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ABSTRACT 

In this paper, a highly efficient quasi three-dimensional theory has been used to study the nonlinear 

hygro-thermo-mechanical bending analysis of very thick functionally graded material (FGM) 

rotating disk in hygro-thermal environment considering the porosity as a structural defect. Two 

applied quasi three-dimensional displacement fields are assumed in which the strain along the 

thickness (𝜀𝑧) is not zero unlike most of the other plate theories. By considering the nonlinear 

strains (von Kármán’s assumptions) the large deformations have also been taken into account in 

order to obtain more accurate results. Finally, some factors that affect the results have been studied 

further. 

Keywords: Annular/circular FGM rotating disk; Quasi three-dimensional theory; Hygro-thermal 

environment; Porosity; Semi-Analytical Polynomial Method (SAPM) 

1. Introduction 

Functionally graded materials (FGMs) have been used widely because of their unique mechanical 

properties. The mechanical properties of FG materials are varied gradually into one or more 

directions. One of the most important application of FG materials relates to their especial thermal 

property. Because of the mentioned benefits of FG material, application of them can be observed 

remarkably. There are so many structures made of FG materials for improving their mechanical 

behaviors. One of the most important structures are plates that can be seen in various types of 

geometrical shapes. Analyses of functionally graded plates (FGPs) rely on plate theories. 

Generally, extensive studies related to FGPs are carried out by using the classical plate theory 

(CPT), first-order shear deformation plate theory (FSDT) and higher-order shear deformation 

theories (HSDTs). The FSDT considers a shear correction factor for supporting transverse shear 

effects, so it is appropriate for analysis of moderately thick and thin plates. In recent years, many 

shear deformation theories have been developed for the analysis of plates, beams and other 

structural elements. Shear deformation theories are categorized into two groups: the theories with 

thickness effect and the ones without thickness effect. One of HSDTs that the transverse 

displacement is expanded as a higher-order variation through the plate thickness is the quasi three-

dimensional theory. There are several quasi-three-dimensional theories introduced in literature. In 

the following, various types of these references are listed. 

The exact three-dimensional analysis gives the most accurate results in the analysis of mechanical 

behavior of plate’s structures (Dastjerdi and Akgöz 2018). However, this method is so difficult 

especially for analyzing the axisymmetric problems, in consequence, the quasi three-dimensional 

theories can be developed as well. Recently, the plate theories have been used widely to model the 

mechanical behavior of macro and nano plate’s structures (Chaubey, Kumar, and Chakrabarti 

2018; Dastjerdi, Akgöz, and Yazdanparast 2018; Dastjerdi and Tadi Beni 2019; Dastjerdi, Akgöz, 

and Civalek 2020; Li 2017; Karami, Janghorban, and Li 2018; Karami, Janghorban, and Tounsi 

2019; Karami, Janghorban, and Rabczuk 2019a, 2019b; Matsunaga 2004, 2008a; 2008b; 2009; 

Jena, Chakraverty, Malikan, and Tornabene 2020; Malikan, Jabbarzadeh, and Dastjerdi 2017; 

Malikan 2017, Malikan and Eremeyev 2020), however, these theories cannot be applied to study 

the thick and very thick structures because of neglecting the strain changes along the thickness. 

Wu, Chiu, and Wang (2011) examined a quasi-three-dimensional analysis of simply supported, 

multilayered composite and FGM plates with developing a meshless collocation (MC) and an 

element-free Galerkin method and with using the differential reproducing kernel (DRK) 

interpolation. Alibeigloo (2011) studied the vibration analysis of a nanoplate based on the three-
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dimensional theory of elasticity using nonlocal continuum mechanics. Mantari and Soares (2012) 

presented a generalized hybrid quasi-three-dimensional shear deformation theory for the bending 

analysis of FG Plates with six unknowns. Neves et al. (2012a) derived a quasi-three-dimensional 

hyperbolic sine shear deformation theory for the bending and free vibration analysis of FG plates. 

Neves et al. (2012b) investigated the bending and free vibration and also deformations of FG plates 

using a quasi-three-dimensional sinusoidal shear deformation theory. Thai and Kim (2013) 

presented a quasi-three-dimensional theory for the bending analysis of functionally graded plates 

with considering both shear deformation and thickness stretching effects by a sinusoidal variation 

of all displacements through the thickness. Thai et al. (2014) developed a quasi-three-dimensional 

hyperbolic shear deformation theory for bending and vibration of FG plates with five unknowns. 

Neves et al. (2013) also presented a quasi-three-dimensional HSDT for modeling FG plates 

accounting for extensibility in the thickness direction. Mantari and Soares (2014) presented a 

quasi-three-dimensional HSDT with four unknowns for the static analysis of advanced composite 

plates. The governing equations and boundary conditions are derived by employing the principle 

of virtual work. Mantari and Granados (2017) also formulated an analytical solution for the 

thermo-elastic bending analysis of advanced composite sandwich plates by using a quasi-three-

dimensional hybrid type HSDT with six unknowns. Jin et al. (2015) investigated the free vibration 

behaviors of FG sector plates with using three-dimensional theory of elasticity. Bessaim et al. 

(2015) presented a nonlocal quasi-three-dimensional trigonometric plate theory for 

micro/nanoscale plates. In order to introduce the size influences, the Eringen’s nonlocal elasticity 

theory was utilized with using five unknowns in FSDT. Mahmoudi et al. (2017) presented a quasi-

three-dimensional shear deformation theory for thermo-mechanical analysis of FG sandwich plates 

resting on a Pasternak elastic foundation. The number of unknowns and governing equations of 

the presented theory was four and was derived with using the principle of virtual displacements 

and also the stretching effect was considered due to its quasi-three-dimensional nature. Nguyen et 

al. (2017) investigated a novel quasi-three-dimensional seventh-order shear deformation theory 

with four unknowns in order to investigate size-dependent behaviors of FG microplates with using 

the modified couple stress theory (MCST) for bending, free vibration and buckling responses of 

the rectangular and circular functionally graded microplates and they considered both shear 

deformations and thickness stretching effect without requiring shear correction factors. Adhikari 

and Singh (2018) presented a higher order quasi three-dimensional theory for free and forced 

vibration of laminated composite plates. Nikbakht et al. (2017) investigated the elastic bending of 

