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ABSTRACT 

In this study, the non-linear dynamic analysis of torus-shaped and cylindrical shell-like 

structures has been studied. The applied material is assumed as the functionally graded material 

(FGM). The structures are considered to be used for important machines such as wind turbines. 

The effects of some environmental factors on the analysis like temperature and humidity have 

been considered. The strain field has been calculated in general form and in continue the 

dynamic governing equations of torus structure have been derived based on the first-order shear 

deformation theory. The rotation around two independent axes in the torus coordinate system 

is considered and time-dependent equations are solved using SAPM semi-analytical method. 

The stresses and deformations generated in the torus and cylindrical shaped structures are 

plotted. The rotation of structures has been attended due to some transportation purposes. The 
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effect of internal pressures as well as rotational speed at torus and cylindrical structures has 

been investigated in several numerical diagrams. The results are presented in the form of graphs 

that consider the rotational effects, loading, thermal and humid (hygro-thermal) environments, 

and size of the structures. This research can provide scientific perspectives to researchers who 

will examine the dynamic analysis of torus and cylindrical shaped structures. 

Keywords: Torus-shape and cylindrical structures; Dynamic analysis; Functionally graded 

materials; First-order shear deformation theory (FSDT); hygro-thermal environment 

1. Introduction

Torus geometry can be dedicated as the most basic dynamical geometries [1-3]. On the 

importance of the torus geometry, it can be stated that some scientists have proposed the theory 

of torus-shaped universe. This means the universe may be formed in a three-dimensional torus 

geometry [4, 5]. 

One of the significant engineering applications of the torus and cylindrical shell-like 

structures can be found in the wind turbines [6, 7]. There are criticizes with offshore wind 

turbines due to their low efficiency in absorbing and delivering the wind energy. Another 

shortcoming of these machines is that some energy produced from the machine is often lost. To 

improve the efficiency of the wind turbines and utilize fully the ocean wind energy and reduce 

the costs, a torus frame and or a cylindrical shape have been contemplating by designer 

engineers for recent years. A torus-shaped wave energy converter, which is called spar-torus 

combination (STC) wind turbine, is one of the best dynamical machines. The designation of the 

new machines resulted in the high storage of the generated energy in the both kinetic and 

efficient frameworks. A torus structure can create high kinetic energy. The machine’s structure 

includes a combination of a hollow torus ring beside some shell-like parts and a vertical wind 

turbine which leads to a massive flywheel. Within the design of the wind turbines, the focal 
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point can be the structural section involving re-entry cold and hot structures, structural dynamics 

and stable and lightweight structures. To deal with this, the novel techniques have come to give 

the best tools for mechanical analysis in experiment. There are active and passive noise, 

vibrations, variations of temperature, humidity, impacts of internal pressures and the other 

passive mechanical loads that a wind turbine configuration confronts with them [8-21]. 

In a wind turbine machine, moisture generally arises within the parts. As the sea’s 

humidity variations are unavoidable, then establishing harmful effects of moisture can be 

expressed as a serious discussion for wind turbines [22]. In fact, it would be transferred to the 

structures of the machine and consequently damage it. It is so significant to predict this humidity 

in structural design of the new wind turbines. This way, the machine and equipment would all 

stand safe. The prediction of moisture’s influence in the structural behavior of a wind turbine 

helps to avoid its problems. If the moisture percentage goes higher, there will be difficulties for 

not only life cycle of the parts of the machine but also its efficiency. The higher the moisture 

percentage, the lower the density of air. Then, a lower output power from turbine will be implied 

by condensed air [23]. High percentage of the moisture would lead to internal pressure of the 

machine by condensation process of the air, as well. Thus, it is crucial to pre-analysis the 

humidity on the structures of a wind turbine consisting of the torus structure. 

From the point of view of the mechanism of work, sea is completely serious with what 

we have on the ground, and different stochastic conditions govern it. During working of a 

turbine in the sea, components and parts of the machine that are working in contact together 

will heat up. The conditions are more serious when the machine has to be working continuously 

without any rest. Therefore, the parts of the machine are subjected to the temperature hazards 

and the life cycle of the parts would be affected remarkably. Thus, working in this thermal 

environment can harm the flexible structures of the wind turbine, and it can be stated that the 
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machine is susceptible to be seriously damaged. Not only the temperature would affect the life 

cycle of the machine’s parts, but also the high temperature can affect the output energy. The 

density of air is low when the temperature is high, hence, the output energy will be lessened. 

Contrariwise, when the temperature is too low, it may freeze the parts and the machine will be 

stopped [24, 25]. Moreover, as the dynamic working of this machine is time-dependent based 

on the changes in rotational movement due to the variations in the wind speed, it would be more 

critical in combination with temperature. Therefore, temperature-time dependent coupling 

dynamic analysis is an earnestly request addressed in this paper. 

