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REGULARITY OF WEAK SOLUTIONS

FOR A CLASS OF ELLIPTIC PDES

IN ORLICZ-SOBOLEV SPACES

Jakub Maksymiuk — Karol Wroński

Abstract. We consider the elliptic partial differential equation in the di-

vergence form

−div(∇G(∇u(x))) + Fu(x, u(x)) = 0,

where G is a convex, anisotropic function satisfying certain growth and
ellipticity conditions. We prove that weak solutions in W 1,G are in fact of

class W 2,2
loc ∩W 1,∞

loc .

1. Introduction

We consider a quasilinear elliptic equation in the divergence form:

(P) −div(∇G(∇u(x))) + Fu(x, u(x)) = 0

where u : Ω → R and Ω ⊂ Rn, n ≥ 1 is an open connected set. Functions

G ∈ C2(Rn,R) and F ∈ C1(Ω × R, R) are assumed to satisfy certain growth

conditions given below. The objective of this paper is to show that for such G

and F , every weak solution u, that belongs to the Orlicz–Sobolev space W 1,G
loc (Ω),

is of a class W 2,2
loc (Ω) ∩W 1,∞

loc (Ω).

This result is inspired by Marcellini’s articles [14] and [13] in which he proves

analogous regularity theorem for weak solutions of an elliptic equation. One of

the differences between our result and these by Marcellini is that we assume
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2 J. Maksymiuk — K. Wroński

anisotropic growth conditions (i.e. G may be growing differently in different di-

rections). We also generalize a similar result by Siepe [16] where anisotropic

growth conditions are considered but the equation does not have a part depen-

dent on x and u. W 2,2
loc ∩W

1,∞
loc regularity of weak solutions was also obtained by

Cupini, Marcellini, Mascolo in [9]. Also in earlier articles by the same authors

[7], [8], [10] we can find theorems concerning regularity with p − q growth con-

dition. Some other regularity results concerning p − q growth can be found in

[3], [4]. Anisotropic polynomial growth (with functional being a sum of different

powers) is considered in [5], [12].

The difference between our approach and cited above is that we focus on

weak solutions belonging to the anisotropic Orlicz-Sobolev space W 1,G
loc instead

of W 1,q
loc . This space is natural when one works in an anisotropic setting. Regu-

larity of weak solutions in the anisotropic Orlicz–Sobolev spaces was established

earlier by, for example, Cianchi in [6] and Alberico in [1], where they proved

boundedness of weak solutions.

Our assumptions on G are as follows:

(G1) G is convex and G(−ξ) = G(ξ) for all ξ ∈ Rn,

(G2) lim
ξ→0

G(ξ)/|ξ| = 0,

(G3) G(ξ) ≥ c0|ξ|2 for some c0 > 0 and for all ξ ∈ Rn,

(G4) 〈DG(ξ), λ〉 ≤ pG(ξ)|λ|/|ξ| for some p ≥ 2 and for all ξ, λ ∈ Rn,

(G5) there exists α ≥ 2 and cα > 0 such that cα|ξ|α ≤ G(ξ) for all |ξ| ≥ 1,

(G6) G(ξ) ≤ c
n∑
s=1
|ξs|2

∗(α/2−1)+2 for all |ξ| ≥ 1, where 2∗ is a critical Sobolev

exponent,

(G7) there exists ν > 0 such that 〈D2G(ξ)λ, λ〉 ≥ 2νG(ξ)|λ|2/|ξ|2 for all ξ,

λ ∈ Rn.

Note that function G satisfies the definition of n-dimensional Young function

in the sense of Barletta, Cianchi [2]. Thanks to that we can naturally define

Orlicz–Sobolev space

W 1,G(Ω) =

{
u ∈ L1(Ω) : u is weakly differentiable and

∫
Ω

G(∇u) dx ≤ ∞
}
.

Here we will deal mainly with weak formulation of the equation and therefore we

do not need any specific properties of Orlicz–Sobolev spaces. For our purpose

we only need to know that W 1,G(Ω) is a linear space. For more information on

this subject we refer the reader to [2] or [17] and references therein.

One can notice that (G4) implies that G has polynomial growth, namely

G(ξ) ≤ c|ξ|p for |ξ| ≥ 1 (see [2]). Assumption (G6) gives another upper bound on

the growth, so without loss of generality we could assume that p = 2∗(α/2−1)+2.

However, for technical reasons it is more convenient to keep both constants.

Especially, this specific form of exponent is useful in (3.15).
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Regularity of Weak Solutions in Orlicz–Sobolev Spaces 3

Assumption (G7) guarantees that D2G is positive definite with lower bound

for its eigenvalues dependent on G(ξ)/|ξ|2. Thus inequality (G7) implies the

strong ellipticity of the operator div(∇G(∇u(x))). It is also equivalent to uniform

convexity of G (see Lemma 2.3 of [16]). When considering higher regularity

such ellipticity assumption seem to be necessary. Our inequality is a natural

generalization of for example condition (8.11) from [11].

