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Abstract
Two nonlinear versions of the Muskingum equation are considered. The difference
between both equations relates to the exponent parameter. In the first version, commonly
used in hydrology, this parameter is considered as free, while in the second version, it
takes a value resulting from the kinematic wave theory. Consequently, the first version of
the equation is dimensionally inconsistent, whereas the proposed second one is consis-
tent. It is shown that the difference between the results provided by both versions of the
nonlinear Muskingum equation depends on the longitudinal bed slope of a channel. For
an increasing slope, when a propagating wave becomes more kinematic, the value of the
exponent considered as the free parameter tends to its value resulting from the kinematic
wave theory. Consequently, when the character of an open channel flow tends to a
kinematic one, the dimensionally inconsistent version of the nonlinear Muskingum
equation becomes a consistent one. The results of the numerical analysis suggest that
apart from the parameters involved in the Muskingum equation, usually considered as
free, the parameters of the numerical method of the solution (the number of reservoirs and
the time step) should be considered also as free parameters. This conclusion results from
the fundamental property of the Muskingum equation, relating to the numerical roots of
the wave attenuation process. All numerical examples and tests relate to the solutions of
the system of Saint Venant equations, considered as the benchmark.
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1 Introduction

If a channel reach is not influenced by existing hydraulic structures, and its bottom slope is
relatively steep, then simplified models can be used for flood routing (Ponce et al. 1978; Singh
1996). Among the known existing simplified models, the linear Muskingummodel (McCarthy
1938) still attracts the attention of hydrologists. In this approach, a channel reach of length L is
divided into N space intervals of length:

Δx ¼ L=N : ð1Þ
For each interval, the following relation has been proposed:

d
dt

K X � Qj−1 þ 1−Xð ÞQj

� �h i
¼ Qj−1−Qj ð2Þ

where:

t time
Qj–1(t) inflow at the upstream end of a space interval j,
Qj(t) outflow at the downstream end of a space interval j,
X constant parameter,
K = Δx/
C

constant parameter considered as the time needed to cover the space interval of
length Δx by a flood wave which propagates with celerity C.

Equation (2), applied for all space intervals – reservoirs (j = 1,2, ..., N), constitutes the
system of ordinary differential equations describing the dynamics of a cascade of reservoirs.
This cascade is represented by a set of nodes located along the x axis coinciding with the
channel axis (Fig. 1).

Comparing Fig. 1 with Eq. (2), it can be noticed that the expression in brackets at the left-
hand side represents the flow rate at point P, calculated using the linear interpolation between
the nodes j - 1 and j:

QP ¼ X � Qj−1 þ 1−Xð ÞQj: ð3Þ
The position of point P is determined by the weighting parameter X, which ranges from 0 to 1.

For a long time, the real nature of the Muskingum model remained unrecognized. The
kinematic character of the Muskingum equation was deduced for the first time by Cunge
(1969) via a comparison of the approximated pure advection equation with the Muskingum
equation, solved numerically using the implicit trapezoidal rule. Nowadays, this fact can be
confirmed formally in different ways. For instance, the Muskingum equation can be derived
similarly to the kinematic wave model, i.e. directly from the differential continuity equation

Fig. 1 Discretization of a channel reach for the Muskingum equation
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and the simplified dynamic equation in the form of the Manning or Chézy formula, which
means that both models have the same origin.

The solution of the Muskingum Eq. (2) can be carried out using the following two-level
difference scheme (Szymkiewicz 2010):

y j ¼ y j−1 þ h � 1−θð Þy0 j−1 þ θ � y0 j
� � ð4Þ

where:

yj unknown value of function y at node j,
y'j value of derivative of function y at node j,
h step of integration,
θ weighting parameter ranging from 0 to 1.

The application of formula (4) for the solution of Eq. (2) yields the following linear
algebraic equation:

K X � Qnþ1
j−1 þ 1−Xð ÞQnþ1

j

� �
¼ K X � Qn

j−1 þ 1−Xð ÞQn
j

� �
þ

þΔt 1−θð Þ Qn
j−1−Q

n
j

� �
þ θ Qnþ1

j−1 −Q
nþ1
j

� �h i j ¼ 1; 2;…;Nð Þ ð5Þ

where:

n index of the time level,
Δt time step.