FG plates up to yielding with using the full layer-wise method and they compared the numerical 

results with the results obtained from quasi three-dimensional elasticity and various shear 

deformation theories. Farzam-Rad, Hassani, and Karamodin (2017) presented a quasi-three-

dimensional shear deformation theory for the static and free vibration analysis of functionally 

graded and sandwich plates by using the isogeometric analysis (IGA) method and physical neutral 

surface position. Recently Liu et al. (2017) modeled a new plate formulation by using the 

characteristics of the IGA in combination with a quasi-three-dimensional hyperbolic shear 

deformation theory for bending, vibration and buckling of FG Plates with five unknowns. Bouafia 

et al. (2017) studied bending and free vibration behaviors of FG nanobeams using a nonlocal quasi-

three-dimensional theory that can capture the small-scale effect, and furthermore accounts for both 

shear deformation and thickness stretching effects by virtue of a hyperbolic variation of all 

displacements through the thickness without using shear correction factors. Benahmed et al. (2017) 

developed a quasi-three-dimensional hyperbolic shear deformation theory for bending and 

vibration analyses of FG plates resting on two-parameter elastic foundation that deals five 
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unknowns as the FSDT. Patil, Kant, and Desai (2018) presented a semi analytical approach by 

using three-dimensional (3-D) elasticity solution for simply supported FG material plate with 

exponential gradation of material properties. Zenkour (2018) developed the bending responses of 

porous FG single-layered and sandwich thick rectangular plates with using a refined quasi-three-

dimensional shear and normal deformation theory. Abualnour et al. (2018) presented a quasi-three-

dimensional trigonometric shear deformation plate theory for free vibration of FG plates with only 

five unknowns. Malikan, Tornabene, and Dimitri (2018) investigated a linear three-dimensional 

elasticity analysis for a thick nanoplate with considering functionality and porosity in order to 

study stability conditions. They solved the achieved linear equations based on the analytical 

solution methods. Shahsavari et al. (2018) studied a new quasi three-dimensional elasticity theory 

based on a hyperbolic function in order to consider natural frequencies of a functionally graded 

plate by assuming porosities. The plate was also assumed to be rested on the Winkler-Pasternak 

matrix. There have also been done some other crucial research on the plates based on the three-

dimensional elasticity theory (Karami et al. 2018). To the sake of the brevity, the other important 

research done on the nanostructures are found by (Karami et al. 2019; Dastjerdi and Akgöz 2019). 

In this paper, it is tried to find a solution for obtaining the approximate results of exact three-

dimensional elasticity theory (3D) for an annular/circular FGM rotating disk in hygro-thermal 

environment. The disk is considered to have porosity as structural defect. The complexity of the 

exact 3D theory has been reduced in applied theories. This aim has been achieved by considering 

the variations of strain along the thickness as a changeable polynomial function. In addition, 

another simpler quasi three-dimensional theory has been developed. By this strategy, if the three-

dimensional analysis is intended for a sector-shaped plate, three independent variables r, θ and z 

have been reduced to only r and θ. And if a symmetric problem like annular/sector plate under 

uniform loading is considered, two variables r and z will be reduced to only r. In other words, in 

case of symmetric annular /circular plate, the approximate results of 3D will be obtained only by 

solving the set of ordinary differential equations which are significantly simpler than partial 

differential equations. In summary, the applied theories reduce the complexity of the exact three-

dimensional theory dramatically with the same accuracy. 

2. Governing equations 

One of the biggest challenges faced by researchers and engineers is solving the differential 

equations. If the number of variables is greater than two, for example, there are three independent 

variables, solving a system of partial differential equations with three independent variables is 

usually very difficult (If not impossible especially in nonlinear analysis). Solving methods for this 

category of problems are often associated with a lot of difficulties, which often enforces 

researchers to simplify the three independent variables into two variables. Even a numerical or 

semi-analytical solution for partial differential equations system with two variables has usually 

complexities, which is time-consuming and requires complex programming, but is still solvable. 

Many of the mechanical analytical issues fall into this category. 

In this paper, we are faced with a problem in the mechanics of very thick structures in which many 

researchers are involved as a challenge, and each researcher considers a method for solving the 

governing equations. The 3D analysis of structures so that the variations along the thickness are 

taken into account, is always a challenge for researchers. Considering strain changes along the 

thickness results in higher precision of the results, especially in the case of thick and very thick 

structures that are affected by hygro-thermal environments (Dastjerdi and Akgöz 2018). In the 
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mentioned cases, ignoring the strain along the thickness (𝜀𝑧) leads to very serious errors. So, the 

problem ahead is to consider these changes (𝜀𝑧) in the direction of thickness (h). The geometry of 

the plate is considered as an annular/circular FGM rotating disk (with constant rotating velocity 

ω) under transverse loading q (r) that is embedded in Winkler-Pasternak (𝑘𝑤 , 𝑘𝑝) elastic matrix 

(Figure 1). It is noted that for ω ω 0 the elastic foundation must be eliminated due to the rotation 

of structure. 

 

Figure 1. Symmetric annular/circular FGM rotating disk embedded in Winkler-Pasternak elastic 

foundation under transverse loading q (r) 

2.1. Exact three-dimensional elasticity theory 

In the case of the axisymmetric problem (eliminating the changes along θ direction), there are three 

independent variables r, θ and z. According to the above description, solving a system of partial 

differential equations with three independent variables is very difficult. Here, a sector sheet is 

considered as shown in Figure 2. The solid black circles are nodes on the boundaries that the 

values of independent displacement field variables are determined by boundary conditions, and 

the points represented by a hollow circle obey the governing equations. 

If the displacement field is considered as u(r, θ, z), v(r, θ, z), and w(r, θ, z), the three independent 

governing equations in static state can be formulated as follows: 

 
1 1

: 0rr rz
ru

r r z r


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  
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 (1) 

1 2
: 0r z

rv
r r z r

  


  
 


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1 1
: 0zrz z

rzw
r r z r

 
 



 
   

  
 (3) 

where ij  denotes the tensor of static stresses on an element of the plate. Now, if it is aimed to 

analyze the problem in the situation by considering 𝜀𝑧 ≠ 0, to avoid the large number of equations 

and the insolubility of the equation system, the geometry of the problem is assumed as an 

annular/circular under the uniform loading. Consequently, due to symmetric problem the changes 

in θ direction will be eliminated. According to Figure 3, only the changes in r and z will be 

obtained. 

 

 

Figure 2. Three-dimensional schematic 

view of a sector FGM plate in r, θ and z 

directions 

 

Figure 3. An annular/circular FGM plate 

under uniform loading (𝑞𝑧) 

According to the grid point distribution, there are number of five nodes in r and z directions. 

Consequently, the number of 2×25 = 50 equations will be obtained that can be solved conveniently 

as the authors of the present paper already studied in their previous paper (Dastjerdi and Akgöz 
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2018). The governing equations can be concluded from Eqs. (1-3) as follows (By neglecting the 

changes in θ direction): 

 
1

: 0r rz
ru

r z r


 
  

 
   

 
 (4) 

1
: 0rz z

rzw
r z r

 
 

 
  

 
 (5) 

In this case, the theory of exact three-dimensional elasticity is considered and the obtained results 

are highly accurate. Solving the set of Eqs. (4, 5) is not a complex task because there are only two 

independent variables r and z. However, if analysis of an axisymmetric problem is intended, an 

appropriate solution method should be applied in order to improve the accuracy of the exact three-

dimensional analysis. Whereas, the set of third-order partial differential equations are derived 

based on Eqs. (1-3) which is extremely complex. 

