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Abstract 

A framework for the flexomagneticity influence is here considered extending the studies 

about this aspect on the small scale actuators. The developed model accommodates and 

composes linear Lagrangian strains, Euler-Bernoulli beam approach as well as an 

extended case of Hamilton’s principle. The nanostructured tube should subsume and 

incorporate size effect; however, for the sake of avoiding the staggering costs of 

experiments, here, via stress-driven nonlocal elasticity theory, the desired influence is 

captured. A given section is dedicated to reveal the accuracy of the achieved model. In 

view of solution, the numerical results are generated analytically. We receive the 

conclusion that in nanoscale tubes the diameter can affect fundamentally the performance 

of the flexomagnetic effect. 
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1. Introduction 

As a new-discovered material’s phenomenon, flexomagneticity absorbs the 

engineering researchers to study this physical occurrence when materials subject to static 

and dynamics states. Indeed, flexomagneticity results from strain gradients. This manner 

can be named as the direct impact of flexomagneticity. In a reverse impact, one can 

observe the flexo-effect during existence of an outer magnetic field gradient. This effect 
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would not be absolutely and solely in actuators and smart materials, but even can occur 

in all materials and crystalline structures [1-6]. 

Since discovering of flexomagneticity effect, a very few publications have been 

observed on the statics and dynamics responses of small scale actuators and sensors which 

incorporate the effect [7, 8]. Within these articles, Zhang et al. [7] entirely focused on the 

effect of flexomagnetic during bending of a nano actuator beam. By means of Euler-

Bernoulli beam theory, the static bending equation was formulated. Moreover, the 

consideration has been carried out by use of surface elasticity. A variety boundary 

conditions were investigated on the basis of both converse and direct magnetizations. 

From their result, one can find that the flexomagnetic is a size-dependent material 

property. On the other hand, Sidhardh and Ray [8] studied the static bending of a 

piezomagnetic-flexomagnetic Euler-Bernoulli nanosize beam based on the clamped-free 

ends conditions. Both inverse and direct effects of magnetization were discussed. The 

surface elasticity aided to examine the size-dependency into the small beam. With a 

quantitative evaluation, they showed the scale-dependent behavior of flexomagneticity 

and identified the significance of such the effect into nanostructures even with 

disregarding the piezomagneticity.   

As far as we are aware, no research work is found yet in terms of investigating of 

natural frequencies of a nano-actuator tube composing the flexomagnetic. We aim to 

study the flexomagneticity effect on the natural frequencies of a nanostructured tube and 

intend to evaluate the small scale behavior on the basis of the stress-driven nonlocal model 

of elasticity. The numerical outcomes pertain to an analytical solution. The magneto-

mechanical model is extended by illustrating some drawn graphs during variations in 

significant and particular criterions. 

2. Applied mathematical model 

Here a right-handed Cartesian coordinate system is attached to the schematic 

domain of the flexomagnetic nanotube as presented by Fig. 1. To this, we define L and r, 

for length and radius of the specimen, respectively. 
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Fig. 1. Pictured geometry of a nanostructured tube presented schematically in the Cartesian 

coordinate 

Assuming that the nanostructured tube contains flexomagneticity influence give the 

constitutive equations as [7, 8] 

11 31xx xx zC q H                                                                                                              (1) 

31 31xxz xxz zg f H                                                                                                            (2) 

33 31 31z z xx xxzB a H q f                                                                                                   (3) 

in which 31g  illustrates the influence of the sixth-order gradient elasticity tensor, zH  and 

zB  exhibit the component of magnetic field and the magnetic flux, respectively, xxz  is 

the component of the higher-order hyper stress tensor and is an induction of coverse 

flexomagnetic effect, 31q  depicts the component of the third-order piezomagnetic tensor, 

33a  represents the component of the second-order magnetic permeability tensor, 31f  

denotes the component of the fourth-order flexomagnetic coefficients tensor, xx  is the 

axial stress, 11C  is the elastic modulus, xx  and xxz  are the axial elastic strain and its 

gradients. 

To have a movement for each node of body of the applied model after deformation, 

the Euler-Bernoulli hypothesis is used as [9-11]  

   
 

1

,
,, ,

w x t
u x t  z z

x
u x t


 


                                                                                                             (4a) 

   3 , , ,x z t w x tu                                                                                                                   (4b) 

in which the general movements along x and z directions are shown by ui (i=1,3) and the 

movements of the middle plane of the thickness alone the aforementioned directions there 

have been used as u and w, respectively. More importantly, we employ z to dedicate the 

thickness coordinate. 