Note that the parameter θ determines the method used for time integration. For θ = 1/2, the
implicit trapezoidal rule is obtained, commonly used for the solution of the linear Muskingum

Eq. (2). Using the initial condition Qn¼0
j ¼ Qin for j = 1, 2,…, N (where Qin is the given initial

flow rate) and the hydrograph Q0(t) imposed at the upstream end, the outflows Qnþ1
j (j = 1, 2,

…, N) are calculated directly from Eq. (5). Note that the calculation is very simple because in

Eq. (5) Qnþ1
j is the only one unknown. This simplicity of the solution resulted in the wide use

of Eq. (5) for hydrological forecasting. However, the linear Muskingum equation very often
provides results representing poor accuracy. For this reason, hydrologists have tried to improve
it. Consequently, nonlinear forms of the Muskingum equation were developed (Gill 1978;
Tung 1985; Singh and Scarlatos 1987; Hirpurkar and Ghare 2015; Kang et al. 2017; Bozorg-
Haddad et al. 2019). Instead of the linear formula relating to storage, inflow and outflow
proposed by McCarthy (1938), the storage equation has been completed by a priori assuming
the nonlinear relation leading to the following equation:

d
dt

k X � Qj−1 þ 1−Xð ÞQj

� �rh i
¼ Qj−1−Qj j ¼ 1; 2;…;Nð Þ ð6Þ

where k, X and r are constant parameters. For r = 1.0, Eq. (6) becomes the linear Muskingum
Eq. (2). In such a case, the parameter k is expressed in time units and it coincides with the
parameter K involved in Eq. (2).

It is interesting that the introduced nonlinear relation, i.e. the expression in brackets at the
left side of Eq. (6), has no physical interpretations. However, this causes that Eq. (6) is written
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in a divergent form. Consequently, the numerical solution of Eq. (6) does not generate a mass
balance error (Gąsiorowski and Szymkiewicz 2007; Gąsiorowski 2013).

The parameters k, X and r occurring in Eq. (6) are considered as free ones and their values are
estimated via a comparison of the numerical solution with the field data. To solve this problem,
optimization methods should be used. The optimal values of these parameters should minimize
the assumed objective function, which determines the discrepancy between the results obtained
from the model and those provided by the measurements. In the context of the estimated
parameters for the nonlinear Muskingum equation, many optimization methods have been
proposed (the Hook-Jeeves algorithm (Tung 1985), the Nelder–Mead simplex method (Barati
2011), the Broyden-Fletcher-Goldfarb-Shanno algorithm (Geem 2006) among others).

The aforementioned methods are effective and lead to a unique optimal solution when the
assumed objective function possesses a unimodal property; in other words, when the objective
function has one extreme point in a space of parameters. However, in the case of the nonlinear
Muskingum Eq. (6), the objective function possesses more extreme points. In such cases, the
mentioned methods usually converge towards a local extreme point. In order to avoid this
problem, meta-heuristic optimization algorithms have been developed (Glover and
Kochenberger 2003). For parameter identification in the nonlinear Muskingum equation, such
methods were used, for instance, by Mohan (1997), Chu and Chang (2009), Luo and Xie
(2010), Xu et al. (2012), Niazkar and Afzali (2015), Moghaddam et al. (2016), Yuan et al.
(2016), Hamedi et al. (2016) and Farzin et al. (2018).

A review of the presented papers shows that their authors mainly focused attention on
techniques of parameter identification. Physical backgrounds of the a priori assumed formula,
relating to storage, inflow and outflow and the formal interpretation of the governing Eq. (6)
have not been discussed. However, comprehensive recognition of the nonlinear Muskingum
equation properties seems to be very important. This knowledge allows the removal of a serious
formal disadvantage related to the dimensional inconsistency of Eq. (6) and the improvement of
its effectiveness and flexibility, which are especially important during model calibration.

Taking into account the above issues, this paper presents some important aspects with
regard to the calibration process when the values of parameters involved in the nonlinear
Muskingum equation are identified. First of all, it is shown that the best value of the exponent
parameter r is closely related to the slope of the channel bed, which determines the character of
the open channel flow. When the bed slope increases, the open channel flow tends to a
kinematic one. In such a case, the value of r tends to its limit value 3/5 when the Manning
equation is used or to 2/3 when the Chézy equation is applied. It is worth adding that these
values of the parameter r resulting from the kinematic wave theory ensure the dimensional
consistency of the nonlinear Muskingum Eq. (6) (Gąsiorowski and Szymkiewicz 2018).
Moreover, it is shown that the shape of the computed flood wave is determined not only by
the parameters involved in the Muskingum Eq. (6), as it is commonly assumed. The accuracy
analysis carried out using the modified equation approach showed that the solution accuracy
depends also on the space interval Δx (or on the number of reservoirs N due to Eq. (1)).
Therefore, this must also be considered as a free parameter. The possible impact of the time
step Δt on the numerical solution is also considered in the paper. If, for time integration, the
method generating additional numerical diffusion is used, i.e. when θ > 1/2 is assumed, then
the flood wave attenuation will be increased. In such a case, the time stepΔt and the weighting
parameter θ should also be considered as free parameters. Consequently, the assumed objec-
tive function should depend on all the parameters of the mentioned model and numerical
parameters.
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All the presented hypotheses are confirmed by the results of numerical tests.