We consider F ∈ C1(Ω×R,R). The derivative Fu is assumed to be bounded

or to have bounded derivatives, Fu can also be also a sum of such functions. For

this reason, we shall write Fu = F + F̂ where

(F1) F is continuous and |F (x, u)| ≤ Q for all x ∈ Ω, u ∈ R,

(F2) F̂ is continuous and has bounded derivatives: |F̂xs(x, u)| ≤ Q and

|F̂u(x, u)| ≤ Q for all x ∈ Ω, u ∈ R.

Now we are in position to state our main theorem.

Theorem 1.1. Let v ∈W 1,G
loc (Ω) be a weak solution of (P). Solution v is of

class W 2,2
loc (Ω) ∩W 1,∞

loc (Ω) and for every R > 0 and every ball BR ⊂⊂ Ω there

exist positive constants C and C̃ such that

(1.1)

∫
BR/2

|D2v|2 dx ≤ C
∫
BR

1 +G(Dv) dx

and

(1.2) sup
BR/2

|Dv|2 ≤ C̃
∫
BR

1 +G(Dv) dx.

In [14] Marcellini proved an analogous regularity result for equation

n∑
i=1

∂

∂xi
ai(x, u(x), Du) = b(x, u(x), Du)

with ai satisfying general (but isotropic) growth conditions. Our problem is

a special case of this equation (with ai(x, u, ξ) = Gξi(ξ)). Assumptions (G1)–

(G7) give more restrictive growth conditions for G that given in [14] and [9].

In [14] weak solutions are assumed to be in W 1,G but with isotropic function

G determined by the upper bounds for a. In [13, 9] authors assume that weak

solutions are of class W 1,q, where G ≺ | · |q. Our assumptions admit anisotropic

behaviour. Furthermore, the space W 1,G in which we work is strictly connected

with the equation. That is, the weak formulation can be naturally considered in

this space.

We believe that our theorem, despite restrictive growth conditions and some

technical complications, may be useful in many applications. In applications

weak solutions can be obtained as critical points of certain functional defined

on W 1,G
loc . For example we get the following:
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4 J. Maksymiuk — K. Wroński

Remark 1.2. It follows form Theorem 1.1 that every local minimum of the

functional

I(u) =

∫
Ω

G(∇u) + F (x, u) dx

in the space W 1,G
loc (Ω) is of class W 2,2

loc (Ω) ∩W 1,∞
loc (Ω) and satisfies inequalities

(1.1) and (1.2).

2. Difference quotients and properties of weak derivatives

The purpose of this section is to introduce the notation and to collect aux-

iliary facts that will be used. In the proof of Theorem 1.1 we will use many

properties of difference quotients. The difference quotient of u : Ω → R in the

direction of versor es is defined by

∆s
hu(x) =

u(x+ hes)− u(x)

h
,

where h 6= 0. Note that difference quotient ∆s
hu is defined only on the set

Ω|h| = {x ∈ Ω : d(x, ∂Ω) > |h|}.

The upper index s in ∆s
h will be usually omitted and be assumed to be fixed.

The next lemma is a direct consequence of the definition of difference quotients

and linearity of W 1,G (cf. [14]).

Lemma 2.1. Assume that u,w ∈W 1,G(Ω) and h ∈ R, h 6= 0. Then:

(a) ∆hu ∈W 1,G(Ω|h|).

(b) If ψ : R → R is a Lipschitz-continuous, odd, convex function, nonde-

creasing on [0,∞) then ψ(∆hu) ∈W 1,G(Ω|h|).

(c) If ψ is as above and η ∈ C1
0 (Ω) then ηψ(∆hu) ∈W 1,G(Ω|h|).

(d) Di(∆hu) = ∆h(Diu).

(e) If suppu ⊂ Ω|h| or suppw ⊂ Ω|h| then∫
Ω

u∆hw dx = −
∫

Ω

w∆−hu dx.

(f) ∆h(uw)(x) = u(x+ hes)∆hw(x) + w(x)∆hu(x)

The next lemma establishes relation between difference quotients and weak

derivatives. It is a classical result that can be found, for example, in [14, Lem-

ma 3.1].

Lemma 2.2. Let Ω0 ⊂⊂ Ω, |h| < d(Ω0, ∂Ω), 1 ≤ p < ∞. For every v ∈
W 1,p(Ω) we have ∫

Ω0

|∆s
hv|p dx ≤

∫
Ω

|Dsv|p dx ≤
∫

Ω

|Dv|p dx

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Regularity of Weak Solutions in Orlicz–Sobolev Spaces 5

Following lemmas are inspired by [11, Lemma 8.2]. The first states that if

there exists a weak derivative in Lploc(Ω), then the difference quotients converge

to it in Lploc. The second shows that boundedness of norms of the difference

quotients implies existence of the weak derivative. It is our main tool in proving

the existence of weak derivatives.

Lemma 2.3. Assume that for some v ∈ Lploc(Ω) there exists Dsv ∈ Lploc(Ω).

Then ∆hv → Dsv in Lploc(Ω).

Lemma 2.4. Let v ∈ Lp(Ω), 1 < p < ∞. Assume that there exists M > 0

and a sequence hn → 0, such that∫
Ω|hn|

|∆s
hnv|

p dx ≤M.

Then ∫
Ω

|Dsv|p dx ≤M

and ∆s
hn
v → Dsv in Lploc(Ω).

