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Abstract. The paper deals with modelling of shear localization in granular bodies by means of an enhanced hypoplastic 

constitutive model and material point method (MPM). The calculations were carried out for plane strain compression of 

non-cohesive sand. In order to properly capture the width and inclination of shear zones, the constitutive model was 

enriched by a characteristic length of micro-structure by means of a non-local theory. The approach offered a good 

correspondence between numerical results and experimental ones. 

INTRODUCTION 

The material point method (MPM) [1] is a numerical technique for simulations of static and dynamic problems 

when large deformation occurs. Unlike the classical FEM, MPM is not bound to a deforming grid. MPM discretizes 

the fluid or solid body with a collection of material points. In each computational step, the information from those 

points is transferred to a background computational grid, which is usually fixed and where the governing equations 

are solved. The decoupling between material points and grid allows for avoiding the extensive mesh distortion and 

entanglement. For each time increment, the calculations within MPM include two steps: 1) a Lagrangian step and 2) 

a convective one. In the step ‘1’, the computational mesh deforms together with the considered material. The state 

variables are calculated for each material point by the use of conventional shape functions and nodal parameters 

defined on the computational mesh. In the step ‘2’, the convective step consists of mapping of the velocity field 

from material points to the computational grid that can remain at the same position as defined at the beginning of the 

time increment. The important differences with the conventional FEM are: a) the mass matrix varies with time, b) 

the gradient, stress and strain are evaluated at material points that can move from one element to another and c) the 

point masses appear in expressions for internal and external force vectors. The first MPM algorithm dated 1994 

received many updates. The developments include explicit approaches. e. g. the Generalized Interpolation Material 

Point Method (GIMP) [2], Dual Domain Material Point Method (DDMP) [3], Convected Particles Domain 

Interpolation (CPDI) [4], [5]. There are also some implicit schemes [6], [7].  
The intention of the current paper is to show some numerical results of shear localization in non-cohesive sand 

during plane strain compression with a hypoplastic constitutive law [8]-[10] based on MPM in the open-source 

software [11]. MPM is a dynamic explicit time integration approach. The Courant-Friedrichs-Lewy condition was 

used to determine a critical time step in numerical analyses. The paper consists of two parts. In the first part, some 

results of standard quasi-static geotechnical element tests with dry cohesionless sand (oedometric, triaxial 

compression and shear) using local hypoplasticity were shown. In the second part, the results of plane strain 

compression with a non-local hypoplastic model were described. The numerical results of quasi-static plane strain 

compression were compared to the corresponding experimental results with respect to the stress-strain evolution and 

geometry of shear zones. 
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HYPOPLASTIC CONSTITUTIVE MODEL 

Despite the discrete nature of granular materials, the mechanical behaviour of confined configurations in the 

quasi-static regime can be reasonably described by principles of continuum mechanics. Hypoplastic constitutive 

models  were developed at Karlsruhe University [8]-[10]. The stress rate tensor is assumed to depend on stress, rate of 

deformation and void ratio via isotropic non-linear tensorial functions based on the representation theorem. The 

constitutive models were formulated by a heuristic process considering the essential mechanical properties of granular 

materials undergoing homogeneous deformation. A striking feature of hypoplasticity is that the constitutive equation is 

incrementally non-linear in deformation rate. The hypoplastic models are capable of describing some salient properties 

of granular materials, e.g. non-linear stress-strain relationship, dilatant and contractant volumetric change, stress level 

dependence, void ratio dependence, deformation direction dependence and strain softening. A further feature of 

hypoplastic models is the inclusion of the critical states, i.e. states in which a grain aggregate can deform continuously at 

constant stress and volume (void ratio). Moreover, both the coaxiality (coincidence of the direction of the principal 

stresses and principal plastic strain increments) and stress-dilatancy rule are not assumed a priori [12]. In contrast to 

some conventional elasto-plastic models, a decomposition of deformation into elastic and plastic parts, the formulation of 

a yield surface, plastic potential, flow rule and hardening rule are not needed. In spite of the fact that the failure surface 

and flow rule are not prescribed in hypoplasticity, they emerge as by-products [13]. The hallmarks of these models are 

their simple formulation and procedure for determining material parameters with standard laboratory experiments. The 

material parameters can be related to the granulometric properties of granular materials, such as grain size distribution 

curve, shape, angularity and hardness of grains [14]. A further advantage lies in the fact that one single set of 

material parameters is valid for a wide range of pressures and densities. The hypoplastic models describe the 

behaviour of so-called simple grain skeletons which are characterised by the following properties: 
 