For example, if a numerical method such as the differential quadrature method (DQM) or the semi-

analytical polynomial method (SAPM) is applied, it is required to solve 9×9×2 = 162 equations 

and 162 unknowns according to Eqs. (4-5). If Eqs. (1-3) are used that consider changes along θ 

direction, the number of 9×9×9×3 = 2187 equations and 2187 unknowns will be achieved. Because 

of the massive calculations, the solving process will be remarkably time-consuming and even 

impossible for ordinary computers. Consequently, a super computer is needed for this issue which 

increases the research costs significantly. 

2.2. Quasi three-dimensional elasticity theory 

In this paper, two effective quasi three-dimensional theories have been used in order to resolve the 

shortcomings of exact three-dimensional elasticity theory. One of the mentioned shortcomings is 

deriving a large number of governing equations which are higher-order partial differential 

equations. The quasi three-dimensional theories eliminate the disadvantages of exact three-

dimensional theory by reducing the number of equations, while providing a very good performance 

and accuracy with respect to the comparison of the results with the exact three-dimensional 

analysis. 

2.2.1. CUF quasi three-dimensional elasticity theory 

Firstly, the CUF (Carrera’s Unified Formulation) displacement field for a thick sector plate as 

shown in Figure 2 can be expressed as follows (Carrera et al. 2011): 

     1

1

, , ,
k

i

i

i

U r z u r z 




   (6) 
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1

, , ,
k

i

i

i

V r z v r z 




   (7) 

     1

1

, , ,
k

i

i

i

W r z w r z 




   (8) 

where U , V , and W are displacements of the plate along r, θ, and z directions, respectively. 

Moreover, z defines the thickness coordinate. If the symmetric annular/circular plate is considered 

according to Figure 1, the displacement field for this theory will be defined as the following 

relations (there are not any changes in θ direction, in consequence, V(r, θ, z) = 0). 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


     1
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   (9) 
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1

,
k

i
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i
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



   (10) 

Because of symmetry in the geometry, there are no changes along θ direction and functions 𝑢𝑖 and 

𝑤𝑖 (i = 1..k) are only a function of variable r. High amount of k leads to the high precision for 

simulation of very thick sheets in a way that the obtained results of the proposed theory can be 

compared with the exact three-dimensional analysis with a high level of accuracy and low 

differences. However, less orders can be considered too (for example, third-order). Regarding Eqs. 

(9, 10), there are number of 12 unknowns for functions 𝑢𝑖 and 𝑤𝑖 (k = 6), and it is expected that 

the number of 12 ordinary differential equations would be obtained (since changes are only in r 

direction). Now, in order to obtain the governing equations for an annular/circular FGM rotating 

disk under uniform loading in hygro-thermal environment, the strain fields are considered as the 

following relations (considering Von Kármán's assumptions): 

   
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dU dW
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dr dr
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 
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      

 
 (13) 

rz

dU dW

dz dr
    (14) 

0r z     (15) 

where ij  exhibits the field of static strains. One of the atmospheric parameters involved in 

industrial environments may be the humidity that an efficiency of a machine may be related to it. 

High or low humidity in the air, depending on the type of machine operating in the environment. 

Too much moisture can lead to improper machining and disturbances in machinery, indicating the 

importance of examining the humidity in mechanical behavior of materials. Hence, in this paper 

these two important factors are considered in the analysis. As it can be seen in the above equations, 

the thermal and hygral effects are considered in relations. α(z) and β(z) are the thermal conductivity 

and hygral expansion along the thickness. ωT and ΔH are the temperature differences and moisture 

concentration (Malikan and Nguyen 2018). The material properties of the plate are considered as 

functionally graded material (FGM) which is the Young’s modulus varies from metal to ceramic 

along the thickness (vice versa is possible too). Ceramic side of the plate is under the loading. The 

Young’s modulus variations can be formulated as follow: 

     
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2 2
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m c m c m

z
E z E E E E E
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 
      

 
 (16) 
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   
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   

 
    

 
 (18) 

In which, cE  and mE  are the ceramic and metal amounts of Young’s modulus. Parameter g 

represents to the variation’s rate from ceramic to metal property. More value of g, the steeper slope 

of variations from metal to ceramic property. Porosity makes a different response for the model. 

So, it can be highly recommended to be taken into account such a manufacturing defect. In which 

λ denotes the type of porosities distribution. The even porosity is illustrated by Eq. (16) and the 

uneven porosity relation is expressed by Eq. (17). The porosity parameter is in fact the focus of 

many sciences including many branches of engineering and is very important for achieving other 

important parameters. Therefore, the studying and understanding how porosity affects and its types 

can be important. The relation between stress and strain can be seen below ( ω is Poisson ratio): 
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 
T

r z rz      (21) 

where the Poisson’s ratio is depicted by   and assumed to be constant in the thickness direction. 

The governing equations have been derived based on the stationary of minimum potential energy. 

Which 𝑈𝑝 is the potential energy due to the internal stresses, and Ω is the work of external imposed 

forces like loading and foundation. According to the minimum potential energy principle for the 

static analysis, the variations of internal and external energies must be zero as follow: 

   2

2
2

2

0

0

1

p

r r z z rz rz z w p

V

U

dV q k W k W rdrd W

d d

dr r dr

 

 

        

  

       

 
   

 

   (22) 

in which the external loads are respectively the lateral uniform load, Winkler module and the shear 

layer of the foundation as zq , wk , and pk . It is assumed that the structure rotates with the constant 

rotating velocity ω (Figure 1). After applying integrations and mathematical calculations, the 

governing equations can be derived. The obtained governing equations and stress resultants are 

presented in appendix (A.1). 
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In this paper, all types of boundary conditions including the free edges are considered. So, the 

boundary conditions when ω = 0 can be expressed as follows: 

1 2 3 4 5 6

1 2 3 4 5 6

1

1 2 3 4 5 6

0
Clamped (C):                        ,

0

0
Simply Supported (S):         ,

0

Free Edge (F):             

i o

r r r r r

i o

r r r r r

u u u u u u
R R

w w w w w w

u M P H Y S
R R

w w w w w w

N M P H Y

     


     

     


     

     0
  ,

0

r

i o

rz rz rz rz rz rz

S
R R

Q M P H Y S








 
 

      

 (23) 

Also, the definition for clamped and free boundary conditions for a rotating disk are the same as 

formulation in Eq. (42). There is another boundary condition entitled roller supported. It is noted 

that the inner radius can only have clamped and roller supported and the outer radius might have 

the free and roller supported conditions respectively. 