The increasing requires having better knowledge on the structural dynamics of 

fundamental geometries. This research paper performs a theoretical and computational dynamic 

modelling of torus and shell-like structures. In doing so, functionally graded materials (FGMs) 

[26-34] are developed to be modelled as torus and cylindrical structures. Mathematical 

modelling and obtaining time-dependent relations are based on the first-order shear deformation 

theory. In order to further identify the structural dynamic response of these geometries, 

temperature variations and humidity are taken into the investigation. It was tried to attain a 

general media on the dynamics of the torus parts on the basis of general strain field so that it 

can be converted and transferred into different strain fields. Simulations are regarding SAPM 

semi-analytical solution technique [34-36]. Pictorial diagrams based on stress analysis are 

evaluated for two mentioned geometries, that are torus and cylindrical shapes. Another intention 

is to demonstrate optimized outcomes for some critical factors and define the allowable 

tolerances. As results of several cases, it is expected that internal pressures in the torus geometry 

affect notably its structure. For this aim, the performance of both torus and cylindrical chambers 

are estimated exposed to internal pressures. More importantly, rotational speed is considered 

for both aforesaid shapes, of course, for the torus one it is based on the two independent axes. 
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In the end, different illustrations based on numerical results are prepared to reveal effects of all 

key cases. 

In continuation, the paper is organized as follows: section 2 helps us to know a bit about 

STC wind turbines. In section 3, and 4, we model mathematically the torus-shaped and 

cylindrical-shaped structures. By means of section 5, the analysis of dynamic stresses is shown. 

Moreover, section 6 will present a validity for results and demonstrate numerical outcomes. In 

addition to these, section 7 will finalize the paper by illustrating a brief conclusion and vital 

results. 

2. A floating STC wind turbine  

As seen by Fig. 1, a STC wind turbine is demonstrated (the picture is not scaled correctly). The 

different sections are named in the picture. The torus part can be replaced by a cylindrical one. 

In this paper, we also compare dynamically these two shapes to each other. The torus is exactly 

placed on the sea surface and is rotated by the aid of water waves. Generally, in STC the blades 

convert the wind energy and the torus (or cylinder) converts the water waves energy into the 

electricity energy. 
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Fig. 1. The schematic view of a STC wind turbine 

3. Dynamic analysis of a torus-shaped structure 

In this section, the governing equations of a ring torus shell will be derived. This structure 

can be part of a complete torus structure along θ and α directions. Therefore, there are no 

restrictions and a wide range of geometric shapes of torus shapes can be examined. According 

to Fig. 2, the changes will be in both θ and α directions. θ and α angles can vary from 0 to 2 π. 

If both θ and α are selected as 2 π, a complete donut structure will be made (Fig. 3). If the 

smaller radius r is considered constantly, then 𝑟 = 𝑅. The bigger radius of the ring torus is 

assumed 𝑅𝑡 (Fig. 2). It is important to note that the cylindrical structure can also be simulated 
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by selecting the torus radius (𝑅𝑡) and the angles 𝛼1 and 𝛼1 according to calculations as follows 

which will eventually obtain the cylindrical geometric [37, 38] shape based on the donut-shaped 

structure. 

 

Fig. 2. The schematic view of an angular torus structure in Toroidal and Cartesian 

Coordinate systems 
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Fig. 3. The complete ring torus structure rotating around two axes of 𝐴𝑋𝛼 and 𝐴𝑋𝜃 

under internal pressure and hygro-thermal environment 

 2 1 1; ;       is the length of cylindert tR L R R R L      (1) 

Therefore, according to the explanations provided, the analysis of the donut-shaped 

structure is more general and with the accordance simulation, the cylindrical structure can also 

be examined. 

The variables change in the considered coordinate system in Fig. 2 (torus coordinate 

system) will be in the three directions r, θ and α. 

According to Fig. 2, the relationship between the Cartesian coordinate system and the 

Torus coordinate system will be as follows: 
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As a result, according to the above calculations, it can be concluded that the gradient of 

change (∇) is: 

  
1 1

sint
r r R r 

   
   

    

 (3) 

The relationships between the unit vectors in the Cartesian coordinate system and the 

Torus coordinate system will be obtained as follows: 
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Also, the changes in the unit vectors 
re , e

 and e
 in the three main directions r, θ, and 

α are written as the following relations: 
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 (5) 

The following tensor equation can be used to obtain the strain tensor in the Torus 

coordinate system (Fig. 2). 

1

2

T TU U U U         (6) 

In the above equation, the gradient operator (∇) changes according to Eq. (3). Also, U is 

the displacement field, which according to the coordinate system mentioned in the three 

directions of r, θ and α is presented according to the following vector. 

r rU U e U e U e   
 
 

 (7) 

It can be possible to obtain ∇𝑈 and then ∇𝑈𝑇 now. A non-linear term is also observed in 

Eq. 7 as ∇𝑈 ∙ ∇𝑈𝑇. 
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 (8) 

Therefore, each of the 9 elements in the strain tensor can be calculated and written in a 

3×3 matrix below. 
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Now expanding Eq. (8) (and considering the derivatives in Eq. (5)) can lead to the 

following equations. 
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Each of elements in Eq. (9) can be obtained by adding similar values in Eq. (10) and 
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 (11) 

Now ∇𝑈𝑇 can be obtained as the following matrix according to Matrix 11. 