� the state is fully defined through the skeleton pressure and the void ratio (inherent anisotropy of contact forces 

between grains is not considered and vanishing principal stresses are not allowed), 

� deformation of the skeleton is due to grain rearrangements (e.g. small deformation <10-5 due to an elastic 

behaviour of grain contacts are negligible), 

� grains are permanent (abrasion and crushing are excluded in order to keep the granulometric properties 

unchanged), 

� three various void ratios decreasing exponentially with the pressure are distinguished (minimum, maximum and 

critical), 

� the material manifests an asymptotic behaviour for monotonous and cyclic shearing or SOM-states for 

proportional compression, 

� rate effects are negligible, 

� physico-chemical effects (capillary and osmotic pressure) and cementation of grain contacts are not taken into 

account. 

 

The summary of a local hypoplastic constitutive law for granular materials is given in Appendix (Eqs.A1-A10). 

The changes of the values of ei, ed and ec decrease with the pressure σkk according to the exponential functions 

(Eq.A10) [9]. The general form of the constitutive model requires the following eight material parameters: ei0, ed0, 

ec0, φc, hs, �, n and �. The calibration procedure for the non-polar model and the material parameters for different 

sands was given by Bauer [9] and Herle and Gudehus [14]. The granulate hardness hs and exponent n can be 

estimated from a single oedometric compression experiment with an initially loose specimen (hs reflects the slope of 

the curve in a semi-logarithmic representation and n its curvature). The parameters α and � can be determined from 

a triaxial or plane strain test with an initially dense specimen (they reflect the height and position of the peak value 

of the stress-strain curve). The critical (residual) friction angle φc can be obtained from the angle of repose or 

measured in a triaxial test with a loose specimen. The parameters of ei0, ed0 and ec0 are determined from conventional 

index tests (ec0�emax, ed0�emin, ei0�(1.1-1.5)emax). All parameters are valid for a pressure range of 1  kPa<ps<1000 

kPa. Below the stress level of 1 kPa, additional capillary forces due to the air humidity and van der Walls forces may 

become important. Above the stress level of 1000 kPa, grain crushing is expected. The MPM simulations were 

carried out with the following material constants for so-called Karlsruhe sand (mean grain diameter d50=0.5 mm) which 

was used in experiments: ei0=1.3, ed0=0.51, ec0=0.82, φc=30o, hs=190 MPa, �=1, n=0.5 and α=0.3 [8], [9]. 
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NON-LOCAL APPROACH 

Hypoplastic constitutive models without a characteristic length can describe realistically the onset of shear 

localization but not its further evolution. An enhancement of the underlying constitutive model via a characteristic 

length is necessary for problems involving shear localization to regularize boundary value problems, to achieve 

objective and property convergent numerical solutions (mesh-independent load-displacement diagram and 

deformation patterns) [15]-[17]. 

A non-local approach was proposed forconcrete [18] and for soils [19] to regularize a boundary value problem 

and to calculate strain localization in the form of shear zones and cracks. It is based on spatial averaging of tensor or 

scalar state variables in a certain neighbourhood of a given point, i.e. material response at a point depends both on 

the state of its neighbourhood and on the state in the point itself. Thus, a characteristic length can be incorporated 

and softening can spread over material points. In contrast, in classical continuum mechanics, the principle of local 

action holds (i.e. the dependent variables in each material point depend only upon the values of the independent 

variables at the same point). To obtain a full regularisation effect according to both the mesh size and mesh 

inclination, it is sufficient to treat non-locally only one internal constitutive variable, e.g. equivalent plastic strain in 

elasto-plastic formulations [18], [19] or norm of the deformation rate in hypoplastic approaches [20], [21] whereas 

the other variables retain their local definitions. The advantages of a non-local approach are: it is suitable for both 

shear and tension dominated applications and is quite easy to implement in existing commercial codes. The 

disadvantages are: long computation time and the characteristic length is not directly related to micro-structure of 

materials (as e.g. in micro-polar hypoplasticity) [22]. The norm of the deformation rate expressed by d=  was 

treated non-locally:  
 