Note that when Ω is bounded, then convergence in Lploc can be replaced with

convergence in Lp. The case of bounded Ω will be considered in the proof of the

Theorem 1.1. To finish this section we recall well known facts about the ess sup

norm. The proof can be found in [15].

Lemma 2.5. Assume that Ω is bounded.

(a) If v ∈ L∞(Ω), then ‖v‖L∞(Ω) = lim
p→∞

‖v‖Lp(Ω).

(b) If v ∈ Lpk(Ω) for some sequence pk → ∞ and sup
k
‖v‖Lpk (Ω) < ∞, then

v ∈ L∞(Ω).

The following is a simple consequence of the above Lemma and Lemma 2.2:

Lemma 2.6. Let Ω0 ⊂⊂ Ω, |h| < d(Ω0, ∂Ω). For every v ∈ W 1,∞(Ω) we

have

ess sup
Ω0

|∆s
hv| ≤ ess sup

Ω
|Dsv|

3. Proof of Theorem 1.1

We have divided the proof into several steps. First, we provide some estimates

on the integral on the left side of Euler equation:

(3.1)

∫
Ω

n∑
i=1

(Gξi(Dv))Diϕ(x) + Fu(x, v)ϕ(x) dx = 0,

where v ∈ W 1,G
loc is a weak solution of (P) and ϕ ∈ W 1,G(Ω) is such that

supp(ϕ) ⊂⊂ Ω. In the next steps we prove inequalities (1.1) and (1.2).

Before we start the proof, we shall introduce some auxiliary notation:
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6 J. Maksymiuk — K. Wroński

• letter c will be a positive constant which can vary from line to line, it may

depend on the other constants given in the assumptions or appearing

in calculations, but to simplify the proof we do not provide explicit

formulas;

• Br denotes the open ball in Rn of radius r, form now on all the balls will

be concentric;

• 2h0 ≤ dist(BR, ∂Ω) and |h| ≤ h0;

• for 0 < ρ < R, by η ∈ C2
0 (Ω) we will denote a function constantly equal

to 1 on a ball Bρ such that

supp η ⊂ BR, |Dη| ≤ 1

R− ρ
and |D2η| ≤ 1

(R− ρ)2
;

• for |h| ≤ h0 and t ∈ [0, 1] we define ξth = tDv(x + hes) + (1 − t)Dv(x)

and λth = Dv(x+ thes);

• by ψ ∈ C1(R) we will understand an odd function which is convex on

[0,∞) and for which 0 ≤ ψ′(t) ≤ cψ′ . Notice that for such ψ we have

(3.2) |ψ(t)| ≤ ψ′(t)|t|.

Step 1. Auxiliary estimates. Since v ∈ W 1,G is a weak solution, it satisfies

(3.1) for any ϕ ∈W 1,G(Ω) such that supp(ϕ) ⊂⊂ Ω. It follows from Lemma 2.1

(a), (b) and (c) the the function ϕ = ∆−h(η2ψ(∆hv)) is admissible.

For this particular ϕ, using Lemma 2.1 (d), (e) and (f) we can rewrite the

first summand in equation (3.1) as∫
BR

n∑
i=1

(Gξi(Dv))Diϕ(x) dx =

∫
BR

n∑
i=1

Gξi(Dv)∆−h
(
Di(η

2ψ(∆hv))
)
dx

= −
∫
BR

n∑
i=1

∆h(Gξi(Dv))
(
Di(η

2)ψ(∆hv) + η2ψ(∆hv)Di(∆hv)
)
dx

= −
∫
BR

n∑
i=1

∆hGξi(Dv)Di(η
2)ψ(∆hv) dx

−
∫
BR

n∑
i=1

∆h(Gξi(Dv))∆h(Div)η2ψ′(∆hv) dx.

Hence equation (3.1) can be rewritten in the form:

(3.3)

∫
BR

n∑
i=1

∆h(Gξi(Dv))∆h(Div)η2ψ′(∆hv) dx

= −
∫
BR

n∑
i=1

∆hGξi(Dv)Di(η
2)ψ(∆hv) dx+

∫
BR

Fu(x, v)∆−h(η2ψ(∆hv)) dx.
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Regularity of Weak Solutions in Orlicz–Sobolev Spaces 7

We will denote these three integrals by J1, J2, J3 (so J1 = −J2 + J3). Our

goal in this step is to provide bounds for every integral in (3.3). Observe that

∆h(Gξi(Dv)) =
1

h
(Gξi(Dv(x+ hes))−Gξi(Dv(x)))

=
1

h

∫ 1

0

d

dt
Gξi(tDv(x+ hes) + (1− t)Dv(x)) dt

=

∫ 1

0

n∑
j=1

Gξiξj (ξ
t
h)∆h(Djv) dt.

Applying this to J1 we get

J1 =

∫
BR

∫ 1

0

( n∑
i,j=1

Gξiξj (ξ
t
h)∆h(Div)∆h(Djv)

)
η2ψ′(∆hv) dt dx.

This gives

J1 ≥ 2ν

∫
BR

∫ 1

0

G(ξth)

|ξth|2
|∆h(Dv)|2η2ψ′(∆hv) dt dx

by assumption(G7)

In J2 we will also transform the difference quotient ∆h(Gξi(Dv)) but this

time we will use λth instead of ξth.

