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On DoA estimation for rotating arrays using
stochastic maximum likelihood approach

Michał Meller, Kamil Stawiarski

Abstract—The flexibility needed to construct DoA estimators
that can be used with rotating arrays subject to rapid variations
of the signal frequency is offered by the stochastic maximum
likelihood approach. Using a combination of analytic methods
and Monte Carlo simulations, we show that for low and moderate
source correlations the stochastic maximum likelihood estimator
that assumes noncorrelated sources has accuracy comparable
to the estimator that includes the correlation coefficient as one
of the parameters. We propose several fast approximations of
the stochastic maximum likelihood estimator and compare their
accuracy with the Crámer-Rao lower bound. We also discuss
the model order selection problem for the binary- and multiple-
hypotheses cases.

Index Terms—direction of arrival estimation, rotating array,
stochastic maximum likelihood method

I. INTRODUCTION

IN applications such as radar, sonar, or seismology there
arises the need to estimate the direction of arrival (DoA)

of waveforms accurately. Early DoA estimation methods often
involved mechanical movement of the receive array, and
subsequent analysis of the resultant amplitude modulation of
the received signal. Solutions belonging to this class include
averaging of a rotating array azimuth with magnitudes of the
array output serving as weights and different variants of the
conical scan, among others [1], [2]. However, such methods
were found sensitive to fluctuations in the signal strength, and
it was soon realized that one may reach better and more robust
performance by employing multiple receive beams or, more
generally, multiple array outputs [3]. The monopulse method
[1], [3], which compares signals received by two beams, is a
classical technique belonging to this class.

Later on, numerous so-called superresolution methods, that
offer significantly better performance than the monopulse, par-
ticularly when there are multiple closely-spaced sources, were
proposed. The superresolution, which remains an active area
of research to this date, includes wide range of nonparametric
and parametric techniques.

In the first class, one may point to, already classical, meth-
ods such as the Capon method [4], its extensions [5], several
variants of the MUSIC algorithm [6], [7], and the ESPRIT
method [8], among others. Recent contributions to this class
include, e.g., the minimum norm method [9] or an iterative
estimator derived from the weighted least squares method
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[10]. Nonpararametric methods often include the source in-
dependence assumption and require a full rank estimate of
the array output covariance matrix. These features make their
application difficult when there is only a handful of snapshots
(which may be even as low as one) available. To mitigate
these difficulties, techniques such as the diagonal loading or
the spatial smoothing [11], the latter of which reduces the
array resolution, are used widely.

In the second, i.e., parametric class, two approaches, both
derived in the maximum likelihood framework, are predom-
inant. The deterministic, or conditional, maximum likelihood
estimator treats the source complex amplitudes as unknown
deterministic variables, while the stochastic, or unconditional,
maximum likelihood estimator treats them as independent
realizations of Gaussian random variables [11]. The stochastic
model may also be interpreted as a very simple specialization
of a wider multiplicative noise model, the latter of which
may model spatially spread sources – see, e.g., [12]–[15] for
examples of applications and solutions of the DoA estimation
under the multiplicative noise problem. Recently, methods em-
ploying the sparse recovery concept gained significant interest
due to their high accuracy, resolution, and the capability to
adjust to different number of sources [16]–[18]. An important
feature of almost all parametric methods lies in the fact that
they can work with as little as single snapshot without the
need to introduce any ad-hoc modifications that may affect
their performance adversely.

Remarkably, almost all superresolution methods were devel-
oped under the assumption that the source steering vectors are
independent of time, which precludes their direct application
in systems that employ rotating arrays. In radar, such systems
are still widespread, because they offer 360◦ coverage at costs
that are substantially smaller than costs of systems that employ
multiple stationary arrays facing different directions. This
feature makes rotating-array systems the preferred choice in
all but few most demanding applications, such as the ballistic
missile defense.

An important exception to this observation are the works
of A. Farina, F. Gini, M. Greco, and their coworkers that deal
specifically with rotating arrays – see [19]–[22], among others.
These authors assumed a coherent radar system and proposed
an estimator based on a variant of the conditional maximum
likelihood approach that exploits both the rotation-induced
amplitude modulation of the array output signals and the
Doppler shifts of target echos. They also studied a simplified
version of the estimator that avoids high computational cost
of a multidimensional search by replacing it with a sequence
of smaller two-dimensional searches. The drawback of these
estimators lies in the fact that they require a coherent system
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which employs a constant frequency across entire dwell over
target, which means that they might be prone to fluctuations
of source strength.

Recently, we proposed a nonparametric estimator tailored
for rotating arrays that employs the minimum variance dis-
tortionless response principle [23]. While this estimator does
not require system coherence and is robust to fluctuations, it
still has the requirement of constant frequency. Moreover, its
computational cost can be quite high.

In this paper, we study DoA estimation for rotating arrays
using the stochastic maximum likelihood approach. Unlike the
conditional maximum likelihood approach of [19]–[22], the
stochastic approach does not require coherence and can easily
cope with varying frequency. Additionally, it is more robust to
fluctuations of source strengths. On the other hand, in its basic
form, the method has rather high computational complexity.
The contributions of this paper are the following ones: 1. The
introduction of an unconditional model that does not require
steering vectors to be independent of time. 2. The sensitivity
analysis of the resultant stochastic maximum likelihood es-
timator. 3. The proposal of three simplified versions of the
estimator, which all require substantially less computational
power than the basic approach. 4. The verification of analytic
results and of the performance of the proposed simplified
estimators using Monte Carlo simulations.

The remaining parts of the paper are organized as follows.
Section II presents the signal model and the formulation
of the problem. Section III studies the stochastic maximum
likelihood estimator that arises from the problem formulation.
Using analytic methods, we investigate its sensitivity to small
errors in estimating the variance parameters and to nonzero
source correlation. In Section IV, several simplified, subopti-
mal, versions of the approach are proposed. Section V presents
the results of Monte Carlo simulations. Section VI concludes
the paper.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Let n = 0, 1, . . . , N−1 denote discrete, dimensionless time,
and let φa,n denote the azimuth of an array at time n. The
output of the array at time n, denoted yn, is an M -variate
(M ≥ 2) complex vector that is assumed to originate from
the following model

yn =

K∑
k=1

sk,nan(∆k,n) + vn , (1)

where K ≥ 1 denotes the number of sources with azimuth
angles φ1, φ2, . . . , φK , sk,n is the scalar complex-valued am-
plitude of k-th source at time n,

∆k,n = φk − φa,n

is the angular deviation of k-th source from the array boresight
at time n, an(∆φk,n) is the corresponding array steering
vector, and vn is the measurement noise.