2 Numerical Origin of Flood Wave Attenuation by the Muskingum
Equation

When numerical techniques are applied, then the solution accuracy should be comprehensively
examined. In the case of hyperbolic problems, “the modified equation approach” (Warming
and Hyett 1974; Fletcher 1991) is very useful, which provides full information on the solution
accuracy. This technique, applicable for linear equations, delivers very useful information also
for the nonlinear Muskingum equation. Some aspects of solution accuracy for its nonlinear
form have been invoked by Vatankhah (2010), Das (2010), Karahan (2014) and Easa (2015).
However, the discussions undertaken in all the mentioned publications do not contain any
detailed accuracy analysis of the applied method nor the resulting consequences for the
parameter identification process.

The modified equation approach performed for Eq. (5) leads to the following equation,
valid in each node (Gąsiorowski and Szymkiewicz 2018):

∂Q
∂t

þ C
∂Q
∂x

¼ Vn1 þ Vn2ð Þ ∂
2Q

∂x2
þ εn

∂3Q
∂x3

þ::: ð7Þ
with

Vn1 ¼ Δx2

2K
1−2Xð Þ; ð8Þ

Vn2 ¼ Δx2 � Δt
2K2 2θ−1ð Þ ð9Þ

εn ¼ Δx3

6K
2−3θð Þ Δt

K

� �2

þ 3 X þ θ−1ð ÞΔt
K

þ 1−3Xð Þ
 !

ð10Þ

where νn1 and νn2 are the coefficients of numerical diffusion, whereas εn is the coefficient of
numerical dispersion. Equation (7) represents the governing equation modified by the applied
numerical solution method. The left side of this equation corresponds to the kinematic wave
equation (Gąsiorowski and Szymkiewicz 2018), whereas the right side contains all terms of the
Taylor series expansion, neglected during approximation. This fact confirms that, indeed, the
Muskingum equation is a particular form of kinematic wave equation. Note that for X = 1/2,
θ = 1/2 and Δt = K all terms at the right-hand side of Eq. (7) are cancelled. Consequently, the
difference Eq. (5) ensures a pure translation of the flood wave, being also the exact solution of
the linear kinematic wave equation.

The terms of numerical diffusion occurring in Eq. (7) are responsible for unphysical wave
amplitude attenuation. It is worth adding that the coefficient νn1 (Eq. (8)) coincides with the
formula derived by Cunge (1969). As Cunge (1969) applied the implicit trapezoidal rule (θ =
1/2) for time integration, in his approach the coefficient νn2 did not occur.

As far as numerical dispersion is concerned, it changes the wave celerity. Consequently,
unphysical oscillations occur in the numerical solution. Such an effect is frequently provided
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by the Muskingum equation. Spurious oscillations are insignificant in the case when numerical
diffusion is strong enough.

The abovementioned brief analysis should draw attention to the well-known fact that the
attenuation of the flood wave observed in the numerical solution provided by the Muskingum
equation has no physical background, but conversely, has a purely numerical origin. Eqs. (7, 8,
9) show that the intensity of flood wave attenuation is determined by the following parameters:
X, Δx (or N), Δt and θ.

Since the Muskingum equation is a particular form of kinematic wave (Szymkiewicz 2002),
then its exact solution should ensure wave translation without attenuation. Indeed, as it was
previously presented for X = 1/2, Δt =K and θ = 1/2, the numerical solution of the linear
Muskingum Eq. (5) provides an exact solution of the kinematic wave, because all terms at the
right-hand side of Eq. (7) are cancelled. However, hydrologists require significant damping of
the flood wave, as observed in rivers. Summarizing, a satisfying agreement between the
numerical solution of the Muskingum equation and the measurements can be obtained owing
to the numerical error generated in the solution, i.e. when the numerical solution represents
poor accuracy. Conversely, a solution of high accuracy usually disagrees with the observa-
tions. Thus, to achieve the required wave damping, identification must also be carried out with
regard to the numerical parameters involved in determining the solution accuracy.

