution of k walks, all agents are initially
located at source vertices. Since in the digraph DSC constructed for the
proof of Theorem 6.3.1, we have B(v) = 1 if v is a source vertex in DSC and
B(v) = 0 otherwise, we may conclude with the following corollary.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6.4. Conclusions 159

Corollary 6.3.1. The LUU problem is strongly NP-complete even for directed
acyclic graphs D = (V, A, F) with F = V and k being equal to the number of
source vertices in D.

Since by setting F = V, the LUU problem becomes just the Agent Clear-
ing Tree problem (ACT) studied in [110], we immediately obtain the fol-
lowing corollary resolving the open problem of the complexity status of
ACT posed in [110].

Corollary 6.3.2. The ACT problem is NP-complete.

6.4 Conclusions

In this chapter we have proposed a new group of part-exploration prob-
lems on digraphs, called Link Up problems, and shown that they are fixed-
parameter tractable. In particular, we prove that the LU problem admits
a fixed-parameter randomized algorithm with respect to the total number
l of facilities and snow team bases, running in 2O(l) · poly(n) time, where
poly(n) is a polynomial in the order n of the input graph. The proof relies
on the algebraic framework introduced by Koutis in [103]. On the other
hand, we show that the LU problem (as well as some of its variants) is
NP-complete, by a reduction from the Set Cover problem [87]. Our result
on NP-completeness of the LU problem implies NP-completeness of the
Agent Clearing Tree problem studied in [110], where the complexity status
of the latter has been posed as an open problem.

In all of our variants of the Link Up problem, we assumed that a agents
can traverse arbitrary number of arcs. However, from a practical point of
view, it is more natural to assume that each agent, called an s-agent, can
traverse and clear only the fixed number s of arcs [123]. Observe that in
this case, the key Lemma 6.2.2 does not hold, which immediately makes
our algebraic approach unfeasible for the Link Up problem with s-agents,
so this variant requires further studies.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

161

Chapter 7

Conclusions

In this thesis we have discussed the distributed monotone contiguous de-
contamination problem, the on-line collaborative exploration and the par-
tial exploration of digraphs. The most important results derived in this
thesis are listed in Table 7.1. The open problems and the directions for fur-
ther research have been described at the end of every chapter. Apart from
the presented results, the author of this thesis currently is investigating the
relationship between the domination and searching problems. We present
below a short overview of the topic.

Searching and Domination. For any graph G = (V, E) a set of vertices
D ⊆ V is a dominating set if every v ∈ V \D is adjacent to at least one vertex
from D. The domination number γ(G) is the size of the smallest dominating
set for G. For a given graph G and integer number k the problem of decid-
ing whether γ(G) ≤ k is NP-complete [89]. In literature can be found many
different types of domination. The author of this thesis has recently pre-
sented results about the twin domination number of tournaments [130] and
the relationship between the connected and convex domination numbers [54].

The cops and robber game is a type of a searching game played by two
players, one controlling cops (agents) and the other the robber (fugitive).
Firstly, players place cops and the robber on the chosen vertices of a graph.
Then, cops and the robber alternate in turns, by moving to a distance at
most one each. The robber cannot move to a vertex occupied by a cop. The
goal of agents is to catch the robber, i.e., to occupy the same vertex at the
same time. On the other hand, we say that the robber wins if it can avoid
being caught forever. The problem has been defined in 1983 by Winkler
and Nowakowski [122] for one cop. Computing the minimum number
of cops for which is possible to catch a robber on a given graph is NP-
hard [79].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

162 Chapter 7. Conclusions

MAIN RESULTS OF THIS THESIS

Results Sec.

SEARCHING UNKNOWN PARTIAL GRIDS OF ORDER n
Construction of the distributed algorithm, that for any partial
grid of order n computes a connected and monotone searching
strategy with the use of O(

√
n) searchers.

3

We give a lower bound of the competitive ratio of Ω(
√

n/ log n). 3.3
COMPUTING CONNECTED PATHWIDTH

Verification if a connected pathwidth of a given graph is at most
k, for a fixed k, can be done in polynomial time.