Axial strain and the related gradient by means of linear Lagrangian strains as well 

as Eq. (4), are attained as 
2

2xx

u w
z

x x


 
 
 

                                                                                                                    (5a) 
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z x




 
  
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                                                                                                                                     (5b) 

To yield the equation which governs the domain subjected to vibrational state, the 

Hamiltonian can be extended and nominated as 

 
2

1

0
t

K U W
t

                                                                                                                (6) 

for which the total internal strain energy, work of external forces and the kinetic energy 

are introduced by U , W  and K . 
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To determine the total strain energy, one should collect the strain energy by 

mechanics and the magnetic strain energy which lead to 

 U xx xx xxz xxz z zV
B H dV                                                                                             (7) 

In a magnetic-mechanical coupling problem, the resultants of stress can be defined 

as 
/2

/2

h

x xx
h

N dz


                                                                                                                     (8) 

/2

/2

h

x xx
h

M zdz


                                                                                                                     (9) 

/2

/2

h

xxz xxz
h

T dz


                                                                                                                  (10) 

To write a relation between the transverse component of the magnetic field and 

magnetic potential, one can show 

0zH
z


 


                                                                                                                                (11) 

Here we assume a closed circuit state for the modeled system giving the boundary 

conditions for the magnetic potential as 

, 0
2 2

h h
 

   
        
   

                                                                                       (12a-b) 

To determine the magnetic potential which is externally applied on the model as 

a result of the existence magnetic field, we symbolize  . 

A mathematical combination of Eqs. (3), (7), (11) and (12), we can obtain the 

magnetic potential along the thickness and the magnetic field as below [7, 8] 

2 2
231

2
332 4 2

q h w h
z z

a hx

    
             

                                                                         (13) 

2
31

2
33

z

q w
H z

a hx


 


                                                                                                        (14) 

Therefore, one can insert Eqs. (13) and (14) into Eqs. (1)-(3) to harvest the magnetic 

induction and stress also higher-order moment stress component as follows  

2 2
31 31

11 11 2
33

xx

q qu w
C z C

x a hx




  
       

                                                                                           (15) 
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  
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                                                                                               (16) 

2
33

31 2z

aw
B f

hx


  


                                                                                                     (17) 

Thus, the magnetic-mechanical stress resultants can be developed as 
2 2

31
11 2

33

x z

q w
M I C

a x

  
   
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                                                                                             (18) 
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2

31 312xxz

w
T g h f

x



  


                                                                                                  (19) 

where the general form of the area moment of inertia is as 
2

z
A

I z dA  . 

The general form of kinetic energy is displayed below 

 
22

311

2
K A

uu
z dAdz

t t


    
      

      
                                                                    (20) 

The first variation of kinetic energy leads to 

4 2

2 02 2 2K A

w w
I w I w dA

x t t
  

  
   

   
                                                                    (21) 

where the mass moment of inertias are 

  
2 2

0 2 2
, 1,

h

h
I I z z dz


   

We consider the general case of established work by external forces as 

2
0

0

1

2

L

W x

w
N dx

x

 
   
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                                                                                                                              (22) 

which its first variational case will be 

0

0

L

W x

w w
N dx

x x




  
   

  
                                                                                                            (23) 

in which 
0
xN  depicts the axial load. In this paper, we investigate the axial magnetic force 

as in-plane axial resultant. To this, 
0

31xN q                                                                                                                      (24) 

Eventually, based on the above formulation the governing equation which gives 

the natural frequencies of the flexomagnetic nanotube can be taken as  
2 2 2 2 4

0

0 22 2 2 2 2 2

x xxz
x

M T w w w
N I I

x x x t x t

    
   

     
                                                                              (25) 

Here, we employ the stress-driven nonlocal elasticity model (NDM). It stands here 

differentially as below [12-13] 

 
   

2

2 2 2

1 1

c c

x
x M x

x L DL





  


                                                                                (26) 

in which Lc shows a nonlocal characteristic length. And for  x  we have 

 
2

2

w
x

x






                                                                                                                  (27) 

Consequently,  
6 4 4 2 2 4

2 0

0 26 4 4 2 2 2 2c x

w w w w w w
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where 31B g h  , and 
2

31
11

33

z

q
D I C

a

 
  

 

. 