3 Dimensionally Consistent Nonlinear Muskingum Equation

As far as the parameters X and r involved in Eq. (6) are concerned, they are dimensionless,
whereas the units of parameter k are a priori unknown because they are related to the value of
parameter r according to the following rule:

L3 1−rð Þ � Tr

where L denotes units of length while T denotes units of time. It means that for each set of data
used for identification, the value of the obtained parameter r will determine different units of
the parameter k. Finally, it can be stated that the nonlinear Muskingum Eq. (6) with the
parameter r considered as free is generally dimensionally inconsistent (Gąsiorowski and
Szymkiewicz 2018).

The problem of the dimensionally inappropriate form of the nonlinear Muskingum equation
has not been discussed with regard to the identification process. As noted by Easa (2015), the
application of different optimization techniques causes only slight progress in obtaining better
results during parameter identification. To eliminate this disadvantage of Eq. (6), Gąsiorowski
and Szymkiewicz (2018) proposed its alternative form with the parameter r having a fixed and
constant value, which ensures its dimensional consistency. To derive such a version of the
nonlinear Muskingum equation, the differential continuity equation and the simplified dynam-
ic equation, expressed by the Manning or Chézy formula, were used as the basic relations.
After transformation with no additional assumptions, the final formula:

d
dt

k X � Qj−1 þ 1−Xð ÞQj

� �mh i
¼ Qj−1−Qj ð11Þ

valid for all space intervals – reservoirs, i.e. for j = 1, 2, …, N, was derived (Gąsiorowski and
Szymkiewicz 2018). A comparison of this equation with Eq. (6) shows that the only difference
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is with regard to the exponent r. In Eq. (6) it is considered as a free parameter, whereas in Eq.
(11) it takes the constant value r =m. The nonlinear Eq. (11) is written in a dimensionally
consistent form, in which the exponent is equal to the constant value m = 3/5 for the Manning
formula or equal to m = 2/3 for the Chézy formula.

The parameter k involved in Eq. (11) can be related to the parameter K occurring in the
linear Muskingum Eq. (2). Since K represents the time needed to cover a channel reach of
length Δx by the propagating flood wave, then the related formula is as follows:

K ¼ k � m QPð Þm−1 ð12Þ
As can be noticed, for the linear Muskingum equation in which m = 1, the parameter k
coincides with the parameter K.

4 Solution of the Nonlinear Muskingum Equation and Parameter
Identification

As far as the numerical solution of the nonlinear Muskingum equation is concerned, to this
order, the previously applied two-level method (Eq. (4)) was used for both of its versions. The
application of this method for the solution of Eq. (6) yields the following nonlinear algebraic
equation for each reservoir:

X � Qnþ1
j−1 þ 1−Xð ÞQnþ1

j

� �r
¼ X � Qn

j−1 þ 1−Xð ÞQn
j

� �r
þ

þ Δt
k

1−θð Þ Qn
j−1−Q

n
j

� �
þ θ Qnþ1

j−1 −Q
nþ1
j

� �h i: j ¼ 1; 2;…;Nð Þð13Þ

Since at each node j = 1, 2, …, N Eq. (13) is the nonlinear algebraic equation with only one

unknown Qnþ1
j , it should be solved for the consecutive cross-sections using an iterative

method, such as the Picard method or the Newton method.
The best values of the parameters involved in the Muskingum equation must minimize the

following assumed objective function:

F Pið Þ ¼ ∫
T

t¼0
Qd tð Þ−QN tð Þð Þ2dt→min ð14Þ

where:

F(pi) objective function with respect to the parameters pi (p1 = X, p2 = k, p3 = r, p4 =N),
Qd(t) hydrograph observed at the downstream end of a channel reach,
QN(t) hydrograph computed at the downstream end of a channel reach,
T total simulation time of flow.

In order to find the best values of parameters, the Powell’s algorithm is applied (Powell
1964). Its description is also given, for instance, by Press et al. (1992). Iterations are continued
until the following convergence condition is satisfied:

2 � F kþ1ð Þ−F kð Þ�� ��
F kþ1ð Þ�� ��þ F kð Þ�� �� ≤ε ð15Þ

where:
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F value of the objective function given by Eq. (14),
k iteration index,
ε specified tolerance.

In all tests presented below, a rectangular channel of the length L = 100 km and of the width
B = 50 m is considered. The channel reach is divided into N subintervals (reservoirs). At t = 0
the flow rate along the channel is constant and equal to a given value equal to q0. At the
upstream end, the following flood wave enters the channel reach:

Q0 tð Þ ¼ q0 þ qmax−q0ð Þ t
tmax

� �β

exp 1−
t

tmax

� �β
 !