4

COST-OPTIMAL EXPLORATION

Construction of the cost-optimal off-line algorithm for rings. 5.2
Construction of the cost-optimal off-line algorithm for trees. 5.4
Construction of the 2-competitive on-line algorithm for rings. 5.3
We give lower bounds of the competitive ratio of 3/2 (for rings) 5.3
and 2 (for trees) for any on-line algorithm. 5.5

LINK UP PROBLEMS

Link Up problem is FPT. 6.2
Link Up problem is NP-hard. 6.3

TABLE 7.1: List of the main results obtained in this thesis.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Chapter 7. Conclusions 163

The choice of cops’ starting positions is very often crucial in order for
the first player to win. Thus, the cops and robber game (called also some-
times as a domination game [106]) is an example of the existing connection
between searching and domination problems. In particular, it can be no-
ticed for the one-tick cops and k-robbers game, where cops win only if they
catch k robbers in their first move [2]. See also, e.g., [49], where authors
present the results for a game with infinitely fast robber and defensive dom-
ination number or [106], where the link between d-distance domination and
the game, where cops have d-visibility is investigated. Currently, the author
of this thesis is studying the connection between the twin domination num-
ber on digraphs and the one-tick cops and k-robbers game on digraphs.

The contributions of the author of this thesis to the obtained results are
as follows:

− A leading role in developing the algorithm ModGridSearching to-
gether with its analysis (Sections 3.4-3.6) and writing down the work.

− The algorithm from Chapter 4 and Theorem 4.4.1 have been devel-
oped in the course of joint discussions, but the author had a leading
role in the analysis of the algorithm (Section 4.4), in particular she is
the author of Lemmas 4.4.3-4.4.8.

− All results presented in Chapter 5 are authors independent results.

− A proof of NP-completeness of the LU problem (Section 6.3) is a joint
work with Dariusz Dereniowski.

At the end, let us notice that the results that have been obtained in
this thesis required using several algorithmic techniques. Those in the
area of distributed algorithms include construction of lower bounds (The-
orem 5.3.1, Theorem 5.5.1) and amortized analysis (Theorem 3.5.1, Theo-
rem 3.6.1, Lemma 5.3.1). The analysis of off-line algorithms involved e.g.
theory of NP-completeness (Theorem 6.3.1), theory of parametrized com-
plexity (Theorem 4.4.1) and analysis of the centralized algorithms (Theo-
rem 5.4.1).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

165

Bibliography

[1] Ahmad Abdi et al. “Lehman’s Theorem and the Directed Steiner
Tree Problem”. In: SIAM Journal on Discrete Mathematics 30.1 (2016),
pp. 141–153.

[2] Brian Alspach et al. “Time constrained graph searching”. In: Theo-
retical Computer Science 399.3 (2008), pp. 158–168.

[3] Yaniv Altshuler et al. “Multi-agent cooperative cleaning of expand-
ing domains”. In: The International Journal of Robotics Research 30.8
(2011), pp. 1037–1071.

[4] Eyal Amir. “Approximation algorithms for treewidth”. In: Algorith-
mica 56.4 (2010), pp. 448–479.

[5] Baruch Awerbuch et al. “Piecemeal graph exploration by a mobile
robot”. In: Information and Computation 152.2 (1999), pp. 155–172.

[6] Evangelos Bampas et al. “Maximal exploration of trees with energy-
constrained agents”. In: arXiv preprint arXiv:1802.06636 (2018).

[7] Lali Barrière et al. “Capture of an intruder by mobile agents”. In:
Proceedings of the fourteenth annual ACM symposium on Parallel algo-
rithms and architectures. ACM. 2002, pp. 200–209.

[8] Lali Barriere et al. “Connected and internal graph searching”. In:
29th Workshop on Graph Theoretic Concepts in Computer Science (WG),
Springer-Verlag, LNCS. Vol. 2880. 2003, pp. 34–45.

[9] Lali Barrière et al. “Connected graph searching”. In: Information and
Computation 219 (2012), pp. 1–16.

[10] Lali Barrière et al. “Searching is not jumping”. In: International Work-
shop on Graph-Theoretic Concepts in Computer Science. Springer. 2003,
pp. 34–45.

[11] Niko Beerenwinkel et al. “Covering pairs in directed acyclic
graphs”. In: The Computer Journal 58.7 (2014), pp. 1673–1686.

[12] Micah J Best et al. “Contraction obstructions for connected graph
searching”. In: Discrete Applied Mathematics 209 (2016), pp. 27–47.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

166 BIBLIOGRAPHY

[13] Margrit Betke, Ronald L Rivest, and Mona Singh. “Piecemeal learn-
ing of an unknown environment”. In: Machine Learning 18.2-3
(1995), pp. 231–254.

[14] Deepak Bhadauria et al. “Capturing an evader in polygonal envi-
ronments with obstacles: The full visibility case”. In: The Interna-
tional Journal of Robotics Research 31.10 (2012), pp. 1176–1189.