  
 

  
 

  
   

1 1
sin

sin

1 1
cos

sin

1 1
sin cos

sin

r r r

t

T

r

t

r

t

U U U
U U

r r R r

U U U
U U U

r r R r
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 (12) 

According to the obtained matrices (matrices 11 and 12) and substituting into Eq. (6), the 

non-linear strain tensor can be obtained according to the following final matrix whose elements 

are written separately. It is noted that 𝛼𝑇 and β are the thermal expansion and moisture 

coefficients. Also, ∆𝑇 = (𝑇2 − 𝑇1) and ∆𝐻 = (𝐻2 − 𝐻1) are the temperature and moisture 

percentage differences. Combination of thermal and moisture is defined as hygro-thermal 

environment. Consequently, the total strain tensor is equal to summation of mechanical 

(generated by loading) and hygro-thermal (generated by temperature difference and humid 

environment) strains according to the superposition principle. 
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 (13) 

Non-linear values in strain field that are in the direction of 𝑈𝛼 and 𝑈𝜃 will have little 

effect on the obtained results, and only non-linear values produced by 𝑈𝑟-dependent parameters 

can be considered. These assumptions are based on von Kármán’s non-linear strains. Therefore, 

non-linear values in which the parameters 𝑈𝛼 and 𝑈𝜃 are existed will be omitted as follows. D
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 (14) 

Using the energy method and the principle of minimum potential energy, the governing 

equations of the torus shape structure can be obtained. According to this principle, the energy 

variations of the system should be equal to zero. The main relation in this method is introduced 

as the following equation. 

0ext kenU F K         (15) 

In the above equation, 𝛿𝑈𝜀, 𝛿𝐹𝑒𝑥𝑡 and 𝛿𝐾𝑘𝑒𝑛 are the energy generated by the strains, 

external loads and kinetics respectively which can be seen in the following equations (t is the 

time-dependent variable). 
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 (16) 
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If it is considered the transitional and rotational variable speeds around r, θ and α 

directions as 𝑟̇ =
𝜕𝑟

𝜕𝑡
, 𝑟̈ =

𝜕2𝑟

𝜕𝑡2, 𝜃̇ =
𝜕𝜃

𝜕𝑡
, 𝜃̈ =

𝜕2𝜃

𝜕𝑡2 , 𝛼̇ =
𝜕𝛼

𝜕𝑡
 and 𝛼̈ =

𝜕2𝛼

𝜕𝑡2  the accelerations in 

Toroidal coordinate system can be formulated in below: 

 2 2 2sinra r r r      (17) 

   22 sin cosa r r r         (18) 

     sin 2 sin 2 cosa r r r          (19) 

Consequently, the energy generated by acceleration rotation of toroidal structure can be 

formulated as follow (ρ is the density of the structure’s material in 𝑘𝑔/𝑚3): 
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
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

 

 
 (20) 

The extension of the above integral equations can be rewritten as the following equations. 

As can be seen, the two integrals above are on volume and surface. Volume and surface changes 

(dV and dA) can be obtained according to the geometric shape of the Torus structure (Fig. 2) 

and the following equations will be obtained by substituting and expanding the indices. 
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            

     


     



  

   (21) 

𝛿𝑈𝜀 integral equation should be further expanded and the strain changes (𝛿𝜀𝑖𝑗(𝑖, 𝑗 =

𝑟, 𝜃, 𝛼)) presented in matrix 13 should be substituted in Eq. (21). The strain matrix 13 is a 

general matrix. In other words, any desired value can be considered for the displacement field 

(𝑈𝑟, 𝑈𝜃 and 𝑈𝛼). 
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In this study, the first-order shear deformation theory (FSDT) has been used due to the 

many advantages and simple formulations. One of the advantages of the first-order shear 

deformation theory is the provision of accurate results for moderately thick structures. The 

distribution of shear force along the thickness in this displacement field (FSDT) is considered 

linearly. As an innovation presented in this study, it can be mentioned the strain matrix (matrix 

13) in general form, and according to this matrix, any type of displacement field can be 

considered and derive the governing equations based on arbitrary considered displacement 

field. In other words, the researcher can apply quasi-three-dimensional displacement theories 

in matrix 13 and derive the resulted quasi-three-dimensional governing equations. So, it is 

possible to examine conveniently the effects of strain changes along thickness. Therefore, this 

research can be a benchmark reference for researchers who is studying the analysis of 

mechanical properties of torus-shaped structures. Whereas deriving the governing equations in 

Toroidal coordinate system has been explained carefully in details, readers can apply the 

proposed method for any kind of coordinate system and in consequence analyze many other 

structures. The basic equations of the first-order shear deformation theory for a torus structure 

will be the following three equations. 

     

     

   
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 

 



 (22) 

Variations along the r direction is considered as z direction through the thickness of 

structure. As mentioned earlier, the smaller radius of ring torus is considered to be a constant 

value as R (Fig. 2). According to the displacement field (Eq. (22)), it is expected that the third-

order partial differential equations (PDE) will be derived due to three independent variables θ, 

α, t. So, the presented displacement field (Eq. (22)) is rewritten as follows: 
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 (23) 

In the above equations, as mentioned earlier, 𝑈𝛼, 𝑈𝜃, and 𝑈𝑧 are displacements in the 

three independent directions of the Toroidal coordinate system (the three main directions of α, 

θ, and z) in which their definitions are considered linearly. The values of 𝑢0(𝜃, 𝛼, 𝑡), 𝑣0(𝜃, 𝛼, 𝑡), 

and 𝑤0(𝜃, 𝛼, 𝑡) show the transition changes along the three directions of θ, α, and z. Also, 

𝜓1(𝜃, 𝛼, 𝑡) and 𝜓2(𝜃, 𝛼, 𝑡) are the rotational functions around α and θ directions respectively. 