ð16Þ

where:

q0 base flow discharge of the inflow,
qmax peak discharge of the inflow,
tmax time of the peak flow,
β parameter determining the shape of the wave.

The values of parameters involved in Eq. (16) have been arbitrarily assumed as follows:
q0 = 20 m3/s, qmax = 100 m3/s, tmax = 30 h, β = 2.0. The numerical solution of the Muskingum
equation is compared with the solution of the system of Saint Venant equations. Owing to this
assumption, a discussion dealing with the properties of the Muskingum equation seems to be
easier than in the case when field measurements are used. This is because very often the field
data do not satisfy the mass balance.

In the dynamic equation of the Saint Venant model, the friction term is expressed using the
Manning formula with the roughness coefficient n equal to 0.03 m-1/3s and the bottom slope of
a channel s equal to 0.00008. The Saint Venant equations are solved using the implicit
Preissmann scheme (Cunge et al. 1980) with the following mesh dimensions: space interval
Δx = 500 m, time step Δt = 500 s.

The numerical tests showed that when the parameter r is considered as free, the final effect
of the identification is very sensitive on the assumed initial values of the parameters. In such a
case, the objective function possesses many local extreme points. When for a fixed value X the
variability with regard to r and k is considered, then, indeed, the objective function F(r,k) has
an unusual shape, as presented in Fig. 2.

Typically, a single global optimum and numerous local extreme points can be distin-
guished. Moreover, the values of F(r,k) at these points differ insignificantly from each other,
as well as from the global minimum. To overcome these computational difficulties, the
accuracy of the optimization algorithm should be significantly increased. To this regard, a
very small value of tolerance (equal to ε = 10−5) was assumed. However, it should be noted
that the higher accuracy of the identification process implies that the average number of
iterations significantly increases. For instance, the number of iterations equal to 240 (corre-
sponding to the original tolerance ε = 10−2) was increased to about 2500 for ε = 10−5. An
increase in the number of iterations is also associated with an extension of the computational
time. In this case, the CPU time was increased from about 0.3 s to over 4 s, respectively.

The untypical form of the contour map of the objective function F(r,k) is the cause of
another problem. Since very similar minimal values of the objective function can be obtained
for various combinations of the values X, k and r, then in consequence, very similar numerical
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solutions in terms of the downstream hydrograph can be expected. This situation is obviously
unfavorable, because, in fact, Eq. (6) can deliver a non-unique solution when the identification
process is carried out with low accuracy.

To avoid the disadvantages listed above, the nonlinear Muskingum equation with a constant
value of exponent r is considered. Therefore, in Eq. (13) r =m = 3/5 is assumed, whereas
others parameters, i.e. X and k, are considered as free ones. Similarly, the number of reservoirs
N as well as the weighting parameter θ and the time step Δt, both involved in the time
integration procedure, are considered also as free parameters.

5 Influence of the Number of Reservoirs N on the Objective Function
F(pi)

In this test, the parameters X, k and N are identified, whereas other parameters are assumed to
be constant: r =m = 3/5, θ = 1/2 (the implicit trapezoidal rule is used), the time step is equal to
Δt = 6 h, the channel bottom slope is equal to s = 0.00008, the tolerance for the convergence
condition in the optimization algorithm (Eq. (15)) is equal to ε = 10−2. Since the number of
reservoirs N is an integer, then the identification is carried out with regard to the two variables
X and k only, but for consecutively assumed different values of N. The results of computations
are summarized in Table 1.

Comparing the values of the objective function obtained for a different number of reservoirs
N, it can be noticed that, indeed, it significantly influences the results of parameter identifica-
tion. The best result is obtained for N = 3, for which the extreme value of the objective function

Fig. 2 An example contour map of the objective function F(r,k) (Eq. (14)) obtained using the equation in a
dimensionally inconsistent form (Eq. (6)) for the tolerance ε = 10−2 (X = 0.255,Δt = 6h, θ = 0.5)
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is equal to F = 31.66. It is important that the same results are obtained independently from the
assumed initial values of the searched parameters X0 and k0. The explanation of this property
results from the contour map of the objective function F(X, k) (Eq. (14)) displayed in Fig. 3. It
is apparent that in this case, the objective function possesses only one extreme point. This
means that it can be reached using even a very simple method of optimization. Depending on
the starting set of parameters, the total number of required iterations for ε = 10−2 ranges from
183 to 271. An analysis of the computed best values of the objective function, presented in
Table 1, shows that the frequently-used one reservoir only (N = 1) is not acceptable because
this makes it impossible to satisfy the matching of the computational results and the observa-
tions. In this case, the best value of the objective function is equal to F = 1423.30, while for
N = 3, it is equal to F = 31.66 (Table 1).