                                                                ,                                                      (1) 

 

where  - the non-local norm of deformation rate (Eq.A1), V - the body volume, x - the coordinates of the 

considered current point, ξ - the coordinates of the surrounding points and ω - the weighting function. Equation (1) 

does not alter a uniform field which means that it satisfies the normalizing condition [23]. As a weighting function 

ω, a Gauss distribution function was used [23]: 
 

            ,                                                                  (2) 

 
wherein the parameter lc is the characteristic length of micro-structure and r is the distance between two points. The 

parameter lc determines the size of the neighbourhood influencing the state at a given point. Generally, it is not 

directly related to dimensions of the material micro-structure since it depends on the constitutive model and the 

weighting function [22]. It is usually determined with an inverse identification process of experimental data [21] 

since itcannot be directly measured. The averaging in Eq.2 is restricted to a small representative area around each 

material point (the influence of points at the distance of r=3lc is only of 0.01%). For Karlsruhe sand, the 

characteristic length is about 1.5 mm (3×d50) [20]-[22]. 

ELEMENT TESTS 

The results of 3 different usual geotechnical element tests were presented using a local hypoplastic law within 

MPM (oedometric compression, triaxial compression and shear with free dilatancy). The MPM schemes of tests 

were shown in Fig.1. Figure 2 presents the results of the evolution of the vertical normal stress σ11 versus the vertical 

normal strain �11 for the different initial void ratio eo and the evolution of void ratio e versus σ11. The results of 

triaxial compression element tests with the constant lateral pressure σc for a freely moving smooth top boundary are 

demonstrated in Figs.3 and 4 (the evolution of the vertical normal stress σ11 versus the vertical normal strain �11 for 

the different initial void ratio eo, evolution of mobilized internal friction angle φ and void ratio e versus �11 for the 

different initial void ratio eo and σc). Finally, Fig.5 describes the evolution φ for the different eo and normal pressure 

σn) for shear with free dilatancy, where the smooth top boundary could freely move in a vertical direction. All results 

of element tests are in agreement with experiments [8]-[10]. 
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                               a)                                                              b)                                                                      c) 

FIGURE 1. MPM mesh for element tests with boundary conditions: a) oedometric compression, b) triaxial compression and c) 

shear with free dilatancy (red colour - sand material, blue colour - rigid point, green colour - pressure point, u - rigid point 

displacement (corresponds to the displacement of the upper edge of the sample))  
 

 
                                           a)                                                                                                b) 

FIGURE 2. Oedometric compression element tests within MPM: (a) vertical stress σ11 versus vertical strain ε11, (b) void ratio e 

versus vertical stress σ11 

 

 
                             a)                                                          b)                                                          c) 

FIGURE 3. Evolution of stresses σij versus vertical strain ε11 during triaxial compression element tests within MPM for lateral 

pressure σc=0.5 MPa and different initial void ratios of sand: a) eo=0.60, b) eo=0.75 and c) eo=0.90 
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                                                           a)                                                                              b)                                             

A) 

 

 
                               a)                                                           b)                                                           c) 

B) 

FIGURE 4. Evolution of mobilized internal friction angle φ A) and void ratio e B) versus vertical strain ε11 during triaxial 

compression element tests for different initial void ratios of sand: a) eo=0.60, b) eo=0.75, c) eo=0.90 and lateral pressure: a) 

σc=500 kPa, and b) σc=50 kPa 

 

 
                                                         A)                                                                                  B) 