The variable z also represents changes through the thickness. The values of variations 𝛿𝑈𝛼, 𝛿𝑈𝜃 

and 𝛿𝑈𝑟 = 𝛿𝑈𝑧 can now be calculated and substituted in Eq. (16) according to the following 

equations. 
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 (24) 

By substituting the above equations (Eq. (23)), the strain components in Eq. (14) can be 

rewritten as the following expressions. 
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 (25) 

Considering the strain components (Eq. (25)) and substituting the strain variations into 

Eq. (21), the expansion of Eq. (21) is expressed in below. 
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 (26) 

In the above equation, it was assumed that 𝜎𝑖𝑗 = 𝜎𝑗𝑖. For example, 𝜎𝑧𝜃 = 𝜎𝜃𝑧, 𝜎𝜃𝛼 = 𝜎𝛼𝜃 

and etc. 

By integrating Eq. (26) in the direction of z and expressing the definition of momentum 

and stress resultants as the following equations (𝑁𝑖𝑗(𝑖, 𝑗 = 𝛼, 𝜃), 𝑀𝑖𝑗(𝑖, 𝑗 = 𝑧, 𝛼, 𝜃), 𝑄𝑖𝑗(𝑖, 𝑗 =

𝑧, 𝛼, 𝜃)), Eq. (26) can finally be rewritten as follows: 
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Some of the integrals made in Eq. (27) are integrals by part. For example, the method of 

calculating one of these types of integrals can be considered as the following process 
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0 00 0 0
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 
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 (28) 

The calculation of other integrals in Eq. (16) is presented as follows 
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Now, by adding the values of the changes in the directions 𝛿𝑢0, 𝛿𝑣0, 𝛿𝑤0, 𝛿𝜓1 and 𝛿𝜓2, 

the dynamical governing equations of a ring torus-shaped structure can be obtained as the 

following equations 
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 (35) 

4. Dynamic analysis of cylindrical-shaped structure 

According to the method mentioned for obtaining the dynamic governing equations of 

the torus structure, which was fully explained in details in the previous section, the governing 

equations of the cylindrical structure can also be obtained. The schematic view of the rotating 

cylindrical structure can be seen in Fig. 4. The structure is under the internal pressure 𝑞𝑟 and 

also the hygro-thermal environment is considered. The height of the cylinder is L. The cylinder 

is rotating around central axis 𝐴𝑋𝜃 with angular velocity and acceleration 𝜃̇ and 𝜃̈ respectively. 

The acceleration vector is 𝑎⃗ = (𝑟̈ − 𝑟𝜃̇2)𝑒̂𝑟 + (𝑟𝜃̈ + 2𝑟̇𝜃̇)𝑒̂𝜃 + (𝑧̈)𝑒̂𝑧. Variations of radius and 

height per time (𝑟̇, 𝑧̇) are neglectable and it can be assumed that 𝑟̇ = 𝑟̈ = 𝑧̇ = 𝑧̈ = 0. In this 

section, only the strain matrix and the final governing equations are written according to the 

following equations 
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Fig. 4. Schematic view of rotating cylindrical structure 
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If the angular velocity (𝜃̇) is considered constant and also the internal pressure is 

symmetrical and uniform, there will be no changes in the direction of θ (
𝜕

𝜕𝜃
(𝑓) = 𝑈𝜃 = 0). 

Thus, the governing equations (Eqs. (37-41)) can be reformulated as follows 
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5. Stress analysis 

The Hook definition for stress analysis has been used in this study. The main equation for 

the stress analysis can be expressed as follow: 
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 (45) 

In the above relation, σ is the stress generated on the structure, C is the material 

characteristic matrix and ε is the vector of the strain field. 

The material characteristic matrix (matrix C) can be obtained for the FGM material 

considered in this study. Today, FGM structures have attracted a lot of attention from 

researchers [26-34]. In functionally graded materials (FGM’s), material specifications change 

in one or more directions. For example, it can be assumed that the properties of material change 

with respect to thickness. Young’s elastic modulus (𝐸(𝑧)), Poisson’s coefficient (𝜈(𝑧)), thermal 

conductivity (𝛼𝑇(𝑧)) and moisture coefficient (𝛽(𝑧)) can be thought of as a function of 

thickness that varies from the internal values of 𝐸𝑖, 𝜈𝑖, 𝛼𝑇𝑖 and 𝛽𝑖 to the external values of 𝐸𝑜, 

𝜈𝑜,, 𝛼𝑇𝑜 and 𝛽𝑜. Parameter n shows the intensity of changes in material properties from internal 

to external values. The material properties can be written as the following equations 
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6. Numerical analysis 

Numerical outcomes are acquired on the basis of SAPM semi-analytical solution technique 

which its reliability and validity were confirmed before. Not only for two-dimensional 

geometries but also for three-dimensional coordinates, the SAPM worked well as a general 

solution method. Here, in order to avoid any repetition, the SAPM procedure is not re-

introduced and it can be simply found in [34-36]. 

6.1. Validation 

First, it is essential to examine whether the obtained results of the governing equations 

are reliable or not. According to Table 1, the results are presented for a typical cylindrical 

structure and ABAQUS software. The specifications of the cylindrical structure under 

consideration are as follows: 

1900Gpa; 0.29; 0.01m; 3rpm; 1m; 5mE h R L        

The results are presented for two parameters of maximum deformation as well as von 

Mises stresses for different loads. As explained earlier, the results of the cylindrical structure 

can be obtained from the torus structure. According to the analyzed cylinder specifications, the 

torus radius (𝑅𝑡) is assumed to be infinitely (physically infinite, here 𝑅𝑡 = 10000 𝑚 is 

considered). Therefore, the angle 𝛼 =
5

10000
 (𝑅𝑎𝑑) will be obtained and the radius of the 

cylinder will be the same as R = 1 m. In Table 1, the evaluation can be considered for both the 

cylindrical and torus-shape structure. It can be seen that the results of two cylindrical and 

simulated cylinder based on torus geometry are very similar, and the difference between the 

two evaluations is not much different from the results obtained from ABAQUS software. 