The identified values of both the parameters X = 0.260 and k = 97.03, together with the
assumed data characterizing the considered channel and flood wave, were used for the solution
of the nonlinear Muskingum Eq. (11). In Fig. 4, the obtained results are compared with the
corresponding solution of the Saint Venant equations. As can be seen, both solutions agree
nearly perfectly.

6 Influence of the Weighting Parameter θ and the Time Step Δt

In this section, the impact of the accuracy of the time integration method used for the solution
of the nonlinear Muskingum Eq. (11) with r = 3/5 is analyzed. As can be seen from Eqs. (7, 8,
9) for θ = 1/2, the value of the time step Δt does not influence the numerical solution. This is
because in such a case, any additional numerical diffusion is not produced (νn2 = 0). However,
if θ > 1/2 is assumed, then additional numerical diffusion is generated. Consequently, the wave
attenuation is increased. Its intensity depends also on the value of the time step Δt (see Eq.
(9)). The impact of numerical diffusion is illustrated by the computations carried out for the
same data as used previously, but for different values of the weighting parameter θ and for
various values of the time step Δt. The bottom slope s = 0.00008 is assumed, whereas the
number of reservoirs is equal to N = 3. The obtained results are displayed in Table 2.

It is apparent that when the implicit trapezoidal method is used, then the best values of
parameters X and k obtained for various values of the time step Δt are practically the same
(X= 0.260, k = 97.03÷98.20). Consequently, the values of the computed objective function
F(X, k) are also very similar. Therefore, it can be expected that the computed hydrographs at
the downstream end should also be very similar to one another. Indeed, as can be seen in
Fig. 5, the curves QN(t) computed for the time steps listed in Table 2 with the corresponding

Table 1 The objective function F computed using Eq. (11) for a different number of reservoirs N with r =m = 3/
5 and θ = 1/2

N
[−]

Δx
[km]

X
[−]

k
[m6/5·s-2/5·h]

F
[m6/s2]

1 100.00 0.331 372.19 1423.30
2 50.00 0.317 153.64 107.41
3 33.33 0.260 97.03 31.66
4 25.00 0.186 71.28 60.29
5 20.00 0.108 56.50 83.94
6 16.67 0.028 46.86 98.53
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values of parameters X, k and N differ insignificantly. Moreover, regardless of the assumed
values of the time step, they are in perfect agreement with the solution of the Saint Venant
equations, considered as the benchmark.

The presented results seem to be obvious. The required wave damping is ensured by the
numerical diffusion caused by the approximation of the 1st order space derivative only. The
value of the coefficient of numerical diffusion, roughly estimated for X = 0.260 and k = 96.03
(Table 2) using Eq. (8), is equal to ca νn1 = 7000 m2/s.

The opposite is true for θ > 1/2. In this case, the identified values of parameters are changed
depending on the assumed value of Δt (Table 3). The wave attenuation caused by the
approximation of the time derivative takes the greatest value for θ = 1, i.e. when the implicit

Fig. 3 Contour map of the objective function F(X,k) computed using Eq. (11) for N = 3

Fig. 4 Solution of the Saint Venant equations compared with the solution of the nonlinear Muskingum equation
(Eq. (11)) obtained for N = 3, X = 0.260 and k = 97.03

Identification of Parameters Influencing the Accuracy of the Solution of...

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Euler scheme is used. Moreover, attenuation increases with an increase in the time step. This
experiment confirms the results of the accuracy analysis previously presented. According to
Eq. (9), for θ = 1.0 the coefficient of numerical diffusion νn2 takes the largest possible value,
which, additionally, depends also on the time step Δt.

Summarizing, when the method of the 1st order of accuracy (i.e. with θ > 1/2) is used for
the solution, then the optimal values of parameters k, X and N will also be influenced by the
assumed value of the time stepΔt. Consequently, when the identification process is carried out
for some assumed value of the time step, then the same time step has to be used during the
validation process. Conversely, if the calculations are carried out with a greater or smaller time
step than that used during identification, then one can expect to obtain a solution affected by
variable numerical diffusion. For illustration, consider the following example. The optimal
values of parameters obtained during identification with the time step equal to Δt = 3 h are
subsequently used for the solution of the nonlinear Muskingum equation with other values of
the time stepΔt. The results of calculations provided by the implicit Euler method (θ = 1), and
for X = 0.381 and k = 93.86, previously obtained forΔt = 3 h (Table 3), are presented in Fig. 6.