1 2 3 4 5 6

0
Roller Supported (RS):         ,

0

r r r r r r

i o

N M P H Y S
R R

w w w w w w

     


     
 (24) 

The boundary conditions CRS means that the inner radius of the plate (𝑟𝑖) is clamped and the outer 

radius (𝑟𝑜) is roller supported. 

2.2.2. Simplified quasi three-dimensional elasticity theory 

As mentioned before, another simpler theory has been presented in this paper in order to simulate 

the very thick FGM rotating disk. The mentioned quasi three-dimensional formulations (appendix 

(A.1)) reduces the number of orders into set of differential equations and gives the approximate 

results of the exact three-dimensional elasticity. This is certainly the advantage of proposed 

methodology. However, it has an obvious shortcoming which is the high number of obtained 

equations (number of 8 and 12 equations for third and fifth-order polynomial expansions). Due to 

the mentioned shortcoming, the authors applied another simplified quasi three-dimensional theory 

(abbreviated as SQT) in which its displacement fields are formulated as follow: 

       1 2,U r z u r f z u r   (25) 

       1 2,W r z w r g z w r   (26) 

The functions f(z) and g(z) are arbitrary. They selected in a way that the desirable accuracy of the 

results is obtained. As it can be seen, there are only number of four unknowns in the displacement 

field as 𝑢1, 𝑢2, 𝑤1 and 𝑤2. Consequently, it is expected that the total number of four governing 

equations will be derived. The process for deriving the governing equations is the same as deriving 

the proposed equations in appendix A.1. The linear strains can be formulated as follow: 

     1 2
r

du du
f z z T z H

dr dr
         (27) 

      1 2

1
u f z u z T z H

r
         (28) 
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     2z

d
g z w z T z H

dz
  

 
     
 

 (29) 

   1 2
2rz

dw dwd
f z u g z

dz dr dr


 
   
 

 (30) 

0r z     (31) 

The resulted governing equations can be derived by using the above strain field according to 

energy method. The governing equations including the stress resultants are presented in appendix 

A.2 based on the simplified quasi three-dimensional theory (SQT). Also, the boundary conditions 

can be defined as follows: 

1 2

1 2

1
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0
Clamped (C):                    ,

0

0 0
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 

    

 


 
, oR












 (32) 

3. Solving process 

There are many challenges with solving nonlinear partial differential equations for researchers 

who work on the mechanical behavior of nonlinear systems. Presenting an efficient method that 

gives suitable outcomes in a simpler way is always desirable for mechanics’ scholars. The idea of 

a solution method based on polynomial functions has long been common. However, in this work, 

these polynomials are introduced in general so that there is no need to be initially satisfied the 

boundary conditions and the boundary conditions would be applied on these polynomials in the 

solution process. To give an example, if we assume the geometry of the problem as a sector, the 

variables are in line with r and θ. As can be observed by Figure 4, M=N=5 is chosen and generally 

we obtain 5×5 nodes. Thus, the number of coefficient functions for SAPM would be 25 of which 

16 nodes are located on the borders and 9 nodes are placed in the grid which obey the governing 

equations. The required SAPM function is here in the following form: 

 
    

     1 1

1 1 1
1 1

,    5
N M

i j

i j i M
i j

f r a r N M 
 

    
 

    (33) 

 

Figure 4. Sample grid points for a sector 

Now, the aforesaid function (Eq. (33)) can be replaced with the partial differential governing 

equations of the problem and hence, the partial differential equations will be transformed to a set 

of algebraic equations. Now, by applying 16 algebraic equations related to the boundary conditions 

and 9 algebraic equations related to the internal nodes of the grid, 25 governing equations will be 

attained that regarding 25 unknown variables ( 1..25ia  ), the function  ,f r   will be harvested 
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and the problem can be solved conveniently by using a numerical method (for example Newton-

Raphson method). 

In this paper, based on the above mentioned points, due to the efficiency and simplicity of the 

SAPM solving method, this method has been used to solve the governing differential equations. 

Applying this method for quasi three-dimensional analysis is original and has been used only in 

this research. The SAPM functions are presented for the current problem as follows: 

( 1)

( ( 1) )

1

                 1..6
N

i

j i j N

i

u a r j

  



   (34) 

( 1)

( 6 ( 1) )

1

           1..6
N

i

j i N j N

i

w a r j

   



   (35) 

where r is the variable of radius. Now with substitution the above equations into the governing 

equations, the differential equations will be transformed to the algebraic equations as mentioned 

before. For example, the expression for 𝜀𝑟 (in Eq. (11)) can be written as follow (Applying SAPM 

functions): 

   
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 (36) 

For the rest of the equations, the process is similar to Eq. (36). The more details for SAPM 

methodology can be found in the author’s previous papers as (Dastjerdi, Akgöz, and Civalek 

2020). 

4. Results and discussions 

First, the comparison between the results of applied theory with eight and twelve unknowns (the 

third and fifth-order) is presented in Table 1. From now the applied quasi three-dimensional theory 

is considered the CUF quasi three-dimensional theory (abbreviated as CUFQT). There are 

dramatic differences for the program runtime between the third and fifth-order theories especially 

for axisymmetric problems. Of course, the time which is spent for third-order theory is much 

shorter than the fifth-order. But the problem is the accuracy of the obtained results which are 

presented in Table 1. For more consideration, the third and fifth-order displacement fields of 

CUFQT are presented as follows: 

     

     

     
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4 6
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1 1
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W r z w r z W r z w r z
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 

 

 

 
    

 
 
    
  

 

 

 (36) 
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Table 1 gives the results for different values of thickness (h) and loading. Parameter 𝑅𝑇𝐹 is the 

difference between the results of third and fifth-order theories. As concluded, the differences 

between the results of third and fifth-order theories are so inconsiderable for small amounts of 

thickness and the result are approximately similar (99.9% similarity). The amount of loading does 

not affect the results in comparison with the thickness. Parameter 𝑅𝑇𝐹 is about 96% and there is 

only 4% difference for very thick plates. So, it is recommended to apply the fifth-order CUFQT 

for very thick structures. In summary, it is possible to use the third-order CUFQT for thick plates 

that gives the very similar results to the fifth-order CUFQT in very shorter time. Due to obtain the 

more accurate results, the fifth-order CUFQT will be used for the rest of investigations in this 

paper. 