Therefore, it can be concluded that the governing equations and the applied solution method are 

efficient and the results of present analysis can be used with high confidence in further 

investigations. It is observed that as the internal pressure of the structure increases, the 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


deformation and the stress increase. For the loading value of 𝑞𝑧 = 0.4 MPa, the von Mises stress 

will be around the yield stress of about 206 MPa, and for more loads than that, no elastic 

analysis will prevail and the structure will enter into the plastic deformation zone, which is not 

desirable. Therefore, the allowable internal pressure limit for the analyzed structure (in these 

conditions) will be maximum 𝑞𝑧  = 0.4 MPa. 

Table 1. Comparison of present paper (PP) results and ABAQUS for different amounts of 

loading values 

𝑞𝑧 (MPa) 

PP PP ABAQUS 

w (mm) 𝜎𝑣𝑜𝑛 (MPa) 
w (mm) 𝜎𝑣𝑜𝑛 (MPa) 

Torus Cylinder Torus Cylinder 

0.1 24.39 24.27 51.83 51.67 24.30 51.72 

1 243.9 242.8 518.3 516.7 243.0 517.2 

10 2439 2427 5183 5167 2430 5172 

 

6.2. Investigation of important parameters 

A cylindrical chamber with radius, thickness and length of R = 100 m, h = 0.1 m and z = 

1000 m is considered. The structure rotates around the central axis at a speed of 3 revolutions 

per minute (RPM). The material properties are the same as in Table 1. The internal pressure of 

structure is 105 Pa (equal to the pressure on the equator). It is worth to be noted that the internal 

pressure imposed on the analyzed structure’s surface is the same as the pressure applied on the 

sea level, which is about 100 kilo Pascal (kPa). The effect of environmental conditions 

(temperature and humidity changes) is not considered for this special problem. The main 

question is what the appropriate thickness should be considered in order to be able to withstand 

the imported loads. On the other hand, could the structure (with the assumed thickness) tolerate 

the imposed situations successfully or not. 
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Figures 5a and 5b show the changes in the maximum deformation as well as the von 

Mises stress occurred in the cylindrical structure versus the length of structure (here is 

represented by z). The main goal here is to have a minimum possible thickness so that the 

resulted stress in the structure is less than the yield stress of the material (which is about 206 

MPa). According to Figures 5a and 5b, it can be concluded that the structure can overcome the 

imposed internal pressure (in absence of environmental conditions) with an acceptable factor 

of safety. The performed analysis is completely non-linear dynamics [39] and the obtained 

results are reliable according to the comparison and evaluation that had been made in Table 1.  
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(b) 

Fig. 5. Analysis of a cylindrical structure versus θ and 𝑧∗ = 𝑧/ℎ directions for (a) deflection 

(w) and (b) von Mises (𝜎𝑣𝑜𝑛) numerical results 

Both of the cylindrical and torus structures are analyzed in this study. The considerations 

for the temperature of the structure and its effects on the strength of the structures must also be 

considered. In Figures 6a, 6b, 7a, and 7b, the deflection and von Mises stress changes in the 

body of the cylindrical structure and torus have been investigated for two temperature 

differences of 0 and 30℃ against the thickness changes. In all values, the thickness of the 

structure is observed. For each temperature difference, the deformation and the stress created 

in the structure increase. Figure 6a shows that if the thickness of the structure is low, 

temperature changes do not have much effect on the results. But as the thickness increases, the 

effects of temperature differences on the results become apparent. The slope of changes is 

initially very steep and descending. However, it is gradually reduced and it can be seen that 

increasing the thickness of the structure has no effect on reducing the deformation and stresses 
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in the structure. The mentioned result is more obvious in the case of considering the temperature 

difference. Deformation and thermal stresses will have a subtle change with the increase of the 

thickness. Therefore, the greater thickness of the structure will increase significantly the weight 

of the structure and its production cost. The stresses existed in the structure must be less than 

the allowable limit so that the structure does not undergo plastic deformation. Creating 

permanent deformations in structures has many adverse effects that must be avoided. The 

internal pressure of the structure is due to the followings applied pressures: 

1) The simulated internal pressure is equal to 100 kPa. 

2) The pressure exerted by objects inside the structure on its wall due to their 

gravitational force. 

According to Figure 7a, for the thickness of the structure below 0.1 m (h < 0.1 m), the 

stresses raised in the structure will be within the allowable yield limit, which is equal to 206 

MPa. Therefore, the thickness of the structure should be thicker than 0.1 m due to the standard 

allowable yield stress limit. The difference between the results of the von Mises stresses for the 

temperature change from 0 to 30℃ is not great, but this difference is about twice that of the 

deformation results. For example, the difference in deformation results per h = 0.1 m in the case 

of a temperature difference of 0 and 30℃ is about 100%, which is only about 20% in the case 

of von Mises stresses. According to Figures 6a and 7a for the cylindrical structure, it can be 

concluded that choosing the thickness of the structure equal to h = 0.1 m can be appropriate. If 

the geometry of the studied structure is torus shape, its surface area will be reduced. It is not 

possible to say exactly which structure is more suitable for creating best conditions. In other 

words, a cylindrical structure is more appropriate or a torus-shaped structure. Choosing each of 

them has its own advantages and disadvantages. In Figures 6b and 7b, the obtained results for 

the cylindrical structure are repeated here for the torus structure. It can be seen that temperature 
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changes do not play a significant role here, as previously discussed in the cylindrical structure. 