We will assume that
(A1) The sources are independent from each other and noise

E[sj,ms
∗
k,n] = 0 ∀j,k,m,n

E[sk,nv
H
m] = 0H ∀k,m,n

where s∗k,n and vH
m denote the conjugate of sk,n and the

conjugate-transpose of vm, respectively.
(A2) The sequences {sk,0, sk,1, . . . , sk,N−1}, k = 1, 2, . . . ,K,

form zero-mean stationary white complex circular Gaus-
sian random processes with unknown variances σ2

s,k,
sk,n ∼ CN (0, σ2

s,k), k = 1, 2, . . . ,K.
(A3) The measurement noise {vn} is a zero-mean stationary

complex circular Gaussian white noise with covariance
matrix σ2

vI , where I denotes an identity matrix and σ2
v

is unknown, vn ∼ CN (0, σ2
vI),

The presence of multiplicative noise affecting an(∆φk,n)
is not assumed.

We seek estimators of unknown source angles φ1, . . . , φK
that, preferably, have modest computational complexity, which
would facilitate their implementation in real-time systems.
Moreover, we generally take into account that the size of
the observation vector yn might be small, e.g., M = 2,
which occurs, among others, if the array design is based
on the principles of the monopulse method [1]. The typical
monopulse solution, however, employs only one snapshot,
which means that the information carried in the envelopes of
the sum and difference signals is not processed optimally [21].
Our aim is to deliver an estimator that will offer considerably
better performance than the monopulse method, particularly
when there are multiple closely spaced sources.

Remark 1: There are several important difference be-
tween the rotating and the stationary array cases. First, in the
former the antenna rotation makes the observation vectors a
nonstationary sequence, which excludes the computation of the
sample correlation matrix. Since this quantity is required by
almost all superresolution methods, almost all such methods
are not directly applicable in the rotating array case. The use
of these methods is allowed only under slow array rotation, in
which case one could regard observations as locally stationary
and employ local analysis in the form of, e.g, the “sliding
window” or segmentation approaches. Second, in the rotat-
ing array case the movement of the array/elementary source
beampattern over sources results in amplitude modulation of
observations [19]. The presence or absence of this modulation
carries important information about the presence of signal
sources and, to reach optimal estimation results, should be
taken into account in the estimator design [21], [22]. Third,
rotating arrays are a special case of moving arrays, which are
more robust to ambiguity problems than stationary ones [24].

Remark 2: Comparing the adopted model with, e.g.,
the rotating-array radar models considered in [19], [21], one
may point to two important differences. First, we adopt the
stochastic approach, i.e., we treat the amplitudes sk,n as inde-
pendent stochastic variables. This feature makes the proposed
estimator less affected by source fluctuations, albeit the cost
of neglecting the Doppler shift information. More importantly,
however, the steering vectors in our model depend not only
on the source DoA, but also on the time variable n. Models in
the form (1) arise naturally in frequency-agile radars, which
may change the operating frequency with each pulse to avoid
jamming. Such rapid changes of the pulse frequency alter
the array manifold and decorrelate the source (target echo)
complex amplitudes sk,n due to the resultant changes in the
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wavelength and the scintillation phenomenon [1]. Moreover,
in this mode of operation, the system is incoherent, so the
Doppler shift information is not available and cannot be
analyzed to improve the DoA estimation accuracy.

Remark 3: The source independence assumption (A1)
may be regarded as the limiting factor of the proposed ap-
proach. Indeed, in many applications the sources are partially
correlated. The influence of source correlation will be studied
in Sections III and V, where we will show that even though
the proposed approach suffers from performance degradation
that occurs with correlated sources, it does not exhibit the
performance breakdown (known from, e.g., the Capon method)
and continues to work even with fully correlated sources.
Therefore, the proposed estimators remain useful even in
applications where the source correlation is significant – at
the very least, they could be used to rapidly provide the initial
point for a more sophisticated (and more computationally
costly) estimator that does not neglect the source correlation.

III. STOCHASTIC MAXIMUM LIKELIHOOD DOA
ESTIMATOR

A. Exact maximum likelihood solution

We start by discussing the exact maximum likelihood solu-
tion. Suppose that the number of sources, K, is known. On the
basis of (1) and (A1)-(A3), one may arrive at the following
form of the log-likelihood function [25]

l(Y,θ) = C −
[
N−1∑
n=0

log detRn(θ) + yH
nR
−1
n (θ)yn

]
, (2)

where Y = {y0,y1, . . . ,yN−1} denotes the available obser-
vations,

θ =
[
φ1 . . . φK σ2

s,1 . . . σ2
s,K σ2

v

]T
is the vector of the model parameters, C is a constant whose
exact form is not important to our considerations, and

Rn(θ) = σ2
vI +

K∑
k=1

σ2
s,kan(∆k,n)aH

n (∆k,n) (3)

is the covariance matrix of the observation vector at time n.
The maximum likelihood estimator follows immediately

θ̂ = arg max
θ

l(Y,θ) . (4)

Let us decompose θ into the DoA subvector and the
variance subvector, θ = [θφ θσ]T, where

θφ =
[
φ1 . . . φK

]T
θσ =

[
σ2
s,1 . . . σ2

s,K σ2
v

]T
.

Since our primary interest lies in estimating θφ, we may
treat θσ as nuisance parameters. Although the negative log-
likelihood is generally nonconvex in θφ, it is straightforward
to verify that, irrespective of the DoAs in θφ, the negative
likelihood function is convex in the variance variables, θσ , be-
cause it is a composition of convex mappings in these variables
[26]. This property suggest implementing the maximization
of l(Y,θ) as the alternating sequence of “outer”, exhaustive,

search in θφ, and the “inner” maximization in θσ that can take
advantage of the convexity,

θ̂φ = arg max
θφ

l̄(Y,θφ) , (5)

where

l̄(Y,θφ) = l(Y,θφ, θ̂σ(θφ))

θ̂σ(θφ) = arg max
θσ

l(Y,θφ,θσ)

denotes the compressed log-likelihood function.
The problem of the outer search will not be discussed here

extensively. We only point that it can be implemented as two-
stage search over a relatively coarse K-dimensional grid of
DoAs to localize the neighborhood of the global maximum,
followed by finer search to localize the optimal DoAs exactly.
In the second stage, we recommend employing a derivative-
free algorithm to avoid evaluating the derivatives of l̄(Y,θφ).
Such an approach makes a lot of sense if the array manifold
is stored in the form of lookup tables, because in this situation
the derivatives of steering vectors might be unavailable.