It is required to solve the above characteristic equation to obtain the natural 

frequencies of the flexomagnetic nanotube. 

3. Solution of the equation 

The methodology here comprises the analytical solution as [14] 

   
1

sin exp n

m

m
w x x i t

L








 
  

 
                                                                                                          (29) 

The above-mentioned series can satisfy the conditions for pined-pined beams. 

To compute and present the numerical values of the natural frequencies of the 

flexomagnetic nanostructured tube, we apply Eq. (28) on Eq. (29). Finally, the 

characteristic equation of frequency would be 

    2 6 4 2

31 0 2n c m m m
DL D B q I I                                                                         (30) 

where m
m L  . 

4. Results’ discussions 

4.1. Results’ validation 

This section associates a comparison for the present formulation. The examination of formulation 

is based on the ignoring piezo-flexomagnetic features. Table 1 is prepared to estimate natural 

frequencies in dimensionless quantities with respect to [15] in which one can observe the 

evaluations for stress-driven nonlocal integral model (SDM) and strain gradient theory (SGT). As 

it is clear, slight differences are seen between NDM and SDM when the characteristic parameter 

( ) is sufficiently small. However, increasing this dimensionless characteristic parameter results 

in further conflicts. Nevertheless, it is so far easier to use the NDM vis-à-vis the SDM and results 

can be acceptable. 

2

11n z
L A C I  , c

L

L
  , E=30×106, υ= 0.3, h=1, L/h=10, ρ=1, SS. 

Table 1. Evaluation of natural frequencies of a nanobeam  

  
[15] [Present] 

SDM SGT NDM 

0 9.82927 9.82927 9.82927 

0.01 9.83402 9.83392 9.83412 

0.02 9.84787 9.8471 9.84865 

0.03 9.87022 9.86761 9.87282 

0.04 9.90042 9.89427 9.90657 

0.05 9.93783 9.9259 9.94979 
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  
[15] [Present] 

SDM SGT NDM 

0.06 9.98183 9.9614 10.0024 

0.07 10.0318 9.9997 10.0641 

0.08 10.0871 10.0398 10.1349 

0.09 10.1472 10.081 10.2146 

0.1 10.2115 10.1223 10.3029 

4.2. Computational model 

This section devotes some tabulated results for natural frequencies of the nanotube 

in the presence and absence of the flexomagneticity impact. To do this, the Table 2 aids 

us [7, 8]. Additionally, the results are shown for a non-dimensional manner of natural 

frequency as 2

11n z
L A C I  . 

Table 2. Material specifications of an assumed piezo-actuator nanotube 

 

 

 

 

We initially evaluate the effect of length scale parameter variations in accordance 

with the Table 3. The nanotube is assumed in two states. The former has been investigated 

with regard to the effects of flexomagnetic and the latter without considering the effect 

and merely under piezomagnetic conditions. It is important to note that the flexomagnetic 

effect makes the natural frequencies smaller. It is also worth mentioning that the larger 

the values of Lc, the higher the natural frequencies. It can be observed that while the value 

of Lc is set to be zero in contrast to the when its value is at 4, give further difference for 

natural frequencies of the mentioned tubes. It can be stated that this decreasing behavior 

in the difference of results of both cases can be because the length scale parameter 

increases the strength of the tubes and as far as the flexomagnetic effect makes the 

material more flexible, hence, in higher values of the length scale the influence of 

flexomagneticity is slighter. More significantly, as the variation of the length scale 

parameter creates differences between results of a piezomagnetic nanotube against a 

flexo-piezomagnetic one, this behavior can confirm that the flexomagneticity is a size-

dependent phenomenon similar to the flexoelectricity [16-19]. 

Tables 4 and 5 give the numerical values of natural frequencies for the both 

aforementioned cases of nanotubes in variations of diameter and length of the tubes. 

C11=286e9 N/m2 

f31=10-10 N/A 

q31=580.3 N/A.m 

a33=1.57×10-4 N/A2 

L=15d, d=1 nm, h=0.34 nm 
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Again here the size dependency behavior of flexomagneticity can be seen. The increase 

in the diameter leads to decrease of the discrepancy between response of the two tubes. 