[15] Therese Biedl et al. “Using ILP/SAT to determine pathwidth, vis-
ibility representations, and other grid-based graph drawings”. In:
International Symposium on Graph Drawing. Springer. 2013, pp. 460–
471.

[16] Daniel Bienstock and Paul Seymour. “Monotonicity in graph
searching”. In: Journal of Algorithms 12.2 (1991), pp. 239–245.

[17] Andreas Björklund, Thore Husfeldt, and Nina Taslaman. “Shortest
cycle through specified elements”. In: Proceedings of the twenty-third
annual ACM-SIAM symposium on Discrete Algorithms. SIAM. 2012,
pp. 1747–1753.

[18] Andreas Björklund, Petteri Kaski, and Łukasz Kowalik. “Con-
strained multilinear detection and generalized graph motifs”. In:
Algorithmica 74.2 (2016), pp. 947–967.

[19] Andreas Björklund et al. “Narrow sieves for parameterized paths
and packings”. In: Journal of Computer and System Sciences 87 (2017),
pp. 119–139.

[20] Lélia Blin, Janna Burman, and Nicolas Nisse. “Exclusive graph
searching”. In: Algorithmica 77.3 (2017), pp. 942–969.

[21] Lélia Blin, Janna Burman, and Nicolas Nisse. “Perpetual graph
searching”. PhD thesis. INRIA, 2012.

[22] Lélia Blin et al. “Distributed chasing of network intruders”. In: The-
oretical Computer Science 399.1-2 (2008), pp. 12–37.

[23] Hans L Bodlaender. “A linear-time algorithm for finding tree-
decompositions of small treewidth”. In: SIAM Journal on computing
25.6 (1996), pp. 1305–1317.

[24] Hans L Bodlaender and Ton Kloks. “Efficient and constructive al-
gorithms for the pathwidth and treewidth of graphs”. In: Journal of
Algorithms 21.2 (1996), pp. 358–402.

[25] Hans L Bodlaender et al. “A cˆkn 5-Approximation Algorithm for
Treewidth”. In: SIAM Journal on Computing 45.2 (2016), pp. 317–378.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

BIBLIOGRAPHY 167

[26] Hans L Bodlaender et al. “A note on exact algorithms for vertex
ordering problems on graphs”. In: Theory of Computing Systems 50.3
(2012), pp. 420–432.

[27] Piotr Borowiecki, Dariusz Dereniowski, and Łukasz Kuszner. “Dis-
tributed graph searching with a sense of direction”. In: Distributed
Computing 28.3 (2015), pp. 155–170.

[28] Piotr Borowiecki, Dariusz Dereniowski, and Paweł Prałat. “Brush-
ing with additional cleaning restrictions”. In: Theoretical Computer
Science 557 (2014), pp. 76–86.

[29] Vincent Bouchitté and Ioan Todinca. “Treewidth and minimum fill-
in: Grouping the minimal separators”. In: SIAM Journal on Comput-
ing 31.1 (2001), pp. 212–232.

[30] Peter Brass, Ivo Vigan, and Ning Xu. “Improved analysis of a multi-
robot graph exploration strategy”. In: 2014 13th International Confer-
ence on Control Automation Robotics & Vision (ICARCV). IEEE. 2014,
pp. 1906–1910.

[31] Peter Brass et al. “Multirobot tree and graph exploration”. In: IEEE
Transactions on Robotics 27.4 (2011), pp. 707–717.

[32] Darryn Bryant et al. “Brushing without capacity restrictions”. In:
Discrete Applied Mathematics 170 (2014), pp. 33–45.

[33] Moses Charikar et al. “Approximation algorithms for directed
Steiner problems”. In: Journal of Algorithms 33.1 (1999), pp. 73–91.

[34] Rajesh Chitnis et al. “A tight algorithm for strongly connected
steiner subgraph on two terminals with demands”. In: Algorithmica
77.4 (2017), pp. 1216–1239.

[35] Marek Chrobak and Claire Kenyon-Mathieu. “SIGACT news on-
line algorithms column 10: competitiveness via doubling”. In: ACM
SIGACT News 37.4 (2006), pp. 115–126.

[36] Timothy H Chung, Geoffrey A Hollinger, and Volkan Isler. “Search
and pursuit-evasion in mobile robotics”. In: Autonomous robots 31.4
(2011), p. 299.

[37] David Coudert. “A note on Integer Linear Programming formula-
tions for linear ordering problems on graphs”. PhD thesis. Inria; I3S;
Universite Nice Sophia Antipolis; CNRS, 2016.