Unlike in the case of stationary array, where a closed-form
solution of the inner optimization exists [27], in the discussed
case no explicit formula for the optimal values of θσ is known
to exist. However, due to the convexity of the problem, the
convergence of the steepest descent method

θ̂σ ← θ̂σ + α
∂l(Y,θφ,θσ)

∂θσ
, (6)

where α > 0 is a small gain, is guaranteed. After straightfor-
ward manipulations, one may show that the partial derivatives
needed to implement the method take the form

∂l

∂σ2
s,k

=

N−1∑
n=0

∣∣yH
nR
−1
n (θφ,θσ)an(∆k,n)

∣∣2
−
N−1∑
n=0

aH
n (∆k,n)R−1

n (θφ,θσ)an(∆k,n) (7)

∂l

∂σ2
v

=

N−1∑
n=0

yH
nR
−2
n (θφ,θσ)yn −

N−1∑
n=0

tr R−1
n (θφ,θσ)

(8)

Unfortunately, this approach is computationally expensive and
therefore impractical. In the next section, we will present
several options, which all involve approximations, that have
lower computational complexity. Prior to this, however, we
will show that, under mild conditions, the DoA estimates
obtained using the maximum likelihood estimator are fairly
insensitive to small errors in estimating the optimal values of
the variance parameters, which means that the adverse influ-
ence of approximations should be tolerable, if not negligible.

B. Sensitivity analysis of the maximum likelihood estimator

Denote by θ0 = [θT
φ,0 θ

T
σ,0]T the true value of the parameter

vector θ. One can analyze the behavior of maximum likelihood
estimators using the Taylor expansion of the log-likelihood
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derivative about θ0 [28, chap. 2.2]. Expanding the first deriva-
tive of l(Y,θ)

∂l(Y,θ)

∂θ
' ∂l(Y,θ0)

∂θ
+
∂2l(Y,θ0)

∂θ∂θT
(θ − θ0)

one obtains that the maximum likelihood estimate θ̂, which
by definition satisfies

∂l(Y, θ̂)

∂θ
= 0 ,

reads

θ̂ ' θ0 −
[
∂2l(Y,θ0)

∂θ∂θT

]−1
∂l(Y,θ0)

∂θ
' θ0 + J−1 ∂l(Y,θ0)

∂θ
(9)

where

J = −E

[
∂2l(Y,θ0)

∂θ∂θT

]
=

[
Jφφ Jφσ
Jσφ Jσσ

]
(10)

is the Fisher information matrix. It is well know that, for n→
∞, the random variable 1

n
∂l(Y,θ0)
∂θ converges in distribution to

a zero-mean Gaussian random variable with covariance matrix
J [28, chap. 2.2].

Suppose that a perturbed log-likelihood maximizer in θσ ,
θ̂σ + ∆θ̂σ is found. We are interested in evaluating how such
an error affects the maximizer in θφ. One can quantify this
influence by considering the subvector of ∂l(Y,θ)/∂θ that
corresponds to θφ, and equating it to zero

∂l(Y,θ0)

∂θφ
+
∂2l(Y,θ0)

∂θφ∂θT
φ

(θ̂φ + ∆θ̂φ − θφ,0)

+
∂2l(Y,θ0)

∂θφ∂θT
σ

(θ̂σ + ∆θ̂σ − θσ,0) = 0 .

As a special case, the above equality must hold for ∆θ̂φ = 0,
∆θ̂σ = 0, which leads us to

∂2l(Y,θ0)

∂θφ∂θT
φ

∆θ̂φ +
∂2l(Y,θ0)

∂θφ∂θT
σ

∆θ̂σ = 0

and therefore we obtain that

∆θ̂φ = −
[
∂2l(Y,θ0)

∂θφ∂θT
φ

]−1
∂2l(Y,θ0)

∂θφ∂θT
σ

∆θ̂σ

' −J−1
φφ Jφσ∆θ̂σ . (11)

Given that Jφφ must be a full rank matrix for J−1
φφ to exist,

the existence of the influence of ∆θ̂σ is decided by Jφσ – if
Jφσ is a zero matrix, then (up to the first order terms), the error
∆θ̂σ does not affect the estimates of the source DoAs [also
note close ties of (11) with the formula for the Crámer-Rao
lower bound on DoAs obtained by treating θσ as nuisance].

It is straightforward to verify that Jφσ is made of the
elements of the form [c.f. (10)]

−E

[
∂2l(Y,θ0)

∂φk∂σ2
x

]
=

N−1∑
n=0

tr

(
R−1
n (θ0)

∂Rn(θ0)

∂φk
R−1
n (θ0)

∂Rn(θ0)

∂σ2
x

)

where k = 1, 2, . . . ,K, the symbol σ2
x corresponds to any of

the variances in the model, and [c.f. (3)]

∂Rn(θ0)

∂φk
= σ2

k

[
∂an(∆k,n)

∂φk
aH
n (∆k,n)

+ an(∆k,n)
∂aH

n (∆k,n)

∂φk

]
∂Rn(θ0)

∂σ2
j

= an(∆j,n)aH
n (∆j,n)

∂Rn(θ0)

∂σ2
v

= I .

General discussion of properties of Jφσ is difficult. How-
ever, for K = 1 and N sufficiently large for the above analysis
to be valid, one can verify that the sufficient (but not necessary)
condition for Jφσ = 0 is that the array manifold an(∆φ) is
a symmetric function and that the sequence of array azimuth
angles φa,n, n = 0, 1, . . . , N − 1, also exhibits the symmetry
about φ1. Moreover, if the symmetry of array angles φa,n

about φ1 is not exact, but the array azimuth angles sample
the mainlobe of the array beampattern sufficiently densely,
then Jφσ ' 0 and the influence of ∆θ̂σ is small. One
may expect that similar properties hold for multiple sources,
provided that they are sufficiently well separated from each
other, which creates a strong incentive to replace the steepest
descent approach (6) with faster methods that employ various
approximations.