As can be seen, in this case, the solution of the nonlinear Muskingum equation significantly
deviates from the corresponding solution obtained by means of the system of Saint Venant
equations. ForΔt = 6 h, an excessive attenuation and smoothing of the flood wave is observed,
while for Δt = 1.5 h, an overestimation of the peak discharge is generated. Only in the case of
the time step equal to 3 h was the correct solution obtained because for such a value the
identification of parameters had been carried out.

Table 2 The objective function F(X, k) computed using Eq. (11) for θ = 1/2 and for the different values of the
time step Δt with N = 3

θ Δt X k F
[−] [h] [−] [m6/5·s-2/5·h] [m6/s2]

0.50 1.5 0.260 98.20 27.08
3.0 0.260 97.97 27.32
4.5 0.260 97.58 28.56
6.0 0.260 97.03 31.66

Fig. 5 Solution of the nonlinear Muskingum equation (Eq. (11) with m = 3/5) obtained using the implicit
trapezoidal method (θ = 1/2) for various time steps Δt with X = 0.260, k = 97.96, N = 3
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7 Influence of the Channel Bed Slope s on the Exponent r

It is well known that the longitudinal slope of a channel determines the character of the
occurring flow (Ponce et al. 1978). When the channel bottom slope s increases from small to
middle values, the character of the propagating wave varies systematically from a diffusive one
towards a kinematic one. Below, the results provided by numerical experiments illustrate the
influence of the channel bed slope s on the identification process.

The nonlinear Muskingum Eq. (6) is solved by the implicit trapezoidal rule (θ = 1/2) and the
value of the time step is equal to Δt = 6 h. To ensure the variable character of the propagating
wave from a diffusive one with a high attenuation of amplitude to a kinematic one without
attenuation, it is assumed that computations using the Saint Venant equations with theManning
formula used in the friction term are carried out for different values of the channel bed slope s
ranging from 0.00003 to 0.0008. The parameters X, k, r and the number of reservoirs N are
considered as free ones and they are then subjected to identification. The results of identification
obtained for the assumed tolerance equal to ε = 10−5 are displayed in Table 4.

As can be seen, an increase in the value of the channel bed slope s causes the corresponding
values of the parameter r to also increase. This tendency is more clearly seen in Fig. 7 showing
the impact of the channel bed slope s on the value of parameter r. For increasing channel bed

Table 3 The objective function F(X, k) computed for N = 3 with θ > 0.5 and for various values of the time step
Δt

θ Δt X k F
[−] [h] [−] [m6/5·s-2/5·h] [m6/s2]

0.75 1.5 0.291 98.30 26.69
3.0 0.321 98.16 26.47
4.5 0.352 97.85 26.14
6.0 0.384 97.42 25.43

1.00 1.5 0.321 98.40 27.18
3.0 0.381 98.36 29.14
4.5 0.443 98.18 31.71
6.0 0.505 97.84 33.60

Fig. 6 Solution of the Muskingum equation (Eq. (11) with N = 3 obtained using θ = 1 with X= 0.381 and
k = 98.36 for various time steps Δt
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slope s the value of parameter r approaches a constant limit value equal to 0.60 (=3/5). In other
words, when the character of the propagating wave becomes more kinematic, then the
parameter r tends to the value which corresponds to the derived kinematic wave exponent m
(Eq. (11)).

The impact of the variable flow character on the flood routing process is illustrated in
Fig. 8. For the selected values of the channel bed slope s and for the corresponding optimal
values of the identified parameters taken from Table 4, the hydrographs at the downstream end
are computed and compared with the respective solutions of the Saint Venant equations.

As can be seen in Fig. 8, a satisfactory agreement is obtained for all considered cases
representing either the diffusive (a) or kinematic (c) character of the open channel flow. Note
that both curves corresponding to the case (c) represent nearly a pure translation of the
considered flood wave, which coincides with the exact solution of the kinematic wave
equation. Taking into account the presented results, it can be concluded that even the
calibration process applied for the identification of the nonlinear Muskingum equation param-
eters confirms its kinematic origin.

The same property of the nonlinear Muskingum equation is observed when, instead of the
Manning formula (r = 3/5), the Chézy formula (r = 2/3) is used. Assuming, in the Chézy
formula, a roughness coefficient equal to c = 30 m0.5/s, the obtained results of calculations are
presented in Fig. 9.