[38] David Coudert, Dorian Mazauric, and Nicolas Nisse. “Experimen-
tal evaluation of a branch-and-bound algorithm for computing
pathwidth and directed pathwidth”. In: Journal of Experimental
Algorithmics (JEA) 21 (2016), pp. 1–3.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

168 BIBLIOGRAPHY

[39] Jerzy Czyzowicz et al. “Energy-optimal broadcast in a tree with mo-
bile agents”. In: International Symposium on Algorithms and Experi-
ments for Sensor Systems, Wireless Networks and Distributed Robotics.
Springer. 2017, pp. 98–113.

[40] Yassine Daadaa. “Network Decontamination with temporal immu-
nity”. PhD thesis. Ph. D. thesis, University of Ottawa, 2012.

[41] Yassine Daadaa, Asif Jamshed, and Mudassir Shabbir. “Network
decontamination with a single agent”. In: Graphs and Combinatorics
32.2 (2016), pp. 559–581.

[42] Shantanu Das, Dariusz Dereniowski, and Christina Karousatou.
“Collaborative exploration of trees by energy-constrained mobile
robots”. In: Theory of Computing Systems (2018), pp. 1–18.

[43] Shantanu Das, Dariusz Dereniowski, and Przemyslaw Uznanski.
“Brief Announcement: Energy Constrained Depth First Search”. In:
45th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik. 2018.

[44] Nick D Dendris, Lefteris M Kirousis, and Dimitrios M Thilikos.
“Fugitive-search games on graphs and related parameters”. In: The-
oretical Computer Science 172.1-2 (1997), pp. 233–254.

[45] Dariusz Dereniowski. “Approximate search strategies for weighted
trees”. In: Theoretical Computer Science 463 (2012), pp. 96–113.

[46] Dariusz Dereniowski. “Connected searching of weighted trees”. In:
Theoretical Computer Science 412.41 (2011), pp. 5700–5713.

[47] Dariusz Dereniowski. “From pathwidth to connected pathwidth”.
In: SIAM Journal on Discrete Mathematics 26.4 (2012), pp. 1709–1732.

[48] Dariusz Dereniowski and Danny Dyer. “On minimum cost edge
searching”. In: Theoretical Computer Science 495 (2013), pp. 37–49.

[49] Dariusz Dereniowski, Tomáš Gavenčiak, and Jan Kratochvíl. “Cops,
a fast robber and defensive domination on interval graphs”. In: The-
oretical Computer Science (2018).

[50] Dariusz Dereniowski, Wieslaw Kubiak, and Yori Zwols. “The com-
plexity of minimum-length path decompositions”. In: Journal of
Computer and System Sciences 81.8 (2015), pp. 1715–1747.

[51] Dariusz Dereniowski and Dorota Urbańska. “On-line Search in
Two-Dimensional Environment”. In: International Workshop on Ap-
proximation and Online Algorithms. Springer. 2017, pp. 223–237.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

BIBLIOGRAPHY 169

[52] Dariusz Dereniowski et al. “Clearing directed subgraphs by mobile
agents: Variations on covering with paths”. In: Journal of Computer
and System Sciences 102 (2019), pp. 57–68.

[53] Dariusz Dereniowski et al. “Fast collaborative graph exploration”.
In: Information and Computation 243 (2015), pp. 37–49.

[54] Magda Dettlaff et al. “On the connected and weakly convex domi-
nation numbers”. In: arXiv preprint arXiv:1902.07505 (2019).

[55] Yann Disser et al. “A general lower bound for collaborative tree ex-
ploration”. In: Theoretical Computer Science (2018).

[56] Rodney G Downey and Michael Ralph Fellows. Parameterized com-
plexity. Springer Science & Business Media, 2012.

[57] Joseph W Durham, Antonio Franchi, and Francesco Bullo. “Dis-
tributed pursuit-evasion without mapping or global localization via
local frontiers”. In: Autonomous Robots 32.1 (2012), pp. 81–95.

[58] Miroslaw Dynia, Miroslaw Korzeniowski, and Christian Schindel-
hauer. “Power-aware collective tree exploration”. In: International
Conference on Architecture of Computing Systems. Springer. 2006,
pp. 341–351.

[59] Miroslaw Dynia, Jakub ŁopuszaŃski, and Christian Schindelhauer.
“Why robots need maps”. In: International Colloquium on Structural
Information and Communication Complexity. Springer. 2007, pp. 41–
50.