C. Influence of source correlation

Although we already pointed out why in certain applica-
tions it is not unrealistic to assume that the sources are not
correlated, it is worth to analyze how the maximum likelihood
approach (4) reacts to small, but nonzero, source correlation.
To this end one may use the framework presented in chapter
5 of [28]. Related material can also be found in [29]. For
simplicity, we will discuss the case of two sources, K = 2,
only. Consider the following model

yn = An(∆1,n,∆2,n)sn + vn , (12)

where

An(∆1,n,∆2,n) =
[
an(∆1,n) an(∆2,n)

]
and {sn} is a sequence of i.i.d. bivariate complex circular
Gaussian random variables with covariance matrix

E[sns
H
n ] =

[
σ2
s,1 ρσs,1σs,2

ρ∗σs,1σs,2 σ2
s,2

]
,

where ρ = ρr + jρi, |ρ| ≤ 1, |ρ| ≈ 0 is the normalized
correlation coefficient of the two sources. We will refer to the
model (12) as the wide model. Our basic model (1), which
one can obtain from (12) by setting ρ = 0, will be called the
narrow model.

Denote by θw = [θT ρr ρi]
T the vector of parameters of

the wide model. Let Jw denote the Fisher information matrix
of the wide model, evaluated for ρ = 0, and partition it as

Jwide =

[
J00 J01

J10 J11

]
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where J00 = J is the Fisher information matrix of the
narrow model (10) and the remaining submatrices result from
the inclusion of ρr, ρi into θw. Then, according to [28,
chap. 5.4], for small ρ and sufficiently large N the bias and
variance of the estimate of a parameter µ obtained using the
maximum likelihood estimator based on the narrow model are
approximately equal to

E[µ̂narrow − µ0] ' ωTγ

E[µ̂narrow − E[µ̂narrow]]2 ' τ2
0 , (13)

where γ = [ρr ρi]
T,

ω = J10J
−1
00

∂µ

∂θ
− ∂µ

∂γ

τ2
0 =

(
∂µ

∂θ

)T

J−1
00

∂µ

∂θ
,

and the derivatives are evaluated at ρr = ρi = 0. For µ = φ1

or φ2, one should employ ∂µ
∂θ = [1 0 0 0 0]T and ∂µ

∂θ =

[0 1 0 0 0]T, respectively. In both cases, ∂µ
∂γ = [0 0]T.

The wide estimator is approximately unbiased with variance

E[µ̂wide − E[µ̂wide]]2 = τ2
0 + ωTKω , (14)

where K = (J11 − J10J
−1
00 J01)−1 [28, chap 5.4]. It is

straightforward to verify by inspection that (14) is simply the
Crámer-Rao lower bound for the wide model at ρr = ρi = 0.

For both estimators, one can obtain their mean-squared error
by adding squared bias and variance

MSEnarrow ' τ2
0 + ωTγγTω (15)

MSEwide ' τ2
0 + ωTKω . (16)

Observe that the narrow estimator is always better than the
wide one in terms of variance [c.f. (13), (14)], and that it may
be better in terms of the MSE, provided that its squared bias
is smaller than ωTKω. Since the bias depends linearly on γ,
such performance advantage is, in fact, guaranteed for ρ that
is sufficiently close to zero or for such ρ that results in γ being
orthogonal to ω. The exact level of source correlation where
the accuracy of the two approaches becomes equal depends on
many factors, such as the array manifold, source separation,
and the number of observations, among others. While it is
difficult to draw general conclusions, one may use the above
described approach to quickly quantify the tradeoffs associated
with the choice of the estimator for a particular combination
of system parameters and requirements. In Section V, we will
present an example of such analysis in a simple system that
employs the monopulse array configuration.

IV. FAST APPROXIMATE MAXIMUM LIKELIHOOD
ESTIMATORS

In this section, we present fast approximate solutions to
the problem of the inner optimization over θσ . We start with
the case K = 1, where we present a revised version of the
estimator from [30] and explain basic underlying ideas. Then
we discuss the generic case of arbitrary K. We also propose
a test that allows one to choose the value of K if the number
of sources is unknown.

A. Approximate solution for K = 1

It is well known that in the stationary case the optimal
estimates of source and noise variances can be found using
projections on signal and noise subspaces, respectively [27].
We will adopt the same approach, even though with our model
it does not lead to optimal estimates. Suppose that K = 1 and
denote by

Qn(θφ) = I − an(∆1,n)aH
n (∆1,n)

aH
n (∆1,n)an(∆1,n)

Pn(θφ) =
an(∆1,n)aH

n (∆1,n)

aH
n (∆1,n)an(∆1,n)

the matrices that project the n-th observation on the noise and
signal subspaces corresponding to the assumed source DoAs
θφ. It is straightforward to show that if the assumed DoAs
match their true values, θφ = θφ,0, it holds that [c.f. (1)]

E

[
N−1∑
n=0

yH
nQn(θφ,0)yn

]
= N(M − 1)σ2

v , (17)

Since it is not unreasonable to assume that N � 1, one is
allowed to employ the following approximation

1

N
E

[
N−1∑
n=0

yH
nQn(θφ,0)yn

]
' 1

N

N−1∑
n=0

yH
nQn(θφ,0)yn (18)

which leads to the following estimator of the noise variance
[30]

σ̂2
v(θφ) =

∑N−1
n=0 y

H
nQn(θφ)yn

(M − 1)N
. (19)

Similarly, it holds that [again, c.f. (1)]

E

[
N−1∑
n=0

yH
nPn(θφ,0)yn

]
= Nσ2

v + σ2
s,1

N−1∑
n=0

‖an(∆1,n)‖2

(20)
Based on the reasoning analogous to the one used for σ2

v , one
arrives at following estimator of the source variance

σ̂2
s,1(θφ) =

∑N−1
n=0 y

H
nPn(θφ)yn −Nσ̂2

v(θφ)∑N−1
n=0 ‖an(∆1,n)‖2

. (21)

Remark: If the array is assumed stopped and the steering
vectors independent of n, the above method reduces to the
optimal separable solution presented in [27]. In the general
case, however, the variance estimates obtained using (19) and
(21) are not optimal, although they are consistent.