∆h(Gξi(Dv)) =
1

h

∫ 1

0

d

dt
Gξi(λ

t
h) dt =

∫ 1

0

∂

∂xs
Gξi(λ

t
h) dt.

Applying this to J2 and integrating by parts we get

J2 =

∫
BR

∫ 1

0

n∑
i=1

Gξi(λ
t
h)Ds

(
Di(η

2)ψ(∆hv)
)
dt dx

= 2

∫
BR

∫ 1

0

〈DG(λth), DsDi(η
2)〉ψ(∆hv) dt dx

+

∫
BR

∫ 1

0

〈DG(λth), Di(η
2)〉ψ′(∆hv)∆h(Dsv) dt dx.

We will denote those two integrals by J2,1 and J2,2. By definition of η we have

|Di(η
2)| ≤ 2/(R− ρ) and |DiDj(η

2)| ≤ 4/(R− ρ)2. From (G4) and (3.2) we

obtain

|J2,1| ≤
∫
BR

∫ 1

0

p
G(λth)

|λth|
4

(R− ρ)2
ψ′(∆hv)|∆hv| dt dx.
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8 J. Maksymiuk — K. Wroński

Applying (G4), properties of η and inequality |2ab| ≤ νa2 + b2/ν yields

|J2,2| ≤
∫
BR

∫ 1

0

p
G(λth)

|λth|
2η|Diη|ψ′(∆hv)|∆h(Dsv)| dt dx

≤
∫
BR

∫ 1

0

2

(
G(λth)

|λth|2
η2ψ′(∆hv)|∆h(Dsv)|2

)1/2

×
(

p2

(R− ρ)2
G(λth)ψ′(∆hv)

)1/2

dt dx

≤ ν
∫
BR

∫ 1

0

G(λth)

|λth|2
η2ψ′(∆hv)|∆h(Dsv)|2 dt dx

+
p2

ν(R− ρ)2

∫
BR

∫ 1

0

G(λth)ψ′(∆hv) dt dx.

Now we consider J3. From Fu = F̂ + F and Lemma 2.1 (e) we have

|J3| =
∣∣∣∣ ∫
BR

F (x, v)∆−h
(
η2ψ(∆hv)

)
dx−

∫
BR

∆hF̂ (x, v)η2ψ(∆hv) dx

∣∣∣∣
≤
∫
BR

|F (x, v)||∆−h(η2ψ(∆hv))| dx+

∫
BR

∣∣∆hF̂ (x, v)
∣∣η2|ψ(∆hv)| dx

= J3,1 + J3,2.

From (F1) and Lemma 2.2 we get

J3,1 ≤ Q
∫
BR

∣∣∆−h(η2ψ(∆hv)
)∣∣ dx ≤ Q∫

BR+|h|

∣∣∣∣ ddxs (η2ψ(∆hv))

∣∣∣∣ dx.
Since supp η ⊂ BR, we can take BR instead of BR+|h| in the last integral. Having

this in mind and using 2.1 (d) we get

J3,1 ≤ Q
∫
BR

2η|Dsη||ψ(∆hv)|+ η2ψ′(∆hv)|∆h(Dsv)| dx.

Applying inequality ab ≤ τa2 + b2/τ to the second integral yields

J3,1 ≤ Q
∫
BR

2η|Dsη||ψ(∆hv)| dx

+ τ

∫
BR

η2ψ′(∆hv)|∆h(Dv)|2 dx+
1

4τ

∫
BR

η2ψ′(∆hv) dx.

Now we deal with J3,2. From (F2) we get

J3,2 =

∫
BR

∣∣∣∣η2ψ(∆hv)
1

h

∫ 1

0

d

dt
F̂ (x+ thes, v + th∆hv) dt

∣∣∣∣ dx
≤
∫
BR

∫ 1

0

∣∣η2ψ(∆hv)
∣∣(∣∣F̂xs ∣∣+

∣∣F̂u∣∣|∆hv|
)
dt dx

≤Q
∫
BR

η2ψ′(∆hv)|∆hv|(1 + |∆hv|) dx.
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Regularity of Weak Solutions in Orlicz–Sobolev Spaces 9

Combining the above inequalities gives

|J3| ≤Q
∫
BR

2η|Dsη||ψ(∆hv)| dx+ τ

∫
BR

η2ψ′(∆hv)|∆h(Dv)|2 dx(3.4)

+
1

4τ

∫
BR

η2ψ′(∆hv) dx+Q

∫
BR

η2ψ′(∆hv)|∆hv|(1 + |∆hv|) dx.

In equation (3.3) we have J1 = J2 +J3. Taking all previous inequalities we easily

get

2ν

∫
BR

∫ 1

0

G(ξth)

|ξth|2
η2ψ′(∆hv)|∆h(Dv)|2 dt dx(3.5)

− ν
∫
BR

∫ 1

0

G(λth)

|λth|2
η2ψ′(∆hv)|∆h(Dsv)|2 dt dx

− τ
∫
BR

η2ψ′(∆hv)|∆h(Dv)|2 dx

≤Q
∫
BR

2η|Dsη||ψ(∆hv)| dx

+Q

∫
BR

η2ψ′(∆hv)|∆hv|(1 + |∆hv|) dx

+
1

4τ

∫
BR

η2ψ′(∆hv) dx+
p2

ν(R− ρ)2

∫
BR

∫ 1

0

G(λth)ψ′(∆hv) dt dx

+
4p

(R− ρ)2

∫
BR

∫ 1

0

G(λth)

|λth|
|∆hv|ψ′(∆hv) dt dx.