First, it is needed to compare the obtained results of the CUFQT in this study with the results of 

other available articles. Therefore, in Table 2 and Table 3, it can be seen the comparison between 

the results of this study and other articles in Table 2, and comparison with the results of ABAQUS 

software in Table 3. Parameter 𝑅𝐴𝑃 presents the ratio between the results of ABAQUS software 

to the obtained results of the present paper (P.P) and 𝑅𝑇𝑃 is the ratio between the results of TSDT 

analysis to the present paper. As it can be seen in Table 2, the results of the CUFQT are very close 

to the results of the exact three-dimensional elasticity theory. For different values of h/a, this 

suitable agreement can be seen between the results. According to Table 2, it is concluded that the 

increase in the parameter related to the functional property of the FGM substance does not affect 

the accuracy and convergence of the results. But with increasing the structure thickness, the results 

of exact three-dimensional elasticity theory and the CUFQT are closer to each other. Therefore, 

according to Table 2, the results of the CUFQT can be fully utilized. In Table 3, the comparison 

between the results of the CUFQT and ABAQUS software as well as the results of the TSDT 

theory can be seen for different thicknesses. Also, the results for the two FC and CC boundary 

conditions are presented. According to Table 3 for FC boundary conditions, with the increase in 

the thickness, the results of the present study are closer to the results of ABAQUS software. Also, 

the results of the present paper are always less than the results of ABAQUS. This conclusion can 

be seen in the case of CC boundary conditions, but here the results of the present research and 

ABAQUS are closer to each other. But in general, the difference between the results of the CUFQT 

and ABAQUS is not so significant, however the difference between the results of the CUFQT and 

the theory of TSDT for higher amounts of thickness is very significant. For example, this 

difference for the FC boundary conditions and the thickness h = 1m is about 36%, but this 

difference is about 100% for the boundary conditions CC and the thickness h = 1m, which is very 

high and therefore the results of TSDT for large thicknesses cannot be used at all. All of the plate 

theories eliminate the strain through the thickness. On the other hand, the amount of 𝜀𝑧 is zero for 

plate theories including TSDT. This assumption (𝜀𝑧 = 0) is acceptable for thin and moderately 

thick plates. However, the amounts of deflection for a thick plate can be different for lower and 

upper surfaces of the plate (Figure 3) because by neglecting 𝜀𝑧 only a single value for deflection 

will be obtained (for CLPT, FSDT and TSDT analyses). For example, the upper surface in Figure 

3 which is under the transverse loading has more deflection in comparison with the lower surface 

which is not under the loading. Consequently, the results of three-dimensional analysis for very 

thick plates are significantly different in comparison with the results of plate theories such as 

TSDT. The greater difference between the results of ABAQUS software and the CUFQT in lower 

thicknesses can be attributed to the nonlinear analysis (large deformation analysis) in this paper. It 

can be assumed that the results of the CUFQT are even more accurate than the finite element 
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analysis of ABAQUS software. Moreover, the thicker the plate, the closer the results of two 

analyzes, especially in the more rigid boundary conditions (CC). 

Table 1. The results of the third and fifth-order CUFQT for different values of thickness and 

load 

 

Table 2. Comparison between the CUFQT results of present paper (P.P) and the exact three-

dimensional results in (Dastjerdi, and Akgöz 2018) 

Table 3. Validation of the results of present paper (CUFQT) with ABAQUS and TSDT analysis 

for different values of thickness and boundary conditions 

As explained in the solving process section, in this paper a highly efficient method (SAPM) is used 

to solve the governing equations. To examine the convergence rate of this method, Figure 5 shows 

the CUFQT results versus the number of nodes in the geometry range of the analyzed sheet. 

Changes for the two CUFQT and the exact three-dimensional elasticity theory are presented. As it 

can be seen, the rate of convergence for the CUFQT is much higher than the exact three-

dimensional elasticity theory. So that only by choosing three nodes, the CUFQT results converge 

up to 80% which is only 60% for the exact three-dimensional theory. In the CUFQT, the 

convergence up to 98% is achieved by only selecting five nodes and the convergence is 

approximately 99.7% with the selection of seven nodes. But for the exact three-dimensional 

theory, it is necessary to consider nine nodes in order to obtain reliable results which means it is 

required to spend more time on the solution process. Therefore, according to the obtained results 

in Figure 5, the convergence rate of the CUFQT is much higher than the exact three-dimensional 

theory. This is one of the most important benefits of applying the CUFQT analysis. 

 

Figure 5. The rate of convergence for the results of CUFQT and the exact three-dimensional 

elasticity theory 

In Figure 5, the convergence rate of solution method for the two CUFQT used in this paper and 

the exact three-dimensional theory is investigated. Now the time duration that is spent for obtaining 

the results (for computer program) is discussed in Table 4. Definitely the overall obtained time 

depends on the type of computer which is used. In this paper, a typical Corei7 Laptop is used. 

Parameter 𝑅𝑃𝐸 shows the difference between the results of present paper and the exact three-

dimensional theory. The data in Table 4 represent the runtime (computer program) for different 

number of nodes for the two theories of exact three-dimensional and CUFQT. Table 4 shows the 

changes for the two boundary conditions CC and SS. For nodes below three and five, the runtime 

for the exact three-dimensional theory is less than the CUFQT. But according to the results 

obtained in Figure 5, the selection of lower node numbers does not provide the necessary 

convergence for the exact three-dimensional theory results, and it is necessary to select nine nodes 

to obtain a reliable result. In this case the runtime of the program for the exact three-dimensional 

theory is above eighty seconds. The same result for the CUFQT (with the same number of nodes) 

is about twenty seconds, which is four times lower than the exact three-dimensional theory. Regard 

to the CUFQT, selection of seven nodes gives reliable results. This will take less time to run the 

computer program. It should be noted that the studied geometry is a symmetric annular/circular 
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FGM rotating disk. In the theory of CUFQT, displacement field only depends on r direction and 

in the exact three-dimensional theory, changes are in r and z directions. For the CUFQT, the 

governing equations are ordinary differential equations and the relations extracted from the exact 

three-dimensional theory are the second-order partial differential equations. Now, if a sector sheet 

is considered, the governing equations will be the second-order partial differential equations for 

the CUFQT and third-order for the exact three-dimensional theory. For a set of third-order partial 

differential equations, its solution is very time-consuming if it is not impossible to be solved 

especially for the nonlinear analysis. But, as it was seen, the second-order partial differential 

equations obtained from the CUFQT can be solved conveniently. So, by using the CUFQT the set 

of third-order partial differential equations will be converted into the second-order one. Applying 

this method is so recommended while the strain changes through the thickness is considerable 

(thick and especially very thick plates). So that the obtained results are very similar to the exact 

three-dimensional theory. Also, according to Table 4, it can be concluded that the choice of 

different types of boundary conditions does not affect the runtime for program, and almost the 

solution speed will be approximately similar for the different types of boundary conditions. 

Table 4. Runtime for present paper (CUFQT) and the exact three-dimensional elasticity theory 

for different types of boundary conditions and node numbers 

An annular/circular FGM disk is considered with the following specifications. The rotating 

velocity is zero (ω = 0). The boundary conditions are clamped for both inner and outer radiuses 

(CC). 