[60] Miroslaw Dynia et al. “Smart robot teams exploring sparse trees”.
In: International Symposium on Mathematical Foundations of Computer
Science. Springer. 2006, pp. 327–338.

[61] John Ellis and Robert Warren. “Lower bounds on the pathwidth of
some grid-like graphs”. In: Discrete Applied Mathematics 156.5 (2008),
pp. 545–555.

[62] John Arthur Ellis, H Sudborough, and Jonathan S Turner. “Graph
separation and search number”. In: (1987).

[63] Jonathan A Ellis, Ivan Hal Sudborough, and Jonathan S Turner.
“The vertex separation and search number of a graph”. In: Infor-
mation and Computation 113.1 (1994), pp. 50–79.

[64] Uriel Feige, MohammadTaghi Hajiaghayi, and James R Lee. “Im-
proved approximation algorithms for minimum weight vertex sep-
arators”. In: SIAM Journal on Computing 38.2 (2008), pp. 629–657.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

170 BIBLIOGRAPHY

[65] Andreas Emil Feldmann and Dániel Marx. “The complexity land-
scape of fixed-parameter directed Steiner network problems”. In:
arXiv preprint arXiv:1707.06808 (2017).

[66] Amos Fiat and Gerhard J Woeginger. Online algorithms: The state of
the art. Vol. 1442. Springer, 1998.

[67] Paola Flocchini, Miao Jun Huang, and Flaminia L Luccio. “Decon-
taminating chordal rings and tori using mobile agents”. In: Interna-
tional Journal of Foundations of Computer Science 18.03 (2007), pp. 547–
563.

[68] Paola Flocchini, Miao Jun Huang, and Flaminia L Luccio. “Decon-
tamination of hypercubes by mobile agents”. In: Networks: An Inter-
national Journal 52.3 (2008), pp. 167–178.

[69] Paola Flocchini, Flaminia L Luccio, and Lisa Xiuli Song. “Size Op-
timal Strategies for Capturing an Intruder in Mesh Networks”. In:
(2005).

[70] Paola Flocchini, Bernard Mans, and Nicola Santoro. “Tree decon-
tamination with temporary immunity”. In: International Symposium
on Algorithms and Computation. Springer. 2008, pp. 330–341.

[71] Paola Flocchini, Amiya Nayak, and Arno Schulz. “Cleaning an arbi-
trary regular network with mobile agents”. In: International Confer-
ence on Distributed Computing and Internet Technology. Springer. 2005,
pp. 132–142.

[72] Paola Flocchini, Amiya Nayak, and Arno Schulz. “Decontamina-
tion of arbitrary networks using a team of mobile agents with lim-
ited visibility”. In: 6th IEEE/ACIS International Conference on Com-
puter and Information Science (ICIS 2007). IEEE. 2007, pp. 469–474.

[73] Paola Flocchini et al. “Network decontamination under m immu-
nity”. In: Discrete Applied Mathematics 201 (2016), pp. 114–129.

[74] Paola Flocchini et al. “Optimal network decontamination with
threshold immunity”. In: International Conference on Algorithms and
Complexity. Springer. 2013, pp. 234–245.

[75] Fedor V Fomin. Complexity of connected search when the number of
searchers is small. Open problems of GRASTA 2017: the 6th Work-
shop on GRAph Searching, Theory and Applications. 2017. URL:
http://files.thilikos.info/data/conferences/GRASTA2017/
open_problems/GRASTA2017-open_problems.pdf.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

BIBLIOGRAPHY 171

[76] Fedor V Fomin and Dimitrios M Thilikos. “An annotated bibliogra-
phy on guaranteed graph searching”. In: Theoretical computer science
399.3 (2008), pp. 236–245.

[77] Fedor V Fomin, Dimitrios M Thilikos, and Ioan Todinca. “Con-
nected graph searching in outerplanar graphs”. In: Electronic Notes
in Discrete Mathematics 22.213-216 (2005), 7th.

[78] Fedor V Fomin et al. “Faster algorithms for finding and counting
subgraphs”. In: Journal of Computer and System Sciences 78.3 (2012),
pp. 698–706.

[79] Fedor V Fomin et al. “Pursuing a fast robber on a graph”. In: Theo-
retical Computer Science 411.7-9 (2010), pp. 1167–1181.

[80] Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. “Oracle size: a
new measure of difficulty for communication tasks”. In: Proceedings
of the twenty-fifth annual ACM symposium on Principles of distributed
computing. ACM. 2006, pp. 179–187.