Obviously, |∆h(Dsv)|2 ≤ |∆h(Dv)|2, thus the left hand side of (3.5) is bounded

from below by∫
BR

∫ 1

0

(
2ν
G(ξth)

|ξth|2
− νG(λth)

|λth|2
− τ
)
η2ψ′(∆hv)|∆h(Dv)|2 dt dx.

Step 2. Uniform estimates. Now we want to show that the right side of (3.5)

is bounded by quantities that do not depend on h. It is easy to obtain upper

bounds for the last three summands. It follows immediately from Lemma 2.2,

properties of ψ and η and recall that |h| ≤ h0 that

Q

∫
BR

2η|Dsη||ψ(∆hv)| dx ≤ 2cψ′Q

R− ρ

∫
BR+h0

|Dsv| dx,

Q

∫
BR

η2ψ′(∆hv)|∆hv|(1 + |∆hv|) dx ≤ cψ′Q
∫
BR+h0

|Dsv|+ |Dsv|2 dx,

1

4τ

∫
BR

η2ψ′(∆hv) dx ≤ cψ′

4τ
|BR|,

p2

ν(R− ρ)2

∫
BR

∫ 1

0

G(λth)ψ′(∆hv) dt dx ≤ p2cψ′

ν(R− ρ)2

∫
BR+h0

G(Dv) dx.
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10 J. Maksymiuk — K. Wroński

The last inequality holds since from definition of λth we have∫
BR

∫ 1

0

G(λth) dt dx ≤
∫
BR+h0

G(Dv) dx.

Obtaining bound for the last summand of (3.5) requires more work. Let us define

a sequence of functions Gk : Rn → R by

Gk(x) =

G(x) for |x| ≤ k,
c0|x|2 for |x| > k.

This sequence is nondecreasing and Gk ≤ G by (G3). Let χA denote the chara-

cteristic function of the set A. With this notation, we have∫
BR

∫ 1

0

Gk(λth)

|λth|
|∆hv| dt dx =

∫
BR

∫ 1

0

χ{|λth|≤1}
G(λth)

|λth|
|∆hv| dt dx

+

k−1∑
i=1

∫
BR

∫ 1

0

χ{|λth|∈[i,i+1]}
G(λth)

|λth|
|∆hv| dt dx

+

∫
BR

∫ 1

0

χ{|λth|≥k}
c0|λth|2

|λth|
|∆hv|dt dx.

For |λth| ≤ 1 we have G(λth)/|λth| ≤ M , where M = sup
|ξ|=1

G(ξ). Thus, by

Lemma 2.5, we get |∆hv| ≤ 1 and consequently,∫
BR

∫ 1

0

χ{|λth|≤1}
G(λth)

|λth|
|∆hv| dt dx ≤M |BR+h0

|.

Similarly, for |λth| ∈ [i, i+ 1], by Lemma 2.5 we get∫
BR

∫ 1

0

χ{|λth|∈[i,i+1]}
G(λth)

|λth|
|∆hv| dt dx

≤
∫
BR+|h|

∫ 1

0

χ{|λth|∈[i,i+1]}
G(λth)

i
(i+ 1) dt dx

≤ 2

∫
BR+h0

∫ 1

0

χ{|λth|∈[i,i+1]}G(λth) dt dx.

Summing these inequalities over i we obtain

k−1∑
i=1

∫
BR

∫ 1

0

χ{|λth|∈[i,i+1]}
G(λth)

|λth|
|∆hv| dt dx ≤ 2

∫
BR+2h0

G(Dv) dx.

Applying Lemma 2.2 and inequality ab ≤ (a2 + b2)/2 we conclude that∫
BR

∫ 1

0

χ{|λth|≥k}|λ
t
h||∆hv| dt dx ≤

1

2

∫
BR

∫ 1

0

χ{|λth|≥k}|λ
t
h|2 dt dx

+
1

2

∫
BR

∫ 1

0

χ{|λth|≥k}|∆hv|2 dt dx ≤
∫
BR+h0

|Dv|2 dx.
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Hence∫
BR

∫ 1

0

Gk(λth)

|λth|
|∆hv| dt dx ≤M |BR+h0 |+ 2

∫
BR+2h0

G(Dv) dx+

∫
BR+h0

|Dv|2 dx.

From the above inequality, Monotone Convergence Theorem and the definition

of Gk we get∫
BR

∫ 1

0

G(λth)

|λth|
|∆hv|ψ′(∆hv)dt dx

≤ cψ′
∫
BR

∫ 1

0

G(λth)

|λth|
|∆hv| dt dx = cψ′ lim

k→∞

∫
BR

∫ 1

0

Gk(λth)

|λth|
|∆hv| dt dx

≤ cψ′
(
M |BR+h0

|+ 2

∫
BR+2h0

G(Dv) dx+

∫
BR+h0

|Dv|2 dx
)
.