11 110.2 ; 1 ; 0.5 ; 1.9 10 ; 0.85 10 ; 0.29

5; 0.1 ; 0

i o m c

z

r m r m h m E Pa E Pa

g q GPa H T

       

     
 (37) 

The material in this study is considered a type of functionally graded material (FGM). First, 

variations of deflection along the thickness for different values of g (slope rate of metal to ceramic 

change) are studied in Figure 6. In the case of g = 0, the material property is only pure metal, and 

it is observed that the slightest increase is obtained in this case. By increasing the amount of g, the 

deflection is intensified. But it is observed that at the beginning of the incremental trend, the growth 

of deflection is sharper. But as g increases, this incremental rate decreases. The other issue is the 

amount of variation through the thickness (z). By increasing the g value, the deflection along the 

thickness increases. Therefore, the higher the ceramic property of the material, the higher the rate 

of deflection change along the thickness. So, the use of three-dimensional theory is further 

enhanced. In the analysis of thick FGM sheets, it is recommended to use theories in which 𝜀𝑧 is 

not zero, especially for high values of g. Given the simplicity and similar results of the exact three-

dimensional theory, the use of CUFQT can be very efficient (According to the results of Figure 

6). 

 

Figure 6. The deflection along the thickness for different values of FGM parameter g 

In this paper, the von Kármán’s assumption which considers the large deformation has been used. 

Regarding the obtained governing equations, the presence of nonlinear terms can be observed. 

Using these assumptions will lead to more precise results (especially larger loads). Considering 

the nonlinear analysis, the number of calculations will increase dramatically. The nonlinear 
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relations (von Kármán's strain field) are considered in this paper due to obtaining as high as 

accurate results. The nonlinear analysis will be more important when the structure’s thickness is 

small or high amounts of loading is attended. Actually, the amount of two parameters thickness 

and loading defines the threshold of large deformation. To aim comparing the results of three 

theories (CUFQT, SQT and the exact three-dimensional) for different values of loading, Figure 7 

is presented. Figure 7 (a) shows the changes for the load 𝑞𝑧  = 1 GPa and Figure 7 (b) for 𝑞𝑧  =
10 GPa. In linear analysis, as the load increases, the deflection increases with the same linear trend. 

For example, if the load is increased ten times, the deflection is exactly intensified ten times. But 

by comparing two graphs in Figure 7 (a) and 7 (b), it can be seen that with increasing the load 

from 𝑞𝑧  = 1 GPa (Figure 7 (a)) to 𝑞𝑧  = 10 GPa (Figure 7 (b)) the deflection does not grow ten 

times and will be less than this value. Here it can be seen the effects of nonlinear terms and the 

large deformation analysis. For example, the deflection increases from 0.0056m to 0.051m, which 

show the increment approximately by nine times, not ten times (in the CUFQT analysis). Another 

point is the closer correspondence between the two theories of the exact three-dimensional and the 

CUFQT due to increase of applied loading. As the loading rises, the results of the two theories 

approach. So, for larger loads the results of both the exact three-dimensional and CUFQT theories 

can be used instead. The subject of closer approximation results in two theories is the number of 

nodes in each direction in the stage of solving the governing equations. According to Figure 5, the 

accuracy and convergence of results for CUFQT is more than the exact three-dimensional theory 

(especially for less amounts of node distribution). It is noteworthy that choosing the arbitrary 

functions 𝑓(𝑧) and 𝑔(𝑧) affects the obtained results of SQT analysis. For example, here 𝑓(𝑧) =
𝑔(𝑧) = 𝑧2 + 𝑧3. Another important conclusion according to Figure 7 is good agreement between 

the results of CUFQT and SQT theories. There is only about 3% difference between the results of 

CUFQT and SQT. This amount of difference has been repeated in both Figure 7 (a) and (b), in 

consequence, it is possible to use a correction factor in order to obtain the same results as CUFQT. 

As long as the number of governing equations in SQT analysis is less than the CUFQT (as 

mentioned before), it gives the results in shorter time. Eventually, due to the explained benefits of 

SQT it is recommended to apply this theory in three-dimensional analysis while it is needed to 

achieve a quick and moderately accurate result for thick and very thick structures. The other 

discussed conclusions regard to CUFQT are confirmed for SQT too because the entire trends for 

both CUFQT and SQT theories are the same and only a slight difference between the results can 

be observed. 

 

(a) 

 

(b) 

Figure 7. The results of CUFQT, SQT and the exact 3D theories for different values of loading 

(a) 𝑞𝑧 = 1 GPa and (b) 𝑞𝑧  = 10 GPa 

One of the most important problems in analysis of plate structures that force researchers to use the 

three-dimensional elasticity theory is the high amount of thickness in which neglecting the 𝜀𝑧 

causes the serious errors. The use of three-dimensional elasticity theory has many disadvantages 

that have already been addressed. Consequently, the authors of this study applied two suitable and 

efficient quasi three-dimensional theories that eliminates the disadvantages associated with the 

exact three-dimensional theory, however, the accuracy of the results is maintained. In Figure 8 

comparisons between the results of CUFQT, SQT and the three-dimensional elasticity theory for 

different thicknesses can be seen. As shown in Figure 8, the behavior of variations along the 
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thickness (z) for different thickness values for the three theories is the same. In both Figures 8 a, 

b, the results of SQT are less than the CUFQT and exact three-dimensional theory. But it is 

observed, the results of two theories (CUFQT and exact 3D) will be closer by increasing the 

thickness. The rate of approaching the results (as the thickness grows) has decreasing trend. 

Therefore (in high thicknesses), the results of the two theories (CUFQT and exact 3D) can be used 

more confidently instead. The thicker the sheet becomes, the greater the effect of using the three-

dimensional elasticity theory. Therefore, according to Figure 8, the efficiency and closeness of 

the CUFQT and SQT results to the more precise exact three-dimensional elasticity theory are more 

evident (especially for more thicknesses). With regard to the results of Figure 8, it can be asserted 

that CUFQT and SQT (especially SQT) can be used for their many advantages, rather than the 

exact three-dimensional elasticity theory. Because of simplicity and shorter processing time, the 

use of quasi three-dimensional theories (CUFQT or SQT) is recommended instead of the exact 

three-dimensional elasticity. 

 

(a) 

 

(b) 

Figure 8. Comparison between the results of CUFQT, SQT and exact 3D theories for different 

values of thickness (a) h = 0.2m (b) h = 0.5m 

Figure 9 shows the results of deflection through the thickness for different values of temperature 

by using the present study (CUFQT). The results at z = 0 are approximately equal for different 

values of the ambient temperature. However, the amount of deflection in z = (h / 2) and z = (-h / 

2) will be different for several values of temperature and the slope of variations will be intensified 

with the increase of the temperature. Changes the deflection through-in thickness are almost linear, 

and the rate of change will be approximately linear. In other words, the rate of change, for example 

from ωT = 600 C0 to ωT = 800 C0, will be similar to ωT = 800 C0 to ωT = 1000 C0. Therefore, 

with variations in a certain temperature range (for other intervals) the approximate value of 

deflection through-in thickness can be predicted. 