B. Approximate solutions for arbitrary known K

The proposed solution for an arbitrary number of targets
also involves projections. It is straightforward to show that
when the assumed DoAs match their true values

E

[
N−1∑
n=0

w(∆k,n)yH
nPk,n(θφ,0)yn

]
= σ2

v

N−1∑
n=0

w(∆k,n)

+
K∑
j=1

σ2
s,j

N−1∑
n=0

w(∆k,n)aH
n (∆j,n)Pk,n(θφ,0)an(∆j,n) ,

(22)
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where k = 1, 2, . . . ,K,

Pk,n(θφ) =
an(∆k,n)aH

n (∆k,n)

aH
n (∆k,n)an(∆k,n)

and w(∆k,n) is a weighting function, decaying towards zero
as |∆k,n| increases, whose purpose will be to improve the
stability of the estimator.

As in the case of K = 1, for N � 1 one is allowed to
drop the expectation on the left side of the above equation.
Gathering the resultant equations for k = 1, 2, . . . ,K, one
may arrive at the following system of equations

S(θφ,0)σs ' u(θφ,0, σ
2
v) , (23)

where σs = [σ2
s,1 σ

2
s,2 . . . σ2

s,K ]T and

[S(θφ)]ij =

N−1∑
n=0

w(∆i,n)aH
n (∆j,n)Pi,n(θφ)an(∆j,n)

=

{ ∑N−1
n=0 w(∆i,n)aH

n (∆i,n)an(∆i,n) for i = j∑N−1
n=0 w(∆i,n)

|aH
n (∆i,n)an(∆j,n)|2
aH
n (∆i,n)an(∆i,n) for i 6= j

[u(θφ, σ
2
v)]i =

N−1∑
n=0

w(∆i,n)
[
yH
nPi,n(θφ)yn − σ2

v

]
. (24)

Suppose that a fairly accurate estimate of the noise variance,
σ̂2
v(θφ), is available. Replacing σ2

v in u(θφ) with σ̂2
v(θφ), one

arrives at the following estimator of the source variances

σ̂s(θφ, σ̂v
2) = S−1(θφ)u(θφ, σ̂v

2(θφ)) . (25)

We are now left with the problem of evaluating σ̂2
v(θφ). If

M > K, one may employ the projection on the noise subspace

σ̂2
v(θφ) =

∑N−1
n=0 y

H
nQn(θφ)yn

(M −K)N
, (26)

where Qn(θφ) is the noise subspace projection matrix, i.e., a
matrix that projects yn on a subspace orthogonal to an(∆k,n),
k = 1, 2, . . . ,K. We will refer to this solution as ASML-
1 (approximate stochastic maximum likelihood 1). Note that,
for K = 1, this algorithm reduces to (19)-(21).

We are more interested, however, in the more challenging
case of K ≥ M , when (26) fails because of the division
by zero. To cope with this difficulty, we propose two more
solutions, referred to as ASML-2 and ASML-3, respectively.

ASML-2 algorithm is based on the straightforward obser-
vation that

E

[
N−1∑
n=0

‖yn‖2
]

= MNσ2
v +

K∑
k=1

σ2
s,k

N−1∑
n=0

‖an(∆k,n)‖2 ,

(27)

which leads to the estimator of σ2
v based on the excess energy

σ̂2
v(θφ) =

1

NM

[
N−1∑
n=0

‖yn‖2 −
K∑
k=1

σ̂2
s,k(θφ)

N−1∑
n=0

‖an(∆k,n)‖2
]
. (28)

Note that, since (28) depends on σ̂2
s,1(θφ), . . . , σ̂2

s,K(θφ) and
(25) depends on σ̂2

v(θφ), the implementation of the estimator

requires one to alternate the descent step (28) with the reesti-
mation of the source variances σ2

s,1, . . . , σ
2
s,K using (25). To

detect the convergence of this scheme, one may test if the one
step changes of all variances fall below prespecified thresholds.

ASML-3 employs the steepest descent approach, where we
plug the estimates σ̂2

s,1(θφ), . . . , σ̂2
s,K(θφ) into the iteration

σ̂2
v(θφ)← σ̂2

v(θφ) + α
∂l(Y,θφ, θ̂σ(θφ))

∂σ2
v

. (29)

The initial estimate of σ̂2
v(θφ) can be based on a priori

knowledge of the receiver noise level or using single iteration
of ASML-2. Similar to ASML-2, one should alternate (25) and
(29) until both recursions converge. Moreover, we propose to
use α = σ̂4

v(θφ)/NM , which typically allows the algorithm
to converge in about five to ten steps.

C. Summary and discussion

We presented three approximate stochastic maximum like-
lihood estimators, called ASML-1, ASML-2, and ASML-3.

ASML-1 is the most lightweight option, because it does
not involve iterative evaluation of θ̂σ(θφ). However, it can
be used only if M > K, which is somewhat restrictive. We
will therefore focus on the ASML-2 and ASML-3 algorithms,
which are summarized in Table I, and are both free of such
a restriction. Both estimators include basic safeguards that
ensure that no element of θ̂σ is negative and that the noise
variance does not fall below a certain minimal level σ2

v,min.
ASML-2 and ASML-3 involve the iterative refinement of

θ̂σ(θφ). However, note that the computational complexity of
ASML-2 is quite low, because one may precompute almost
all quantities that are needed in steps 2-4, such as entire
matrix S(θφ), the terms

∑N−1
n=0 y

H
nPk,n(θφ)yn that appear

in the vector u(θφ, σ̂
2
v(θφ)), or the sums

∑N−1
n=0 ‖yn‖2, and∑N−1

n=0 ‖an(∆k,n)‖2 appearing in (28).
ASML-3 is computationally most complex of all three

solutions, because evaluating ∂l(θφ,θσ)/∂σ2
v requires one to

recompute the matrixRn(θφ,θσ) in each iteration of steps 2-4
[c.f. (8)]. Our experience shows, however, that the number of
iterations required for the convergence is small, which makes
the algorithm’s execution speed acceptable.