[81] Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. “Tree explo-
ration with an oracle”. In: International Symposium on Mathematical
Foundations of Computer Science. Springer. 2006, pp. 24–37.

[82] Pierre Fraigniaud and Nicolas Nisse. “Connected treewidth and
connected graph searching”. In: Latin American Symposium on Theo-
retical Informatics. Springer. 2006, pp. 479–490.

[83] Pierre Fraigniaud et al. “Collective tree exploration”. In: Networks:
An International Journal 48.3 (2006), pp. 166–177.

[84] Zachary Friggstad et al. “Linear programming hierarchies suffice
for directed Steiner tree”. In: International Conference on Integer Pro-
gramming and Combinatorial Optimization. Springer. 2014, pp. 285–
296.

[85] Martin Fürer. “Faster computation of path-width”. In: International
Workshop on Combinatorial Algorithms. Springer. 2016, pp. 385–396.

[86] Harold N. Gabow, Shachindra N Maheshwari, and Leon J. Oster-
weil. “On two problems in the generation of program test paths”.
In: IEEE Transactions on Software Engineering 3 (1976), pp. 227–231.

[87] Michael R Garey and David S Johnson. Computers and intractability.
Vol. 29. wh freeman New York, 2002.

[88] Serge Gaspers et al. “Parallel cleaning of a network with brushes”.
In: Discrete Applied Mathematics 158.5 (2010), pp. 467–478.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

172 BIBLIOGRAPHY

[89] Stephen T Hedetniemi and Renu C Laskar. “Bibliography on dom-
ination in graphs and some basic definitions of domination pa-
rameters”. In: Annals of Discrete Mathematics. Vol. 48. Elsevier, 1991,
pp. 257–277.

[90] Yuya Higashikawa et al. “Online graph exploration algorithms for
cycles and trees by multiple searchers”. In: Journal of Combinatorial
Optimization 28.2 (2014), pp. 480–495.

[91] Geoffrey Hollinger et al. “Efficient multi-robot search for a moving
target”. In: The International Journal of Robotics Research 28.2 (2009),
pp. 201–219.

[92] Miao Jun Huang. “Contiguous search by mobile agents in cube
networks and chordal rings”. PhD thesis. University of Ottawa
(Canada), 2004.

[93] David Ilcinkas, Nicolas Nisse, and David Soguet. “The cost of
monotonicity in distributed graph searching”. In: Distributed Com-
puting 22.2 (2009), pp. 117–127.

[94] Navid Imani, Hamid Sarbazi-Azad, and Albert Y Zomaya. “Cap-
turing an intruder in product networks”. In: Journal of Parallel and
Distributed Computing 67.9 (2007), pp. 1018–1028.

[95] Navid Imani et al. “Detecting threats in star graphs”. In: IEEE Trans-
actions on Parallel and Distributed Systems 20.4 (2009), pp. 474–483.

[96] Mark Jones et al. “Parameterized complexity of directed steiner tree
on sparse graphs”. In: SIAM Journal on Discrete Mathematics 31.2
(2017), pp. 1294–1327.

[97] Borislav Karaivanov et al. “Decontaminating Planar Regions by
Sweeping with Barrier Curves.” In: CCCG. 2014.

[98] Nancy G Kinnersley. “The vertex separation number of a graph
equals its path-width”. In: Information Processing Letters 42.6 (1992),
pp. 345–350.

[99] Lefteris M Kirousis and Christos H Papadimitriou. “Searching and
pebbling”. In: Theoretical Computer Science 47 (1986), pp. 205–218.

[100] Kenta Kitsunai et al. “Computing Directed Pathwidth in O(1.89n)
Time”. In: Algorithmica 75.1 (2016), pp. 138–157.

[101] Andreas Kolling and Stefano Carpin. “Multi-robot pursuit-evasion
without maps”. In: 2010 IEEE International Conference on Robotics and
Automation. IEEE. 2010, pp. 3045–3051.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

BIBLIOGRAPHY 173

[102] Petr Kolman and Ondřej Pangrác. “On the complexity of paths
avoiding forbidden pairs”. In: Discrete Applied Mathematics 157.13
(2009), pp. 2871–2876.

[103] Ioannis Koutis. “Faster algebraic algorithms for path and packing
problems”. In: International Colloquium on Automata, Languages, and
Programming. Springer. 2008, pp. 575–586.

[104] Ioannis Koutis and Ryan Williams. “Limits and applications of
group algebras for parameterized problems”. In: ACM Transactions
on Algorithms (TALG) 12.3 (2016), p. 31.