Table 4 Optimal values of the parameters in Eq. (6) and minimal values of the objective function F computed for
various bottom slopes s and for the Manning formula used in the Saint Venant equations

s X k r N F
·10−4 [−] [−] [?]* [−] [−] [m6/s2]

0.30 0.122 6158.0 0.107 2 6.08
0.35 0.157 1549.6 0.250 2 10.19
0.40 0.186 696.4 0.364 2 15.79
0.45 0.212 395.4 0.453 2 22.68
0.50 0.127 486.3 0.344 3 30.27
0.55 0.156 340.1 0.398 3 30.13
0.60 0.181 257.8 0.449 3 29.73
0.70 0.222 173.5 0.502 3 28.55
0.80 0.255 133.2 0.543 3 27.51
0.90 0.282 111.0 0.570 3 27.03
1.00 0.304 97.6 0.588 3 27.46
1.50 0.339 63.4 0.589 4 25.59
2.00 0.385 58.3 0.589 4 23.54
2.50 0.406 52.9 0.593 4 13.96
3.00 0.422 46.2 0.607 4 5.79
3.50 0.442 42.3 0.613 4 12.06
4.00 0.463 41.4 0.610 4 22.53
4.50 0.479 41.9 0.601 4 26.38
5.00 0.483 42.5 0.593 4 23.42
5.50 0.480 41.7 0.592 4 16.68
6.00 0.474 39.3 0.597 4 9.28
6.50 0.467 36.06 0.608 4 4.47
7. 00 0.464 32.85 0.615 4 4.35
7.50 0.461 50.30 0.593 3 6.36
8.00 0.468 47.3 0.600 3 4.62

*symbol “?” indicates that the unit of parameter k is variable because it depends on the value of parameter r
according to the formula L3(1-r) ·T r
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As can be seen, the relationship between the values of parameter r and the channel bed
slope s is the same as that previously presented in Fig. 7. However, in this case, the values of
the identified parameter r tend to the value 0.666 (=2/3), corresponding to the Chézy formula
applied in the Saint Venant equations. This property confirms that the alternative dimension-
ally consistent nonlinear Muskingum Eq. (11), in which the parameter m takes a fixed value
depending on the assumed form of the steady uniform flow equation, is correctly derived.

8 Summary and Conclusions

In the paper, two forms of the nonlinear Muskingum equation have been discussed. Both
versions differ in their interpretation of the exponent parameter. While the first version, derived
via a priori, assuming an additional formula relating to inflow, outflow and storage has no
physical interpretation, the second one, derived directly from the kinematic wave model, is
physically correct. The first version, with the exponent parameter considered as free, is

Fig. 7 The parameter r vs. the channel bed slope s in the case when the Manning formula is used in the Saint
Venant equations

Fig. 8 Comparison of the solution of the Saint Venant equations and the nonlinear Muskingum Eq. (6) obtained
for selected values of the channel bottom slope: s = 0.4·10−4 (a); s = 1·10−4 (b); s = 8·10−4 (c)
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dimensionally inconsistent, whereas the second one is dimensionally consistent. The nonlinear
Muskingum equation with a constant value of the exponent parameter ensures that the
assumed objective function has one extreme point only. For this reason, the dimensionally
consistent form always ensures optimal values of parameters regardless of their initial values.
In addition, such a solution can be obtained even using a direct search optimization algorithm
such as the Powell’s algorithm with low accuracy of the identification process. Conversely, the
nonlinear Muskingum equation with a variable exponent parameter provides the objective
function with numerous very similar local extreme points.

Taking into account the kinematic nature of the Muskingum equation, as well as the
numerical origin of wave attenuation, it was shown that apart from the parameters usually
identified in the nonlinear Muskingum model, additional parameters such as the number of
reservoirs, the weighting parameter and the time step should also be considered as free
parameters. The numerical experiments have shown that the frequently-used one reservoir
only seems to be unacceptable because this can make impossible the correct adjustment of the
numerical solution and the observations. The best compliance was achieved for the number of
reservoirs in the range of 2 to 5.

It can be stated that the most important conclusion is that in the case when the open channel
flow has a strong kinematic character, then for an increase in the channel bed slope, the value
of the exponent parameter, considered as free, tends to a constant value equal to 3/5 for the
Manning formula or 2/3 for the Chézy formula.
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Fig. 9 The parameter r vs. the channel bed slope s in the case when the Chézy formula is used in the Saint
Venant equations
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