D. Unknown K case

In most situations the number of sources K is unknown.
We consider the case of selecting K from multiple hy-
potheses, K ∈ {Kmin, . . . ,Kmax}, where Kmin,Kmax are
nonnegative integers satisfying Kmin < Kmax. The null
hypothesis corresponds to K = Kmin. Denote by θ̂φ|k,
k ∈ {Kmin, . . . ,Kmax}, the DoA estimate/estimates obtained
under the hypothesis that K = k, and by l̄(θ̂φ|k) the cor-
responding compressed log-likelihood. The proposed model
order selection rule was adopted from [28, chap. 8.2], and has
the advantage of having only one tunable parameter T

K∗ = arg max
K∈{Kmin,...,Kmax}

2
[
l̄(θ̂φ|K)− l̄(θ̂φ|Kmin

)
]
− p(K)T ,

(30)
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Outer search for DoAs
Maximize compressed log-likelihood

θ̂φ = arg max
θφ

l̄(Y,θφ)

Approximate evaluation of compressed log-likelihood
1. Set the initial value of noise variance σ̂2

v .
2. Solve

S(θφ)σ̂s(θφ) = u(θφ, σ̂v
2(θφ))

where

[S(θφ)]ij =


∑N−1
n=0 w(∆i,n)aH

n (∆i,n)an(∆i,n) for i = j∑N−1
n=0 w(∆i,n)

|aH
n (∆i,n)an(∆j,n)|2

aH
n (∆i,n)an(∆i,n)

for i 6= j

[u(θφ, σ
2
v)]i =

N−1∑
n=0

w(∆i,n)
[
yH
nPi,n(θφ)yn − σ2

v

]
.

If any element of σ̂s(θφ) is negative, replace it with zero.
3. Set

θ̂σ(θφ)← [σ̂T
s (θφ) σ̂2

v(θφ)]T

4. Update noise variance estimate using one of the following:
(ASML-2)

σ̂2
v(θφ)←

1

NM

[
N−1∑
n=0

‖yn‖2 −
K∑
k=1

σ̂2
s,k(θφ)

N−1∑
n=0

‖an(∆k,n)‖2
]

(ASML-3)

σ̂2
v(θφ)← σ̂2

v(θφ) + α

N−1∑
n=0

[
yH
nR
−2
n (θφ, θ̂σ)yn − tr R−1

n (θφ, θ̂σ)
]

α = σ̂4
v(θφ)/NM

If the updated estimate is below σ2
v,min, set

σ̂2
v(θφ)← σ2

v,min .

5. Repeat steps 2-4 until convergence (i.e. until one step-changes of σ̂s(θφ)
and σ̂2

v(θφ) fall below a threshold) or until the maximum number of iterations
is reached.
6. Compute

l̄(Y,θφ) = −
[
N−1∑
n=0

log detRn(θφ, θ̂σ(θφ)) + yH
nR
−1
n (θφ, θ̂σ(θφ))yn

]
Table I

SUMMARY OF ASML-2 AND ASML-3 ESTIMATORS

where l̄(θ̂φ|K) is the compressed maximized log-likelihood
for the model with K sources and p(K) = 2(K −Kmin) is
the difference in the number of parameters between the null
hypothesis model and the K-source model.

The null hypothesis is rejected when any
2
[
l̄(θ̂φ|K)− l̄(θ̂φ|Kmin

)
]
−p(K)T is positive or, equivalently,

when any
l̄(θ̂φ|K)− l̄(θ̂φ|Kmin

)

K −Kmin
> T .

The order selection test statistic has the form

TOS = max
K∈{Kmin,...,Kmax}

l̄(θ̂φ|K)− l̄(θ̂φ|Kmin
)

K −Kmin

and has the limiting (N → ∞) distribution equal to that of
[28, chap. 8.2]

T̄OS,r = max
m=2,4,...,2r

(Z2
1 + Z2

2 + · · ·+ Z2
m)/m (31)

where r = Kmax−Kmin and Z1, Z2, . . . , Zm are independent
standard normal variables.

Note that for r = 1 (e.g., Kmin = 1, Kmax = 2), the rule
(30) corresponds to the classical generalized likelihood ratio

0 1 2 3 4 5 6 7
10

−3

10
−2

10
−1

10
0

T

P
F
A

r = 1
r = 2
r = 3
r = 4

Figure 1. Limiting false alarm rates as functions of threshold T for the
multiple hypothesis tests with different r = Kmax −Kmin.

test, and the test statistic is, asymptotically, χ2
2 distributed [25],

[31]. Therefore, in this case one may adjust the threshold level
on the basis of the χ2 distribution tables and desired false
alarm rates. The remaining distributions for r > 1 can be
obtained using straightforward Monte Carlo simulations – see
Fig. 1 for the cases r = 1, 2, 3, 4. Observe that for sufficiently
high T there is practically no difference between all the
plots, and one obtains that setting T = 4.6 should ensure
PFA ≈ 0.01, while T = 6.9 should results in PFA ≈ 0.001.
However, one should treat these results with caution. First, the
asymptotic distribution may be inaccurate (even for N →∞)
because the source variances are at the boundary of their
support. Second, we intend to perform the test (30) using
the compressed likelihood obtained from the proposed ASML
estimators, which may result in some additional mismatch. To
verify characteristics of the proposed test, we ran additional
Monte Carlo simulations, results of which will be reported in
the next section.

Remark: Similar to the nonrotating array case [18], if one
assumes a dense grid of (excessinve in number) hypothetical
source DoAs, the exact maximum likelihood approach (4)
achieves a sparse a solution in the sense that most source
variances take values close to zero, and the nonzero ones are
concentrated around the true source DoA. While this property
could potentially be used to estimate the number of sources,
we point out that similar behavior was not observed for the
ASML estimators and that the computational complexity of
the exact maximum likelihood approach is too high to make it
practical. Therefore, more research in this direction is needed.

V. RESULTS OF MONTE CARLO SIMULATIONS

A. Influence of source correlation on exact maximum likeli-
hood method

To demonstrate that the analytical approach of investigating
the influence of source correlation presented in Section II.C
is valid, and to demonstrate that the maximum likelihood
estimator based on the model of uncorrelated sources (1)
suffers only small losses for low and moderate levels of
source correlation, we arranged a straightforward Monte Carlo
simulation.

Following [21], we simulated a system that employs a stan-
dard uniform linear array (half-wavelength element spacing)
consisting of L = 64 elements, and synthesizes the sum
and difference beampatterns using the rectangular (boxcar)
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−0.1

−0.05
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0.05

0.1
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E
[φ̂

1
−
φ
1
]
[◦
]

Figure 2. Comparison of analytic predictions of the narrow estimator bias
(solid line) with its actual values (crosses) for several values of source
separation.

taper. The resultant array steering vector a(∆φ), which reads

a(∆φ) =
1

L

[
FL(∆φ)− 1

F (∆φ)− 1
−j
(
FL/2(∆φ)− 1

)2
F (∆φ)− 1

]T

,

where FL(∆φ) = ejLπ sin(∆φ) and F (∆φ) = F1(∆φ), has
the 3-dB beamwidth of 1.6◦.