[105] Jakub Kováč. “Complexity of the path avoiding forbidden pairs
problem revisited”. In: Discrete Applied Mathematics 161.10-11 (2013),
pp. 1506–1512.

[106] Stephan Kreutzer and Sebastian Ordyniak. “Distance d-domination
games”. In: International Workshop on Graph-Theoretic Concepts in
Computer Science. Springer. 2009, pp. 308–319.

[107] Bundit Laekhanukit. “Approximating Directed Steiner Problems
via Tree Embedding”. In: 43rd International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. 2016.

[108] Jens Lagergren. “Efficient parallel algorithms for graphs of bounded
tree-width”. In: Journal of Algorithms 20.1 (1996), pp. 20–44.

[109] Andrea S LaPaugh. “Recontamination does not help to search a
graph”. In: Journal of the ACM (JACM) 40.2 (1993), pp. 224–245.

[110] Christos Levcopoulos et al. “Clearing connections by few agents”.
In: International Conference on Fun with Algorithms. Springer. 2014,
pp. 289–300.

[111] Harry R Lewis and Christos H Papadimitriou. Elements of the Theory
of Computation. Prentice Hall PTR, 1997.

[112] Fabrizio Luccio and Linda Pagli. “A general approach to toroidal
mesh decontamination with local immunity”. In: 2009 IEEE Inter-
national Symposium on Parallel & Distributed Processing. IEEE. 2009,
pp. 1–8.

[113] Fabrizio Luccio, Linda Pagli, and Nicola Santoro. “Network decon-
tamination in presence of local immunity”. In: International Journal
of Foundations of Computer Science 18.03 (2007), pp. 457–474.

[114] Flaminia L Luccio. “Contiguous search problem in Sierpiński
graphs”. In: Theory of Computing Systems 44.2 (2009), pp. 186–204.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

174 BIBLIOGRAPHY

[115] Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

[116] Euripides Markou, Nicolas Nisse, and Stéphane Pérennes. “Exclu-
sive graph searching vs. pathwidth”. In: Information and Computa-
tion 252 (2017), pp. 243–260.

[117] Minko Markov, Vladislav Haralampiev, and Georgi Georgiev.
“Lower bounds on the directed sweepwidth of planar shapes”. In:
Serdica Journal of Computing 9.2 (2015), pp. 151–166.

[118] Nimrod Megiddo et al. “The complexity of searching a graph”. In:
Journal of the ACM (JACM) 35.1 (1988), pp. 18–44.

[119] Margaret-Ellen Messinger, Richard J Nowakowski, and P Prałat.
“Cleaning a network with brushes”. In: Theoretical Computer Science
399.3 (2008), pp. 191–205.

[120] Margaret-Ellen Messinger, Richard J Nowakowski, and Paweł
Prałat. “Cleaning with brooms”. In: Graphs and Combinatorics 27.2
(2011), pp. 251–267.

[121] Nicolas Nisse and David Soguet. “Graph searching with advice”.
In: Theoretical Computer Science 410.14 (2009), pp. 1307–1318.

[122] Richard Nowakowski and Peter Winkler. “Vertex-to-vertex pursuit
in a graph”. In: Discrete Mathematics 43.2-3 (1983), pp. 235–239.

[123] Simeon Ntafos and Teofilo Gonzalez. “On the computational com-
plexity of path cover problems”. In: Journal of Computer and System
Sciences 29.2 (1984), pp. 225–242.

[124] Simeon C. Ntafos and S. Louis Hakimi. “On path cover problems in
digraphs and applications to program testing”. In: IEEE Transactions
on Software Engineering 5 (1979), pp. 520–529.

[125] Simeon C Ntafos and S Louis Hakimi. “On structured digraphs and
program testing”. In: IEEE Transactions on Computers 100.1 (1981),
pp. 67–77.

[126] Christian Ortolf and Christian Schindelhauer. “A recursive ap-
proach to multi-robot exploration of trees”. In: International Col-
loquium on Structural Information and Communication Complexity.
Springer. 2014, pp. 343–354.

[127] Christian Ortolf and Christian Schindelhauer. “Online multi-robot
exploration of grid graphs with rectangular obstacles”. In: Proceed-
ings of the twenty-fourth annual ACM symposium on Parallelism in al-
gorithms and architectures. ACM. 2012, pp. 27–36.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

BIBLIOGRAPHY 175

[128] Dorota Osula. “Decontaminating Arbitrary Graphs by Mobile
Agents: a Survey”. In: Utilitas Mathematica (to appear). ISSN: 0315-
3681.