FIGURE 5. Evolution of mobilized internal friction angle φ versus shear strain γ during simple shear element test with free 

dilatancy for different initial void ratio of sand: a) eo=0.60, b) eo=0.75 and c) eo=0.90 and normal pressures: A) σn=200 kPa and 

B) σn=50 kPa 

PLANE STRAIN COMPRESSION 

The sand specimen with the size of 140×40 mm2 (ho×bo) (as in the experiment [24]) was numerically simulated 

under plane strain conditions. The uniform vertical displacement was prescribed along the smooth top boundary to 

enforce compressive deformation. The horizontal displacements along horizontal boundaries were free. To preserve 

the specimen stability, the mid-point along the smooth specimen bottom was kept fixed. Quadrilateral finite 

elements for background mesh were used (Fig.6) with one material point in the element. Gravity was taken into 

020023-5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


account. To induce a shear zone, a single imperfection of the element size 5×5 mm2 with a higher initial void ratio 

(eo=0.90) was inserted at the specimen mid-height.  
 

 
FIGURE 6. Boundary conditions, specimen geometry and computational MPM mesh during plane strain compression test (P - 
vertical top force, u - vertical top edge displacement, a) computational mesh, b) imperfection and c) specimen) 

 

The MPM calculations were performed with the different time steps Δt=5×10-8-5×10-6 s and different material 

point meshes: 16×56, 24×84 and 32×112. The meshes corresponded to the element size 2.5×2.5 mm2, 1.66×1.66 

mm2 and 1.25×1.25 mm2, respectively. The evolution of the mobilized internal friction angle ��against the vertical 

strain u/ho is shown in Fig.7 for different time steps and three different numbers of material points (p=50 kPa, 

eo=0.55 and lc=1.5 mm). The optimum time increment was found to be Δt=1×10-7 for the mesh composed of 24×84 

points (finite element size was 1.66×1.66 mm2). No mesh dependence occurred.  
The effect of the characteristic length lc is shown in Fig.8. The characteristic lengths ranged from lc=0 mm up to 

lc=4 mm. The initial void ratio was set as eo=0.55 and the lateral pressure as p=50 kPa. Similarly as in the real 

experiments [24], the initially dense specimen showed an asymptotic behaviour; it exhibited initially small elasticity, 

hardening, reached a peak strength, gradually softened and dilated reaching a residual state (Fig.8A).The maximum 

internal friction angles 	peak and residual internal friction angle 	res increased with growing lc. For lc=1.5 mm, the 

internal friction angles were: 	peak=55ofor u/ho=1.2% and 	res=30o for u/ho=4.0%.  
During deformation, a distinct internal inclined shear zone occurred inside the sand specimen which was 

marked by shear strain and volume increase (Fig.8B). During deformation, initially two shear zones occurred, 

starting from the initial imperfection. Later, a single shear dilatant zone dominated that started to propagate just 

before reaching the peak force. For lc=1.5 mm, the final inclined shear zone developed in the upper part of the 

specimen, whereas for lc>1.5 mm, it was located in the lower specimen part (Fig.8B).The thickness of the shear 

zone was determined by assuming eo≥0.70. The thickness of the inclined dilatant shear zone grew with increasing lc. 

It was on average in the residual state (for lc=1.5 mm) about ts=7.5 mm=5×lc=15×d50 based on the dilatant region and 

its inclination against the bottom was about 55°. The critical void ratio was reached in the shear zone (Fig.9). Those 

outcomes are quantitatively in agreement with the experiment [24]. 
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                                a) 

 

b) 

 

c) 

FIGURE 7. Numerical evolution of mobilized internal friction angle � versus vertical strain u/ho (p=50 kPa, eo=0.55 and lc=1.5 

mm) for different material point meshes and time steps Δt: a) mesh 16×56 (element size 2.5×2.5 mm2), b) mesh 24×84 (element 

size 1.66×1.66 mm2) and c) mesh 32×112 (element size 1.25×1.25 mm2) 
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A) 

 

 
                           a)                    b)                        c)                    d)                     e)                        f)  

B) 