Howbeit it is noteworthy that the reducing effect in Table 3 is further remarkable than the 

Table 2. In addition, it seems that the diminishing effect as a result of enlarging diameter 

is more noticeable than the lessening effect of the length scale parameter as the previous 

Table. Accordingly, it is important to say that the diameter plays as a crucial factor to 

study size-dependent response of nanotubes possessing flexomagneticity.  

In Table 6 the natural frequencies of both cases of nanotubes are tabulated in order 

to exhibit whether the magnetic field affects a flexo-piezomagnetic nanotube more than 

a piezomagnetic one or not. As can be observed, there is no highlight difference among 

the two tubes, although a very little difference can be seen. The meaning of difference is 

here about difference between results of two cases when the magnetic potential is chosen 

as minimum against when it is selected as maximum in the Table. As a matter of fact, it 

can be said that the magnetic field has approximately identical influence on the two tubes. 

Furthermore, it is substantial that the values of the external potential are insignificant, but 

their effect is major. In fact, it is concluded that the effect of outer magnetic potential on 

the natural frequencies of a nanoscale actuator tube having piezo-flexomagnetic 

influences is momentous. 

Table 3. Dimensionless natural frequencies in variations of the length scale parameter (Ψ=1 μA) 

Lc 

(nm) 

Piezomagnetic 

nanotube with 

considering 

flexomagneticity 

Piezomagnetic 

nanotube 

0 14.4114 14.4303 

0.25 14.4307 14.4496 

0.5 14.4886 14.5074 

0.75 14.5845 14.6032 

1 14.7177 14.7362 

1.25 14.8872 14.9055 

1.5 15.0918 15.1099 

1.75 15.3301 15.3479 

2 15.6006 15.6180 

2.5 16.2312 16.2480 

3 16.9702 16.9863 

3.5 17.8041 17.8194 

4 18.7202 18.7347 

Table 4. Dimensionless natural frequencies in variations of the diameter (Lc=0.5 nm, Ψ=1 μA) 
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d (nm) 

Piezomagnetic 

nanotube with 

considering 

flexomagneticity 

Piezomagnetic 

nanotube 

0.7 10.6768 10.7023 

1 14.4886 14.5074 

1.2 16.6303 16.6467 

1.5 19.5766 19.5905 

2 24.2887 24.2999 

2.5 29.2463 29.2556 

3 34.8146 34.8224 

3.5 41.2301 41.2367 

4 48.6422 48.6478 

Table 5. Dimensionless natural frequencies in variations of the Length (Lc=0.5 nm, Ψ=1 μA) 

L/d 

Piezomagnetic 

nanotube with 

considering 

flexomagneticity 

Piezomagnetic 

nanotube 

10 14.4471 14.4660 

15 14.4886 14.5074 

20 14.8129 14.8313 

25 15.5244 15.5420 

30 16.7575 16.7737 

35 18.6175 18.6321 

40 21.1582 21.1710 

45 24.3866 24.3977 

50 28.2822 28.2919 

Table 6. Dimensionless natural frequencies in variations of the magnetic potential (Lc=0.5 nm) 

Ψ (μA) 

Piezomagnetic 

nanotube with 

considering 

flexomagneticity 

Piezomagnetic 

nanotube 

-2 13.9794 13.9989 

-1 14.1512 14.1704 

0 14.3209 14.3399 

1 14.4886 14.5074 

2 14.6544 14.6730 

3 14.8183 14.8367 

4 14.9805 14.9987 

5 15.1409 15.1589 

6 15.2996 15.3174 

7 15.4567 15.4743 

8 15.6122 15.6297 
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9 15.7662 15.7835 

10 15.9187 15.9358 

5. Conclusions 

In this paper, we successfully combined the flexomagnetic effect with elasticity 

relations to consider this impact on the natural frequencies of a nanotube. We further 

considered the nanosize effects based on the stress-driven nonlocal elasticity model. The 

extended Hamiltonian demonstrated governing equation in a magnetic-mechanical 

coupling. We verified our results regarded to a nanotube and correspond well to the open 

literature. In an analytical framework, we established some tabulated results to show the 

flexomagnetic effect. Based on our numerical exercises, it was found that the variation of 

diameter is more notable to show the effect of flexomagneticity. And the lesser the 

diameter, the larger the flexomagnetic effect. Likewise, the smaller the length of the tube, 

the greater the flexomagneticity effect. It can confirm that the flexomagneticity is a size-

dependent feature of materials, and its impact is more considerable in nanoscale. 
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