The sheet was analyzed under thermo-mechanical load, where 𝑞𝑧  = 1 GPa (Figure 9). Now, if 

the sheet is only under a strict thermal load, it is possible to obtain the deflection changes along 

the thickness. If the plate theories such as CLPT, FSDT, TSDT or HSDT are used in analysis and 

the transverse load 𝑞𝑧 on the sheet is zero, the deformation results will always be zero for different 

values of temperature. Because these theories essentially assume that strain variation along the 

thickness is zero (𝜀𝑧 = 0). This is one of the biggest shortcomings of plate theories in thermo-

mechanical analysis of plates. But since in this paper and the applied theory (CUFQT) 𝜀𝑧 is 

opposite to zero, for different values of temperature and 𝑞𝑧 = 0, it can also be seen the diagram of 

deflection variations through-in thickness. Figure 10 shows the deflection variations through-in 

the thickness for different amounts of temperatures assuming 𝑞𝑧 = 0. 

 

 

Figure 9. Deflection changes through-in 

thickness for different values of temperature 

under uniform loading 𝑞𝑧  = 1 GPa 

 

Figure 10. Deflection changes through-in 

thickness for different values of temperature 

and neglecting the transverse loading (𝑞𝑧  = 0) 
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Figure 11. The effect of moisture on the three-dimensional results of very thick FGM structure 

In this paper, the effect of humid environment on the results of three-dimensional analysis has 

been attended. It was concluded that if the thermal environment is considered, only the results of 

three-dimensional analysis can be accepted because the variations of 𝜀𝑧 through the thickness will 

be significant. Figure 11 shows the variation of deflection through the thickness for different 

amounts of ωH. It is observed that with increase of ωH the deflection variation through the 

thickness is intensified. The rate of increment for deflection is similar for different values of ωH 

as it can be seen for ωT in Figure 9 and 10. Consequently, all obtained behaviors for thermal 

environment can be concluded for hygro-thermal environment too. Neglecting the strain variations 

through the thickness (𝑞𝑧) can result in serious errors when the effect of humidity is considered in 

the analysis. The deflection varies from 0.0065 to 0.007 (z = h / 2) for ωH = 0 and maximum ωH 

= 1 respectively which is a growth approximately by 8%. The mentioned explanation is about 

100% for temperature increment from ωT = 100 to 1000 in Figure 9. Consequently, the 

temperature plays more important role for the increase of deformation rather than the humidity. 

In this paper, in addition to comparing the results of CUFQT and the exact three-dimensional 

theories, the results of the third-order shear deformation theory (TSDT) are proposed. In recent 

years, higher-order shear deformation theories have been used widely to give more accurate results 

(Ebrahimi and Heidari 2019). In continue, the governing equations will be presented based on the 

TSDT theory. The displacement fields for TSDT plate theory can be found in Dastjerdi and 

Jabbarzadeh 2016. The TSDT is one of the higher-order theories that is used to study the 

mechanical behavior of thick plates and provides more accurate results in comparison with the 

CLPT and FSDT theories (especially for thick plates). Figure 12 (a, b) shows the deflection 

variations along the thickness for the CUFQT and TSDT theories for different temperatures. The 

thickness of the sheet in this problem is h = 0.5m. In all three graphs, it can be seen that the 

deflection changes through-in thickness for the TSDT theory will be constant. Because TSDT 

theory neglects the strain variations through the direction of thickness (𝜀𝑧 = 0). Therefore, a 

constant amount for deflection will be obtained through the thicknesses (z). The two TSDT and 

CUFQT charts cut each other at a certain point. In other words, the result of the two theories in 

this value of z is equal to each other. It is observed that with increasing temperature this value is 

tended to z = 0. But a remarkable point is the distance between the maximum deflection of the 

CUFQT and the TSDT with increasing ambient temperature. So that this maximum deflection 

difference for ωT = 600 C0 (Figure 12 (b)) between the two theories of TSDT and CUFQT is 

about 300%. Therefore, other results related to the theory of TSDT are not acceptable and the 

results of CUFQT should be used.

 

(a) 

 

(b) 

Figure 12. Comparison between the results of present paper (CUFQT) and TSDT analysis for an 

annular/circular FGM plate with thickness h = 0.5m (a) ωT = 0 (b) ωT = 600 𝐶0 

Figure 13 (a) and (b) are presented to show the dynamic deflection changes at different values of 

porosity coefficients. Figure 13 (a) is drawn when the porosity is even, and Figure 13 (b) is shown 

when the inner porosity of the disk is uneven. First, by comparing the two cases, it can be 
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concluded that the deflection will be higher if the porosity is even. The reason may be that the 

material is softer in this state. On the other hand, the slope of the change in deflections along the 

thickness is greater in even porosity than uneven one. That is, the difference in deflections in the 

lower layers of thickness is greater than the upper layers in materials with even distribution of 

porosity. The cause can be further reducing of deflections in this case. Also, the greater the lambda 

coefficient, the greater the difference.

 

(a) 

 

(b) 

Figure 13. The variations of deflection through the thickness for different values of the structural 

porosity defect (a) even (b) uneven types 

The following Figure 14 is plotted on the basis of dynamic deflection variations for different 

rotational velocities. As can be seen, the maximum deflection is not at the center of the thickness, 

but at the upper surface. The reason can be three-dimensional elasticity analysis that in addition to 

the vertical deflection after loading, the disc will also have some reductions in thickness, which 

will naturally be the largest at the highest levels of the thickness. It is interesting to note that as the 

disk rotation velocity increases, the difference between the results of the different rotational 

velocities at the upper and lower levels of the thickness is minimal. The cause may be the shear 

stresses that rotary discs usually face. It is recalled that the shear stress values are usually zero at 

the upper and lower free surfaces of the sheets and have the highest values near the middle plans 

of thickness of plates. Hence, as the disk rotation increases, its shear stress is increased and 

therefore the difference in the static and dynamic cases results in the higher shear stress layers. 

In Figure 15, due to rotational velocities variations based on rpm, the results are presented in 

several porosities. The output of the results is based on the parameter 𝑅𝑟 (%) that is percentage of 

dynamic to static deflection (𝑅𝑟 = 100 × (
𝑤𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠

𝑤𝑠𝑡𝑎𝑡𝑖𝑐𝑠
− 1)). 𝑤𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 and 𝑤𝑠𝑡𝑎𝑡𝑖𝑐𝑠 represents the 

deflection of outer radius 𝑟𝑜(𝑧 = +
ℎ

2
) in a constant rotating velocity and the static status (𝜔 = 0) 

respectively. As it turns out, in the lower rotations the amount of porosity in the material does not 

differ much from the results in the case where the material has no porosity. But with the increase 

in disk rotational velocity, the importance of examining porosity within the disk will be much 

greater. This can be understood from the discrepancy between the results of different porosity 

coefficient values. Clearly, the larger the numerical porosity coefficient, the greater the difference. 