FIGURE 8. Evolution of mobilized internal friction angle 	 versus vertical strain u/ho(p=50 kPa and eo=0.55) (A) and deformed 

specimens from numerical simulations for u/ho=5.0% with distribution of void ratio e (B) for different characteristic lengths lc=0-

4 mm: a) lc=1.5 mm, b) lc=1.75 mm, c) lc=2 mm, d) lc=2.5 mm, e) lc=3 mm and f) lc=4 mm 
 

 

FIGURE 9. Evolution of void ratio e outside (points ‘1’, ‘2’ and ‘3’) and inside shear zone (points ‘4’, ‘5’ and ‘6’) versus 

vertical strain u/ho for initially dense sand from numerical simulations (p=50 kPa, eo=0.55 and lc=1.5 mm) 
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Figure 10 describes the influence of the initial void ratio of sand eo=0.55-0.90 on the mobilized internal friction 

angle and shear localization (p=50 kPa and lc=1.5 mm). As the initial void ratio increased, the peak internal friction 

angle decreased: 	peak=55o for eo=0.55, 	peak=40o for eo=0.75 and 	peak=30o for eo=0.90. With increasing eo up to 

eo
0.75 the thickness of the shear zone ts increased: ts=5×lc for eo=0.55 and ts=6×lc for eo=0.75. No shear zone was 

observed for initially loose specimen (eo=0.90). The inclination of the shear zone to the horizontal � decreased with 

increasing eo: =56o for eo=0.55 and =50o for eo=0.75. 

 

 
A) 

 

 
                                                                   a)                            b)                              c)                        

B) 

FIGURE 10. Evolution of mobilized internal friction angle 	 versus vertical strain u/ho (p=50 kPa, lc=1.5 mm) and deformed 

specimens for u/ho=5.0% with distribution of void ratio e for different initial void ratio: a) eo=0.55, b) eo=0.75 and c) eo=0.90 

CONCLUSIONS 

MPM in contrast to standard Lagrangian approaches allows for simulating granular flow without excessive mesh 

distortion. MPM based on a non-local hypoplastic constitutive model realistically described shear localization in a 

granular body during plane strain compression. The numerical outcomes were insensitive of the number of material 

points and the time increment. The thickness of shear zones became greater with increasing characteristic length and 

initial void ratio. The granular material always manifested an asymptotic behaviour in the residual state by reaching a 

critical state. 

APPENDIX 

The hypoplastic model [8], [9] describes the evolution of normalized stress tensor  with the evolution of rate 

of deformation tensor  by isotropic linear and non-linear tensorial functions  and N (index ‘s’ denotes the 

skeleton): 

                                                                       ,                                                   (A1) 
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where  is the Jaumann stress rate tensor,  is the stiffness factor and  is the density factor. The normalized stress 

tensor is defined as follows: 

 

                                                                                            ,                                                                        (A2) 

 

where  is the Cauchy stress tensor. The following representations for  and  (which are linear and non-linear in 

) are proposed: 

 

                                                                                                                               (A3) 

 

                                                                              ,                                                                 (A4) 

 

where 

 

                                                ,                               (A5) 

 

                                                                  .                                                          (A6) 

 

Herein  - critical angle of internal friction during stationary flow and -Lode angle. The  is the deviatoric part 

of the normalized stress tensor  

 

                                                                                    .                                                                         (A7) 

 
The influence of the current density and the pressure level is taken into account by the stiffness factor  

(proportional to the granular hardness  and depending also on the mean stress and void ratio) and the density 

factor  which are represented as:  

 

,                                              (A8) 

 

where  - pycnotropy coefficient,  - compression coefficient,  - stiffness coefficient,  - parameter representing 

the deviatoric part of the normalized stress in critical states,  - critical void ratio,  - void ratio at maximum 

densification,  - maximum void ratio. The current void ratio  is updated during calculations by the formula: 

 

                                                                                ,                                                                        (A9) 
 

where  - rate of the void ratio (  is limited by  and ). The changes of the values of ,  and  decrease with 

the pressure  according to the exponential functions: 

 

                           ,                 (A10) 

 

where ei0, ed0, ec0 are the values of ei, ed and ec for the pressure ps=0. 
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