The results are slightly different for temperatures between 0 and 30℃. But the slope of the 

changes here is steeper (Figures 6b and 7b). With increasing thickness, the resulted deformation 

and stress demonstrate a sharp decline. Because here the structure will be very thick. 

In the case of a large construction, choosing a cylindrical shape would seem more 

reasonable. Due to the fact that the deformation in the torus structure is asymmetric and the 

stress and deformation created in the direction of the θ angle (Fig. 3) are asymmetric, so the 

uniformity that had been seen in the cylindrical structure no longer exists in the case of the torus 

structure. Due to the curvature in α and θ directions, the construction of such a donut-shaped 

complex also has its own challenges, which are expected to be costlier compared to the 

cylindrical structures. Of course, another advantage of torus-shaped structures is the ability to 

rotate on two independent axes, α and θ. The only thing that could be done about cylindrical 

structures was to make centrifugal force by rotating around θ’s angle (Fig. 4). The combined 

rotation around the θ and α axes in torus structures is assumed. Overall, the obtained results 

from Figures 6 and 7 provide very useful information on the impact of environmental factors 

such as ambient temperature on the amount of stress and deformation created in cylindrical- 

and torus-shaped structures. Using the information obtained from Figures 6 and 7, the minimum 

thickness required for the designed structure can be obtained. Since the equations in this study 

are general and include many conditions and assumptions, the desired design conditions can be 

simulated. 
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(a) 

 

(b) 

Fig. 6. Variation of maximum deflection due to increase of thickness (h) for different values 

of πT (a) Cylindrical (b) donut shape structures 
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(a) 

 

(b) 

Fig. 7. Variation of von Mises stress (𝜎𝑣𝑜𝑛) due to increase of thickness (h) for different 

values of πT (a) Cylindrical (b) donut shape structures 

0

20

40

60

80

100

120

140

160

180

200

220

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ
v
o
n
 (

M
p
a
)

h (m)

ΔT = 0

ΔT = 30

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ
v
o
n
 (

M
p
a
)

h (m)

ΔT = 0

ΔT = 30

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


In Figures 6a, 6b, 7a and 7b, the effect of temperature changes on the results of 

deformation and stress in the structure was investigated. Another environmental factor that 

affects the results is the humidity of the environment, which affects the deformation and stresses 

created in the body of the structure. Standard humidity should be considered in the life 

environment of the structures in order to facilitate and normalize conditions. Figures 8 and 9 

show the effect of ambient moisture content (πH) on the obtained results. The results are plotted 

for two values of temperature difference (πT). It is observed that the maximum deformation of 

the structure for two values of temperature difference of πT = 0 and 30℃ show almost the same 

behavior (the slope of the changes is almost the same with a slight difference). As πH increases, 

the deformation of the structure increases as well, but this increase is not very significant and 

can be ignored in comparison with the changes caused by temperature. In other words, in similar 

conditions, temperature changes affect the structure more than changes in humidity. But here, 

because research on abnormal conditions is considered, even small and imperceptible changes 

can be important and should be considered to avoiding very staggering costs that have been 

incurred. In this research, which has further theoretical aspects, only a few of these factors such 

as internal pressure, environmental conditions such as temperature and humidity have been 

mentioned. Therefore, if a practical project is defined for this purpose, a series of factors that 

are involved in designing a suitable structural system (even factors with a small impact factor) 

should be considered. Interestingly, according to Fig. 9, if the temperature difference is not 

taken into account, changes in πH will not affect the stress exerted in the structure and the von 

Mises stress shows a constant value (Here about 30 MPa). But with increase of the temperature 

difference (which is closer to the reality of analyzed problem) increase of πH will cause a 

gradual growth (slightly and with a gentle slope) in von Mises stress. 
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Fig. 8. Variation of the deflection versus the increase of πH for two different values of 

temperature changes πT = 0, 30℃ 

 

Fig. 9. Variation of von Mises stress results versus the increase of πH for two different values 

of temperature changes πT = 0, 30℃ 
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One of the most important factors that affects the strength of the structure under analysis 

is the choice of material. Recently, the use of functionally graded materials (FGM) in which the 

properties of matter change in one or more directions has been considered by many researchers. 

This can also be used in the high sensitive industries. Figures 10 and 11 show the maximum 

deflection and von Mises stresses of a rotating cylindrical structure along the length of the 

structure for different values of the parameter n (parameter of the intensity of changes from 

metal to ceramic properties). It is observed that with increasing n, maximum deformation of the 

structure increases and the resulting von Mises stress decreases. The rate of change in von Mises 

stress is more severe than the deformation rate. By increasing parameter n, initially the changes 

in Figures 10 and 11 are large, and in continue with increasing n, no noticeable changes are 

observed. According to Figures 10 and 11, it can be concluded that the selection of FGM 

materials reduces the stress of the structure, so it is possible to use functional materials in the 

analyzed structure to aim acquiring the desired thickness followed by a decrease (appropriate 

thickness according to Figures 6 and 7). Here, if the parameter n is selected, for example equal 

to 5, about 60% of the stress created in the structure will be reduced, while only about 20% will 

be added to the deformation of the structure. Therefore, it can be possible to use FGM material 

with the mentioned specifications and parameter n = 5. But using FGM materials costs a lot. 