The simulated rotation of the array covered azimuth angles
between −6.2◦ and +6.2◦, during which N = 32 simulated
observations were generated at a grid of equally-spaced array
positions.

We simulated two moderately correlated (ρ = 0.5ejπ/6)
sources with signal to noise ratios σ2

s,1/σ
2
v = σ2

s,2/σ
2
v equal

to 13 dB. The sources were placed symmetrically about the
zero azimuth, φ1 = −φ2, and their angular separation was
varied from 1◦ to 12◦ in 0.1◦ steps. For each separation we
ran 600 independent simulations.

We compared bias and the mean-squared estimation error
of the narrow and wide estimators against each other and with
their analytical predictions given in (15)-(16). Both estimators
were implemented in their exact forms, i.e., without using any
approximations (see Section V.D for results concerning the
ASML estimators). The results, in the form of plots, are shown
in Fig. 2-3.

Observe that the theoretical analysis and the simulations
show good agreement, particularly in terms of the bias of
the narrow estimator. We verified that the 95% confidence
interval for the Monte Carlo estimate of the bias covers the
theoretical value for all simulated separations except at 1.8◦.
The discrepancy between the MSE values predicted by the
theory and the actual results can be attributed to somewhat
too small number of observations. Since the beamwidth is 1.6◦

and observations are taken every 0.4◦ there is only a handful
of data from the mainlobe of the beampattern, which results in
both estimators exceeding their theoretical variance by a small
factor – see the next subsection for more results concerning
this matter.

Furthermore, note that the simpler narrow estimator com-
pares quite favorably against the wide one in terms of the
mean-squared error in the entire range of simulated source
separations. Taking into account that the narrow estimator
is computationally considerably less complex than the wide
estimator, there is hardly any reason to employ the latter,
unless one expects higher levels of source correlation – see
Section V.E for additional results and discussion of this issue.

1 2 3 4 5 6 7 8 9 10 11 12
10

−3

10
−2

10
−1

Source separation [◦]

E
[(
φ̂
1
−
φ
1
)2
]
[◦

2

]

Figure 3. Comparison of analytic predictions of mean-squared estimation
errors of the narrow and wide estimator obtained using (15)-(16) (solid line
and dash-dotted line, respectively) with their actual values (crosses and pluses,
respectively) for several values of source separation.

B. Accuracy of ASML estimators

We compared the accuracy, in the sense of the mean-squared
angle estimation error, of ASML-2 and ASML-3 estimators
with the Crámer-Rao lower bound (CRLB) for the two-source
case, K = 2. The performance of the ASML-1 estimator was
not tested for two reasons: First, the requirement that M > K
is not satisfied in the monopulse configuration. Second, in [30]
we already demonstrated that in the single-source case it is
comparable with the exact maximum likelihood approach.

In both cases, the optimization of the compressed log-
likelihood consisted of two stages: preliminary search over a
rather coarse grid of angles (0.5◦ steps), followed by the final
search using the Nelder-Mead simplex method. We also tested
a mixed solution, which we call ASML-2+3, which combines
ASML-2 in the preliminary search and ASML-3 in the final
search stages.

All algorithms employed the same weight function
w(∆i,n) = ‖an(∆i,n)‖2. Although we make no claim that this
choice is optimal, it works much better than the straightfor-
ward uniform weighting, in which case we faced rather severe
problems with the stability of the estimates of the source and
noise variances at certain combinations of angles. Another
advantage of this choice is that it allows one to eliminate any
risk of division by zero occurring in the computation of the
matrix S(θφ).

We considered three scenarios, where we varied only one
factor at each time: the signal to noise ratio SNR = σ2

s,1/σ
2
v =

σ2
s,2/σ

2
v , the number of observations N , and the source separa-

tion. In all cases the we simulated K = 2 independent sources
and the antenna rotation covered the angles between −4◦ and
+4◦. The “default” values of N , SNR, and source separation
are 48, 10 dB, and 2◦ (φ1 = −0.5◦, φ2 = 1.5◦), respectively.
The results are shown in Fig. 4-6.

Observe that ASML-2 performs uniformly worse than
ASML-3, and that its accuracy depends more on the number
of observations than on the SNR. ASML-3, on the other hand,
nearly reaches the CRLB. Finally, the combination of ASML-
2 and ASML-3 is almost equivalent to ASML-3 (with the
exception of slightly worse behavior in the threshold area).
Since the computational complexity of the mixed approach is
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Figure 4. Comparison of mean-squared angle estimation errors of ASML-
2 (pluses), ASML-3 (diamonds), and ASML-2+3 (crosses) with Crámer-Rao
lower bound for different signal to noise ratios.
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1
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1
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[◦

2

]

Figure 5. Comparison of mean-squared angle estimation errors of ASML-
2 (pluses), ASML-3 (diamonds), and ASML-2+3 (crosses) with Crámer-Rao
lower bound for different number of observations.

considerably lower, we recommend this option for practical
applications.

C. Detection and resolution of multiple sources using ASML
estimators

Fig. 7 shows the comparison of the limiting distribution
(31) for the multiple-hypothesis test K ∈ {Kmin, . . . ,Kmax}
(Kmin = 0, Kmax = 3) with the Monte Carlo estimates (50000
independent simulations) of the false-alarm probability yielded
by the ASML-3 estimator under antenna rotation from −5◦ to
+5◦, and N ∈ {8, 32, 64, 128}. The results confirm that the
limiting distribution (31) is reasonably accurate for wide range
of N – to achieve a desired false alarm rate one should increase
T by about 0.6 from the analytic value. Similar results were
observed for different values of r, with the discrepancy getting
slightly smaller as r decreased.

1 2 3 4 5 6 7
10

−3

10
−2

10
−1

10
0

Source separation [◦]

E
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φ̂
1
−
φ
1
)2
]
[◦

2

]

Figure 6. Comparison of mean-squared angle estimation errors of ASML-
2 (pluses), ASML-3 (diamonds), and ASML-2+3 (crosses) with Crámer-Rao
lower bound for different source separations.
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N = 8
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N = 128

Figure 7. Comparison of asymptotic probability of false alarm PTOS (3) for
K ∈ {0, 1, 2, 3} (thin solid line) and actual results for ASML-3 estimator
and several values of N (remaining lines) as functions of threshold T .