Finally, the right hand side of (3.5) can be bounded from above by quantities

independent of h:∫
BR

∫ 1

0

η2ψ′(∆hv)

(
2ν
G(ξth)

|ξth|2
− νG(λth)

|λth|2
− τ
)
|∆h(Dv)|2 dt dx(3.6)

≤ cψ′Q

R− ρ

∫
BR+h0

|Dsv| dx+ cψ′Q

∫
BR+h0

|Dsv|+ |Dsv|2 dx

+
cψ′

4τ
|BR|+

p2cψ′

ν(R− ρ)2

∫
BR+h0

G(Dv) dx

+ cψ′

(
M |BR+h0 |+ 2

∫
BR+2h0

G(Dv) dx+

∫
BR+h0

|Dv|2 dx
)
.

Step 3. Proof of inequality (1.1). We first prove that for sufficiently small τ

from any sequence of h→ 0 we can extract a subsequence such that

2ν
G(ξth)

|ξth|2
− ν G(λth)

|λth|2
− τ > νc0 − τ > 0 almost everywhere.

If ξth → Dv and λth → Dv in L2 when h → 0, then (after passing to a subse-

quence) ξth and λth are also convergentalmost everywhere. This gives

2ν
G(ξth)

|ξth|2
− ν G(λth)

|λth|2
− τ → ν

G(Dv)

|Dv|2
− τ ≥ νc0 − τ > 0.

To finish this step we choose ψ(t) = t. Recall that Bρ ⊂ BR and η is equal

to 1 on Bρ. Replacing BR with Bρ we obtain∫
BR

∫ 1

0

η2ψ′(∆hv)

(
2ν
G(ξth)

|ξth|2
− νG(λth)

|λth|2
− τ
)
|∆h(Dv)|2 dt dx

≥
∫
Bρ

∫ 1

0

(
2ν
G(ξth)

|ξth|2
− νG(λth)

|λ2
h|2
− τ
)
|∆h(Dv)|2 dt dx

≥ (νc0 − τ)

∫
Bρ

|∆h(Dv)|2 dx.
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12 J. Maksymiuk — K. Wroński

Now we see that
∫
Bρ
|∆h(Dv)|2 dx ≤ c, where the constant c comes from

(3.6), hence is independent of h. By Lemma 2.4 for p = 2, there exist a second

order weak derivative and
∫
Bρ
|Ds(Dv)|2 dx ≤ c for the same constant c.

Since h0 was chosen arbitrary we can replace balls BR+h0 and BR+2h0 by

BR in upper bounds of (3.6). Additionally, by assumption (G3) we have |Dsv| ≤
1+G(Dv)/c0 and |Dsv|2 ≤ G(Dv)/c0. Hence we have the following upper bound

for the right hand side of (3.6):

cψ′Q

R− ρ

∫
BR+h0

|Dsv| dx+ cψ′Q

∫
BR+h0

|Dsv|

+ |Dsv|2 dx+
cψ′

4τ
|BR|

+
p2cψ′

ν(R− ρ)2

∫
BR+h0

G(Dv) dx

+ cψ′

(
M |BR+h0 |+ 2

∫
BR+2h0

G(Dv) dx+

∫
BR+h0

|Dv|2 dx
)

≤ c
∫
BR

1 +G(Dv) dx.

Finally, ∫
Bρ

|Ds(Dv)|2 dx ≤ c
∫
BR

1 +G(Dv) dx,

Thus we have finished the proof of (1.1).

Step 4. Proof of inequality (1.2). We now turn to the proof of inequality

(1.2). Applying bounds on η, Dη i ψ′ to inequality (3.5) and using (3.2) we get∫
BR

∫ 1

0

(
2ν

G(ξth)

|ξth|2
− ν G(λth)

|λth|2
− τ
)
η2ψ′(∆hv)|∆h(Dv)|2 dt dx

≤ c
∫
BR

∫ 1

0

(
1 + 2|∆hv|+ |∆hv|2 +G(λth) +

G(λth)

|λth|
|∆hv|

)
ψ′(∆hv) dt dx

≤ c
∫
BR

∫ 1

0

1 +

(
|∆hv|+ |∆hv|2 +G(λth) +

G(λth)

|λth|
|∆hv|

)
ψ′(∆hv) dt dx.

Note that ∆hv converge to Dsv and ∆h(Dv) to Ds(Dv) in L2, by Lemma 2.3.

In addition, observe that λth is a shift of Dv and ξth is a linear combination of

Dv and a shift of Dv.

Hence λth, ξth, being shifts in argument, converge to Dv in L1. In the same

manner, any function g that depend on λth, ξth, converges in L1 to an analogous

function dependent on Dv. For example

G(ξth)

|ξth|2
→ G(Dv)

|Dv|2
in L1.

Thus in the above inequality we can pass to the limit with h→ 0 in L1.
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As in the proof of inequality (1.1), assumption (G3) gives

(3.7)

∫
BR

η2ψ′(Dsv)

(
ν
G(|Dv|)
|Dv|2

− τ
)
|Ds(Dv)|2 dx

≤ c
∫
BR

1 +G(Dv)ψ′(Dsv) dx.