However, with the development of their manufacturing technology so that their production costs 

are significantly reduced (due to their unique characteristics), and it will be widely used in high 

sensitive structures. It should be noted that the values of the horizontal axis in Figures 10 and 

11 are dimensionless (𝑧∗ = 𝑧/ℎ). The order of use of FGM materials in conditions where the 

influence of environmental factors such as humidity and temperature variations is considered, 

can optimize the design of the structure and significantly increase its strength. 
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Fig. 10. Deflection changes (in millimeter) along the length of structure (in meter) for 

different values of parameter n 
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Fig. 11. Von Mises stress changes (in MPa) along the length of structure (in meter) for 

different values of parameter n 

The rotating motion around a center should not cause inconvenience to the inhabitants of 

the structure. The tolerance of machine at different rotational speeds is a criterion that should 

be considered in the design of structure. If the rotational speed around the central axis is 

accelerated, this will also cause problems. Therefore, accelerated rotational speed should be 

avoided. In other words, in the obtained governing equations of the cylindrical structure 𝜃̇ = 0 

should be considered, and in the torus structure 𝛼̇ = 𝜃̇ = 0. 

Figures 12 and 13 show the effect of rotational speed on the strength of the cylindrical 

structure. Fig. 12 examines the changes in the maximum deformation of the structure and Fig. 

13 examines the von Mises stresses occurred in the structure in exchange for increasing the 

rotational velocity in both states (a) and (b). Details of modes (a) and (b) are as follows: 
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(a) πT = 30℃, πH = 0.2 

(b) πT = 0, πH = 0 

As can be seen, the resulting deformations as well as the von Mises stresses will be greater 

in condition (a) than in condition (b). However, the difference between the deformation results 

of conditions (a) and (b) is more obvious. At the beginning of the change, the difference between 

the two results (conditions (a) and (b)) is greater for the lower rotational velocities, but as the 

rotational velocity increases, the results of conditions (a) and (b) become closer to each other. 

For a rotational speed of 10 revolutions per minute (rpm), the results are almost the same. In 

other words, if the rotational speed of the set has a significant increase, the effects of rotational 

speed will be greater than other factors such as internal pressure and environmental factors such 

as temperature and humidity. Consequently, other factors can be ignored compared to rotational 

speed. In the case of the structure under analysis, the rotational speed is about 3 rpm. But the 

unwanted rotational speeds happened in the structure up to about 10 rpm will not have much 

effect on the structure and for example the von Mises stress is about 150 MPa (when the 

rotational speed is 10 rpm) and in rotational speeds lower in the range of 0 to 10 rpm, the stress 

is about 100 MPa. But by doubling the rotational speed from 10 to 20 rpm, the von Mises stress 

in the structure will be about 460 MPa at once, which is about three times greater than the stress 

when the rotational speed is 10 rpm. This created stress is more than twice the allowable yield 

stress of the selected material and if the structure rotates at this rotational speed, the 

disintegration of the structure is not far from the mind. However, the more important issue to 

consider is the destructive effect of such a rotational speed for the connected parts. 
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Fig. 12. Deflection changes versus the rotation velocity of structure for two types of 

conditions (a) and (b) 

Fig. 13. Von Mises stress changes versus the rotation velocity of structure for two types of 

conditions (a) and (b) 
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The selection of the appropriate thickness for the structure that was examined in Figures 

6 and 7 should now be studied more closely. For example, if the thickness of the structure is 

considered to be 20 cm, choosing this thickness throughout the structure will cause a huge 

increase in the mass of the complex and its staggering costs. In practice, structures are composed 

of a thin layer of coating, most of which is responsible for preventing the penetration of vital 

gases such as oxygen, heat and moisture storage inside the structure, which is vital for the life 

of internal parts and protection against harmful conditions. Also, a skeleton holding the internal 

equipment and supporting the outer cover, which is responsible for withstanding the mechanical 

and environmental loads on it, has been formed. In practice, for a section of housing structure, 

the thickness (that is uniformly distributed) can be simulated with a truss structure, in which the 

loads, stress and deformation created in the structure are equivalent. Fig. 14 shows this 

equivalence schematically. 

Fig. 14. Schematic view of designed hollow structure versus its equivalent uniform 

solid structure 
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The equivalence state specified in Fig. 14 can be assumed in such a way that the structure 

with uniform and integrated thickness has a defective porosity [40, 41]. The mechanical 

response should be equal for a uniform structure (right in Fig. 14 with thickness ℎ1) and the 

same porous structure (left in Fig. 14 with thickness ℎ2). By obtaining the equivalent thickness 

to the section with structural defect, the thickness of the designed structure can be calculated 

equal to the obtained thickness of the section with porosity defect. This issue has been studied 

in this research for the first time from a mechanical point of view and needs further study and 

research. Equating structures with and without structural porosity defects can significantly 

reduce the simulation time and costs. From a theoretical point of view, as the thickness of a 

structure increases, the deformations and stresses created in the model will decrease, and from 

a mechanical point of view, the reliability of the structure against the applied loads increases. 