[129] Dorota Osula. “Minimizing the Cost of Team Exploration”. In: In-
ternational Conference on Current Trends in Theory and Practice of Infor-
matics. Springer. 2019, pp. 392–405.

[130] Dorota Osula and Rita Zuazua. “Twin domination number of Tour-
naments”. In: arXiv preprint arXiv:1702.00646 (2017).

[131] Richard Otter. “The number of trees”. In: Ann. Math 49.2 (1948),
pp. 583–599.

[132] Torrence D Parsons. “Pursuit-evasion in a graph”. In: Theory and
applications of graphs. Springer, 1978, pp. 426–441.

[133] Nikolai Nikolaevich Petrov. “Some extremal search problems on
graphs”. In: Differentsial’nye Uravneniya 18.5 (1982), pp. 821–827.

[134] Jun Qiu. “Best effort decontamination of networks”. PhD thesis.
University of Ottawa (Canada), 2007.

[135] Eric Raboin, Ugur Kuter, and Dana Nau. “Generating strategies
for multi-agent pursuit-evasion games in partially observable Eu-
clidean space”. In: The 11th International Conference on Autonomous
Agents and Multiagent Systems. Vol. 3. International Foundation for
Autonomous Agents and Multiagent Systems. 2012, pp. 1201–1202.

[136] Bruce A Reed. “Finding approximate separators and computing
tree width quickly”. In: Proceedings of the twenty-fourth annual ACM
symposium on Theory of computing. ACM. 1992, pp. 221–228.

[137] Neil Robertson and Paul D Seymour. “Graph minors. I. Exclud-
ing a forest”. In: Journal of Combinatorial Theory, Series B 35.1 (1983),
pp. 39–61.

[138] Neil Robertson and Paul D Seymour. “Graph minors. XX. Wagner’s
conjecture”. In: Journal of Combinatorial Theory, Series B 92.2 (2004),
pp. 325–357.

[139] Cyril Robin and Simon Lacroix. “Multi-robot target detection and
tracking: taxonomy and survey”. In: Autonomous Robots 40.4 (2016),
pp. 729–760.

[140] Samuel Rodriguez et al. “Toward realistic pursuit-evasion using a
roadmap-based approach”. In: 2011 IEEE International Conference on
Robotics and Automation. IEEE. 2011, pp. 1738–1745.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

176 BIBLIOGRAPHY

[141] Shai Sachs, Steven M LaValle, and Stjepan Rajko. “Visibility-based
pursuit-evasion in an unknown planar environment”. In: The Inter-
national Journal of Robotics Research 23.1 (2004), pp. 3–26.

[142] Pooya Shareghi, Navid Imani, and Hamid Sarbazi-Azad. “Captur-
ing an intruder in the pyramid”. In: International Computer Science
Symposium in Russia. Springer. 2006, pp. 580–590.

[143] Nicholas M Stiffler and Jason M O’Kane. “A complete algorithm for
visibility-based pursuit-evasion with multiple pursuers”. In: 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2014, pp. 1660–1667.

[144] Karol Suchan and Yngve Villanger. “Computing pathwidth faster
than 2n”. In: International Workshop on Parameterized and Exact Com-
putation. Springer. 2009, pp. 324–335.

[145] Ondřej Suchỳ. “On directed steiner trees with multiple roots”. In:
International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence. Springer. 2016, pp. 257–268.

[146] Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. “Mixed search-
ing and proper-path-width”. In: Theoretical Computer Science 137.2
(1995), pp. 253–268.

[147] Vijay V Vazirani. Approximation algorithms. Springer Science & Busi-
ness Media, 2013.

[148] Dimitri Watel et al. “Directed Steiner tree with branching con-
straint”. In: International Computing and Combinatorics Conference.
Springer. 2014, pp. 263–275.

[149] Dimitri Watel et al. “Directed Steiner trees with diffusion costs”. In:
Journal of Combinatorial Optimization 32.4 (2016), pp. 1089–1106.

[150] Ryan Williams. “Finding Paths of Length k in O∗(2k) time”. In: In-
formation Processing Letters 109.6 (2009), pp. 315–318.

[151] Boting Yang, Danny Dyer, and Brian Alspach. “Sweeping graphs
with large clique number”. In: International symposium on algorithms
and computation. Springer. 2004, pp. 908–920.

[152] Marguerite Zientara. Personal communication. 2016.

[153] Leonid Zosin and Samir Khuller. “On directed Steiner trees”. In:
Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics. 2002,
pp. 59–63.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