Again, by (G3),

ν
G(Dv)

|Dv|2
− τ ≥ G(Dv)

|Dv|2

(
ν − τ

c0

)
.

Therefore, for sufficiently small τ , we can rewrite (3.7) as

(3.8)

∫
BR

η2ψ′(Dsv)
G(|Dv|)
|Dv|2

|Ds(Dv)|2 dx ≤ c
∫
BR

1 +G(Dv)ψ′(Dsv) dx.

Now we shall prove that this inequality remains true if the assumptions that

ψ′ < cψ′ is dropped. Take ψ̃ that satisfies all the previous assumptions on ψ but

its derivative ψ̃′ is unbounded. For such a ψ̃ define a sequence ψ̃k by:

ψ̃k(t) = ψ̃(t) for |t| < k,

ψ̃′k(t) = ψ̃′(k) for |t| ≥ k.

Every ψ̃k has bounded derivative, thus inequality (3.8) holds for ψ̃k. By the

Monotone Convergence Theorem, inequality (3.8) is satisfied also for ψ̃.

Note that ψ′ is even, thus we can rewrite inequality (3.8) as

(3.9)

∫
BR

η2ψ′(|Dsv|)
G(Dv)

|Dv|2
|Ds(Dv)|2 dx ≤ c

∫
BR

1 +G(Dv)ψ′(|Dsv|) dx.

Define Φ: (0,∞)→ R by

(3.10) Φ(t) = 1 + cΦ

∫ t

0

√
ψ′(τ) · τα/2−1 dτ,

where cΦ > 0. Straightforward calculations and the inequality (a+b)2 ≤ 2a2+2b2

yields

(3.11) |D(ηΦ(|Dsv|))|2 ≤ 2|Dη|2(Φ(|Dsv|))2

+ 2η2c2Φψ
′(|Dsv|)|Dsv|α−2|D(Dsv)|2

and

(Φ(|Dsv|))2 ≤
(

1 + cΦ
√
ψ′(|Dsv|) · |Dsv|α/2−1 · |Dsv|

)2

(3.12)

≤ 2 + 2c2Φψ
′(|Dsv|)|Dsv|α ≤ 2 + 2c ψ′(|Dsv|)G(Dv).
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14 J. Maksymiuk — K. Wroński

From assumption (G5) we have |Dsv|α−2 ≤ cG(Dv)/|Dv|2. Applying (3.9),

(3.11) and (3.12) we get∫
BR

|D(ηΦ(|Dsv|))|2 dx

≤ 2

∫
BR

|Dη|2(Φ(|Dsv|))2 dx+ 2

∫
BR

η2c2Φψ
′(|Dsv|)

G(Dv)

|Dv|2
|D(Dsv)|2 dx

≤ 2

∫
BR

2 + 2c ψ′(|Dsv|)G(Dv) dx+ c

∫
BR

1 +G(Dv)ψ′(|Dsv|) dx

= c

∫
BR

1 +G(Dv)ψ′(|Dsv|) dx.

By Sobolev inequality and the definition of η,(∫
Bρ

(Φ(|Dsv|))2∗ dx

)2/2∗

≤ C
∫
BR

|D(ηΦ(|Dsv|))|2 dx.

Combining this with the previous inequality we get(∫
Bρ

(Φ(|Dsv|))2∗ dx

)2/2∗

≤ C
∫
BR

|D(ηΦ(|Dsv|))|2 dx(3.13)

≤ c
∫
BR

(1 +G(Dv)ψ′(|Dsv|)) dx.

Choose γ ≥ 0, cΦ = γ + α/2 and

ψ(t) =
1

2γ + 1
t2γ+1 for t ≥ 0.

Obviously, ψ′(t) = t2γ . Now we have

Φ(t) = 1 +

(
γ +

α

2

)∫ t

0

τγ+α/2−1 dτ = 1 + tγ+α/2

and thus

(Φ(|Dsv|))2∗ ≥ 1 +

((
γ +

α

2

)∫ |Dsv|
0

τγ+α/2−1 dτ

)2∗

= 1 + |Dsv|2
∗(γ+α/2).

With the above inequality and the chosen ψ we rewrite inequality (3.13) as(∫
Bρ

1 + |Dsv|2
∗(γ+α/2) dx

)2/2∗

≤ c
∫
BR

1 +G(Dv)|Dsv|2γ dx.

Clearly, ∫
Bρ

1 + |Dsv|2
∗(γ+α/2) dx ≤ c

(∫
BR

1 +G(Dv)|Dsv|2γ dx
)2∗/2

.

Adding the above inequality over s = 1, . . . , n and using inequality

n∑
i=i

aβi ≤
( n∑
i=1

ai

)βD
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we obtain∫
Bρ

n+

n∑
s=1

|Dsv|2
∗(γ+α/2) dx ≤ c

n∑
s=1

(∫
BR

1 +G(Dv)|Dsv|2γ dx
)2∗/2

(3.14)

≤ c
(∫

BR

n+G(Dv)

n∑
s=1

|Dsv|2γ dx
)2∗/2

.