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3
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E
[K

∗]

N = 64 SNR = 20 dB
N = 64 SNR = 10 dB
N = 48 SNR = 10 dB
N = 48 SNR = 15 dB

Figure 8. Average number of detected sources as function of source separation
for ASML-3 estimator, three sources, K ∈ {0, 1, 2, 3}, T = 6.9 and several
values of N and SNR

Fig. 8 shows the average number of sources detected for
the case of three equally strong sources placed symmetrically
about 0, φ2 − φ1 = φ3 − φ2, φ2 = 0 as a function of the
source separation for several choices of SNR and N (each
point was obtained from 1000 independent simulations, T =
6.9). Generally, one can observe reasonable behavior of the
combination of the estimator and the proposed decision rule,
with the number of detected sources gradually growing from 1
to its actual value as the source separation grows. Interestingly
enough, for small N or SNR and source separation taking
such values that the observation variances are close to constant
during entire array rotation, the number of sources declared
by (30) could drop to zero. This unexpected behavior occurs
because under such adverse conditions there is not enough
evidence to discriminate this case from pure noise reliably.

D. Influence of source correlation on ASML estimators

An important property of the ASML-2 and -3 estimators is
that, similar to the exact maximum likelihood approach, they
exhibit a gradual degradation, rather than breakdown, when
sources are correlated. Fig. 9 compares the analytic predictions
of MSE given by (15) with the the corresponding Crámer-Rao
lower bound [obtained by assuming that ρ is included into the
vector of parameters; recall that the formula (16) is obtained
by including ρ in the vector of parameters and setting it to 0]
as functions of |ρ|, for arg ρ = π/6, N = 64, antenna rotation
from −6.2◦ to 6.2◦, two sources at ±1◦, each with SNR equal
to 10 dB. Observe that, according to (15), the narrow estimator
should offer best performance until |ρ| reaches 0.25, and that
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Figure 9. Comparison of analytic predictions of mean-squared estimation
errors of the narrow obtained using (15) (solid line) with the exact Crámer-Rao
lower bound for the wide model (dotted line) and actual mean-squared errors
of exact maximum likelihood estimator, ASML-2 and ASML-3 estimator
(diamonds, crosses, and circles, respectively).

for |ρ| = 1 the formula (15) predicts that the MSE of the
narrow estimator will reach about 1.6 times the CRLB.

The same figure also includes the Monte Carlo estimates of
the MSE obtained for the exact maximum likelihood estimator,
as well as for the proposed ASML-2 and ASML-3 estimators
(500 independent simulations were conducted for each value of
|ρ|). Observe that the accuracy of ASML-3 is very close to the
exact maximum likelihood approach, and that the MSE values
for these two algorithms agree well with analytic predictions
up to |ρ| = 0.5. For higher levels of source correlation the rise
in the MSE is sharper than predicted by (15), but the estimator
breakdown does not occur, and the MSE eventually reaches
about four times the CRLB.

Remark: Fig. 9 can be regarded as a pessimistic as-
sessment of the estimators’s performance at high source cor-
relations, because the bias caused by dropping ρ from the
model depends not only on |ρ|, but also on arg ρ [c.f. (13)]
– in the situation presented the worst-case value of arg ρ is
approximately π/12 and the resultant bias is only 2% higher
than at arg ρ = π/6.

E. Comparison with existing solutions

We compared the ASML-2+3 estimator with the AML and
AML-RELAX estimators from [21]. The AML and AML-
RELAX estimators were were derived using the deterministic
maximum likelihood approach specifically for coherent radar
systems. Assuming K targets, the AML estimator performs
2K-dimensional search in the space of DoAs and target
Doppler frequencies. The AML-RELAX estimator is based on
the assumption that targets are sufficiently well separated in
Doppler and employs K two-dimensional searches. Clearly, if
the data-generation mechanism matches that assumed by the
AML and AML-RELAX estimators, the ASML-2+3 estimator
is inferior in every aspect because it neglects the Doppler
information. Fig. 10 shows the comparison of the ASML-2+3,
AML, and AML-RELAX under two another data-generation
mechanisms. Observe that if targets have the same Doppler the
proposed solution is quite superior to AML-RELAX at some
source separations. Moreover, if we use our data-generation
mechanism, both AML estimators are simply fail, because of
their reliance on the presence of Doppler in the observations.
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Figure 10. Comparison of mean-squared errors yielded by AML (diamonds),
AML-RELAX (crosses) and ASML-2+3 (circles) estimators under data gen-
erated using deterministic model with same Doppler (top plot) and stochastic
model (bottom plot).
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Figure 11. Comparison of mean-squared errors yielded by Capon-like
estimator from [23] (diamonds) and ASML-2+3 (circles) under stochastic
model.

Fig. 11 shows the comparison of accuracy of the ASML-
2+3 estimator with the Capon-like estimator for rotating arrays
proposed in [23]. The comparison was performed using data
generated from the model (1). Even though the proposed
approach performs uniformly better, the most important dif-
ferences are, perhaps, of qualitative nature. The Capon-like
estimator requires a parametric model of the array manifold
a(∆φ) in the form of a polynomial (we used a polynomial
with K = 8 terms), and the size of the polynomial dictates the
minimum number of observations (N ≥MP ). Moreover, if K
is too large, the implementation of the estimator becomes chal-
lenging because special attention to the numerical accuracy is
needed. Such problems simply do not exist with the ASML-3
estimator, which can even use a nonparametric array manifold
model, such as a lookup table. Moreover, as demonstrated, the
ASML-3 estimator can work with fully coherent sources and
– last but not least – supports the frequency-agile mode of
operation.
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VI. CONCLUSIONS

We presented new results that concern DoA estimation
for rotating arrays. The proposed approach is based on the
stochastic maximum likelihood framework and employs a
model that assumes the sources are incoherent. We showed
that under mild conditions this approach is comparable, in
terms of accuracy, with the more complex estimator that
includes the source correlation coefficient. We also showed
that the simpler estimator is fairly insensitive to small errors
in estimating the source and noise variances, which allowed us
to propose its three fast approximations. The case of unknown
number of sources was addressed with an extension of the
generalized likelihood ratio approach. Behavior of all solutions
was verified using Monte Carlo simulations, which pointed to
the combination of the ASML-2 and ASML-3 algorithms as
the best option.
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