Nevertheless, this will increase the mass, in consequence, increase the cost of construction and 

in this particular case will make it impossible to carry out the project (because the environmental 

conditions are abnormal and pose many challenges). 

The structural defect of porosity is defined by a factor ( π). In other words, the higher the 

π value, which indicates a structural defect, the lower the strength of the material. The structural 

defect of porosity in both even and uneven modes can have an effect on the Young’s elasticity 

modulus of the material, like the following equations. 

     
1

Even Porosity:    
2 2

n

o i i o i

z
E z E E E E E

h

 
      

 
 (47) 

     
21

Uneven Porosity:    1
2 2

n

o i i o i

zz
E z E E E E E

h h

   
        

   
 (48) 

Fig. 15 shows the maximum deflection variations of a rotating cylindrical structure versus 

an increase of the thickness of the structure for different π coefficient values. π = 0 indicates 
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a state in which there is no defect in the structure and the material distribution is considered 

integrated. It is observed that with the increase of π coefficient, the deformations created in the 

structure increase. As the amount of π increases, the effect of its increase on the results becomes 

more apparent. In other words, it can be said that a 25% increase in the π coefficient in a 

structure that already has about 25% structural defects, compared to the case where the structure 

is without defects ( π = 0) and its structural defect increases to 25%, it will present more 

deformation in the structure. It can be assumed that in the case of a structure with a structural 

defect of 50%, half of the internal space of the structure is filled with empty spaces. According 

to Fig. 15, for example, for deformations equal to about 80 mm for a flawless structure and a 

structure with a defect of 30%, the thickness of the non-defected structure is approximately 0.7 

m and the thickness of the defected structure should be equal to 1.5 m (almost more than twice 

as much). It should be noted that for a 50% defected structure, this thickness must be equal to 

2.5 m. Even the thickness of the structure without defect in this case will be equal to 0.6 m. That 

is, a 50% increase in the structure defect requires a thickness equal to about 4 times the thickness 

of the defected structure so that the deformations created in it (50% defected structure) are equal 

to the deformations of a defected structure. A thickness of 2.5 m with a structural defect of 50% 

represents about half of the empty space inside the structure that a network can be considered 

in this case. For example, this defected thickness can be simulated with a 3D truss and the 

skeleton design of the structure could be considered based on its ability to withstand the applied 

loads. The cross section of a 3D truss sample designed in this study (using the obtained results 

from the thickness equated to a flawless structure with a structural defect of 50%) can be seen 

in Fig. 14. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Fig. 15. The effect of porosity (even) on the deflection results of rotating structure versus the 

thickness of structure for different values of porosity factor π 

Fig. 15 demonstrated the effect of structural defect factor on the deflection results. It also 

takes into account the environmental effects of temperature and humidity. Nevertheless, if the 

environmental effects are ignored, for a structure to have a porous defect equal to 50%, the 

maximum deflection can be plotted in terms of thickness increase, in which the results are 

shown in Fig. 16. It is observed in this case, the effect of the structural defect on the results is 

much greater. According to Fig. 15, for π= 0.5, deflection experiences a 20% reduction from 

100 mm to 80 mm. Conclusion that has previously obtained (Fig. 15) in which the environmental 

factors of temperature and humidity were omitted, there was a reduction of approximately 60% 

(from 29 to 12 mm). 
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Fig. 16. Deflection changes of rotating structure versus the thickness of structure for π = 0.5 

and πT = πH = 0 

Comparing Fig. 15 and 16 shows that environmental factors play a very important role in 

the design of high-sensitive structures, and ignoring them can cause serious errors in 

calculations. Therefore, even the smallest details should be considered in the simulation and 

design of these structures. This study is used as a theoretical example in simulating rotating 

structures for the best wind energy harvester and similar to the normal conditions. The further 

analysis can involve more details, such as magnetic fields [42], viscoelastic modelling of wind 

turbine parts [43] and various external forces. 

7. Conclusions and remarks

In this study, the mechanical strength of cylindrical and torus structures against internal 

pressures and environmental factors (temperature and humidity) was investigated. The 

mechanical modeling is presented based on a general first-order shear deformation shell theory. 

The calculated formulas are in a general form in which many other theories could be applied. 
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Centrifugal forces within the structure is simulated due to the rotation of the structure around 

the central axes. The obtained equations are completely non-linear dynamic and include the 

effects of rotation of the structure on the resulted deformation and stresses. The factors affecting 

the problem are presented and interpreted in the form of numerical analysis (graphs). In general, 

the most important results can be summarized and categorized as follows: 

 Simulation of centrifugal forces and its effects on the strength of cylindrical- and

torus-shaped structures are different, and the choice of each structure has its own

advantages and disadvantages. In general, the torus-shaped structure has more

resistance than the cylindrical structure.

 Considering the environment conditions outside the structure, the environmental

factors such as pressure, temperature and humidity will have a great impact on the

strength of the structure and their effects should be considered in the calculations.

 The use of FGM materials in high-sensitive structures greatly increases its

strength. Therefore, with less thickness and the use of FGM materials, the desired

strength can be taken in the applied structure.

 By using the method presented in this research, it is possible to calculate the

equivalent thickness to design the shape of the analyzed structure (here a three-

dimensional truss).

 The rotation of the structure (which causes centrifugal forces) has a negative effect

on its strength. If the rotation of the structure is more than expected, it will cause

its destruction.
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