For all nonnegative and nondecreasing functions h1 i h2 following inequality

n

n∑
i=1

h1(ai) · h2(ai) ≥
n∑
i=1

h1(ai) ·
n∑
i=1

h2(ai)

holds. We shall apply it to the left hand side of (3.14) together with the assump-

tion (G6).

Let A1 denote the set {x : |Dv(x)| ≥ 1}. We will give lower bounds for the

left hand side of (3.14) previously splitting the integral into two integrals on sets

Bρ ∩A1 and Bρ \A1. For the first one we have∫
Bρ∩A1

n+

n∑
s=1

|Dsv|2
∗(γ+α/2) dx(3.15)

=

∫
Bρ∩A1

n+

n∑
s=1

|Dsv|2
∗(α/2−1)+2 · |Dsv|2

∗(γ+1)−2 dx

≥
∫
Bρ∩A1

n+
1

n

( n∑
s=1

|Dsv|2
∗(α/2−1)+2

)( n∑
s=1

|Dsv|2
∗(γ+1)−2

)
dx

≥ c
∫
Bρ∩A1

1 +G(Dv)

( n∑
s=0

|Dsv|2
∗(γ+1)−2

)
dx.

Recall that M = sup
|ξ|=1

G(ξ), γ ≥ 0 and 2∗ ≥ 2. It is easy to check that, for

|ξ| ≤ 1,

n∑
s=1

|ξs|2
∗(γ+1)−2 ≤ |ξ|2 and G(ξ)

n∑
s=1

|ξs|2
∗(γ+1)−2 ≤M.

Therefore∫
Bρ\A1

n+

n∑
s=1

|Dsv|2
∗(γ+α/2) dx ≥

∫
Bρ\A1

ndx ≥ 1

2

∫
Bρ\A1

n+
n

M
M dx

≥ 1

2

∫
Bρ\A1

n+
n

M
G(Dv)

( n∑
s=0

|Dsv|2
∗(γ+1)−2

)
dx.

As a consequence we have the inequality∫
Bρ

n+

n∑
s=1

|Dsv|2
∗(γ+α/2) dx ≥ c

∫
Bρ

1 +G(Dv)

( n∑
s=0

|Dsv|2
∗(γ+1)−2

)
dx.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


16 J. Maksymiuk — K. Wroński

Thus inequality (3.14) can be written in the form

(3.16)

(∫
Bρ

1 +G(Dv)

( n∑
s=0

|Dsv|2
∗(γ+1)−2

)
dx

)2/2∗

≤ c
∫
BR

1 +G(Dv)

( n∑
s=1

|Dsv|2γ
)
dx.

In order to show that |Dv| ∈ L∞ we introduce a sequence of integrals of increas-

ing powers of |Dsv|. To do this we will use inequality (3.16).

Let us introduce the following notation: γ0 = 0, γi+1 = 2∗(γi + 1)/2 − 1

and Ri = R/2 + R/2i+1. It is easy to see that γi = (2∗/2)i − 1, γi → ∞ and

Ri → R/2. If in (3.16) we replace γ with γi, R with Ri and ρ with Ri+1 then

we get

(3.17)

(∫
BRi+1

1 +G(Dv)

( n∑
s=0

|Dsv|2γi+1

)
dx

)2/2∗

≤ c
∫
BRi

1 +G(Dv)

( n∑
s=1

|Dsv|2γi
)
dx.

Observe that in the left hand side of (3.17) we have higher powers of |Dsv| then

the powers on the right hand side. Now let

Ei =

(∫
BRi

1 +G(Dv)

(
n∑
s=1

|Dsv|2γi
)
dx

)1/(γi+1)

.

In particular,

E0 =

∫
BR

1 +G(Dv) dx.

By the definition of γi we have (γi+1 + 1)/(γi + 1) = 2∗/2. It follows by (3.17)

that

Ei+1 ≤ c1/(γi+1)Ei ≤
( i∏
j=0

c1/(γj+1)

)
E0.

An easy computations shows that

lim
i→∞

i∏
j=0

c1/(γj+1) = exp

(
ln c

∞∑
j=0

(
2

2∗

)j)
= c1/(1−2/2∗).

It follows that

∞ > c1/(1−2/2∗)E0 = c1/(1−2/2∗)

∫
BR

1 +G(Dv) dx ≥ lim
i→∞

Ei+1.
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Recall that BR/2 ⊂ BRi+1
. Using (G3) and Lemma 2.5 we obtain

lim
i→∞

Ei+1 = lim
i→∞

(∫
BRi+1

1 +G(Dv)

( n∑
s=1

|Dsv|2γi+1

)
dx

)1/(γi+1+1)

≥ lim
i→∞

(
c0

∫
BR/2

(
|Dv|2

n∑
s=1

|Dsv|2γi+1

)
dx

)1/(γi+1+1)

≥ lim
i→∞

(
c0

∫
BR/2

( n∑
s=1

|Dsv|2γi+1+2

)
dx

)1/(γi+1+1)

= ess sup
BR/2

|Dv|2.

Finally,

∞ > c

∫
BR

1 +G(Dv) dx = cE0 ≥ lim
i→∞

Ei+1 = ess sup
BR/2

|Dv|2,

which proves that |Dv| ∈ L∞ and the proof of the inequality (1.2) is finished.
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