Interestingly, as the porosity coefficient increases, the dynamic to static deflection results in a 

higher value, leading to the very valuable conclusion that in high porosity materials the dynamic 

to static deflection ratio will have large values compared to non-porous material analysis. And so, 

the dynamic safety factor will go further than the static one. In fact, since many industrial and 

advanced materials in the manufacturing process may have some porosities, therefore, in the 

design of high rotational velocity circular discs, dynamic analysis must be performed on the basis 

of impurities and porosity in the material.

 

Figure 14. The effect of rotating velocity on 

the three-dimensional deflection analysis of 

FGM rotating disk 

 

 

Figure 15. Variations of parameter 𝑅𝑟 due 

to the increase of rotating velocity (rpm) of 
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disk for different amounts of uneven 

porosity ω (Lambda) 

5. Conclusions and remarks 

In this study, two highly efficient quasi three-dimensional theories were applied and presented for 

the analysis of thick and very thick FGM rotating disks in the hygro-thermal environment. The 

structure was considered to have porosity defect which is a normal task and decreases the strength 

of structure. The governing equations on the basis of these quasi three-dimensional theories and 

the assumptions of the nonlinear strain of von Kármán were obtained using the principle of 

minimum potential energy and were solved by SAPM solving method. The efficiency and 

accuracy of the presented theories were proved by comparing the results with other available 

articles and ABAQUS software. The effect of some important parameters affecting the results such 

as thickness, comparison between the results of applied theories with the exact three-dimensional 

elasticity theory, loading, hygro-thermal environment and rotating velocity was conducted and 

further studied. In summary, the important results of this research can be categorized as follows: 

1. The results of the theories applied and presented in this article are very similar to the results 

of the exact three-dimensional elasticity theory. 

2. The results of CUFQT and SQT are so close and due to simpler formulations, the use of 

SQT is recommended in 3D analysis. 

3. Third and fifth-order models of CUFQT give so similar results and the differences are 

inconsiderable in comparison with the advantages of third-order CUFQT. However, the 

fifth-order theory gives the more accurate results especially for very thick structures. 

4. The rate of convergence of the results from the CUFQT is more than the exact three-

dimensional elasticity theory. Also, the time that the results are obtained using the CUFQT 

is much shorter than the exact 3D theory. 

5. By using the exact 3D theory, the governing equations for the axisymmetric sector sheet is 

a set of third-order partial differential equations. But for this case, a set of second-order 

partial differential equations will be extracted in the CUFQT, which is much easier to solve. 

6. In general, the use of CUFQT reduces the order of obtained governing partial differential 

equations. While the strain variations through the thickness (similar to the exact 3D 

elasticity theory) are maintained (𝜀𝑧 ≠ 0). 

7. The results of the applied and presented theories will be much more accurate rather than 

the results of the plate theories such as CLPT, FSDT, TSDT and HSDT. 

8. Using the applied and presented theories when the structure is embedded in a hygro-

thermal environment gives more reliable results. However, the temperature has more 

effects on the results in comparison with the humidity. While the other plate theories (even 

higher-order theories such as TSDT) give unacceptable results, especially for moderately 

thick and thick plates. 

9. The greater the thickness of the sheet, the results of three-dimensional analysis will be more 

accurate. 

10. The porosity decreases the strength of FGM rotating disk. Even type of porosity reduces 

the strength of structure more than uneven one. 

11. The rotating velocity of FGM disk causes the increment in deformation. However, the 

effect of rotating velocity is ascending due to the increase of ω. In other words, whatever 

the rotating velocity increases, the three-dimensional deflection grows ascendingly. 
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12. The two quasi three-dimensional theories in this paper, eliminates the disadvantages of the 

exact 3D theory such as the higher-order partial differential equations which can be seen 

in completely axisymmetric 3D problems. 
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Appendix. 

A.1. The quasi governing equations: 
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 (12) 

The stress resultants in the above relations are expressed below (ρ(r) is the density of the structure 

along the radius (r) direction.): 
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A.2. The governing equations based on the simplified quasi three-dimensional theory (SQT): 
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The stress resultants in above equations are expressed below: 
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Figure 1. Symmetric annular/circular FGM rotating disk embedded in Winkler-Pasternak elastic 

foundation under transverse loading q (r) 
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Figure 2. Three-dimensional schematic view of a sector FGM plate in r, θ and z directions 

 

Figure 3. An annular/circular FGM plate under uniform loading (𝑞𝑧) 

 

Figure 4. Sample grid points for a sector 
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Figure 5. The rate of convergence for the results of CUFQT and the exact three-dimensional 

elasticity theory 

 

Figure 6. The deflection along the thickness for different values of FGM parameter g 
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(a) 

 

(b) 

Figure 7. The results of CUFQT, SQT and the exact 3D theories for different values of loading 

(a) 𝑞𝑧 = 1 GPa and (b) 𝑞𝑧  = 10 GPa D
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(a) 

 

(b) 

Figure 8. Comparison between the results of CUFQT, SQT and exact 3D theories for different 

values of thickness (a) h = 0.2m (b) h = 0.5m 
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Figure 9. Deflection changes through-in thickness for different values of temperature under 

uniform loading 𝑞𝑧  = 1 GPa 
 

 

 

Figure 10. Deflection changes through-in thickness for different values of temperature and 

neglecting the transverse loading (𝑞𝑧  = 0) 
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Figure 11. The effect of moisture on the three-dimensional results of very thick FGM structure 
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(a) 

 

(b) 

Figure 12. Comparison between the results of present paper (CUFQT) and TSDT analysis for an 

annular/circular FGM plate with thickness h = 0.5m (a) ωT = 0 (b) ωT = 600 𝐶0 D
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(a) 

 

(b) 

Figure 13. The variations of deflection through the thickness for different values of the structural 

porosity defect (a) even (b) uneven types 
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Figure 14. The effect of rotating velocity on the three-dimensional deflection analysis of FGM 

rotating disk 
 

 

Figure 15. Variations of parameter 𝑅𝑟 due to the increase of rotating velocity (rpm) of disk for 

different amounts of uneven porosity ω (Lambda) 
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Table 1. The results of the third and fifth-order CUFQT for different values of thickness and 

load 

w (h/2) m 

𝑞𝑧 = 1 𝐺𝑃𝑎 

h (m) Third-order Fifth-order 𝑅𝑇𝐹 

0.1 0.08230 0.08234 0.9995 

0.2 0.02513 0.02512 1.0004 

0.5 0.00662 0.00668 0.9918 

1 0.00405 0.00421 0.9606 

𝑞𝑧 = 2 𝐺𝑃𝑎 

0.1 0.12080 0.12032 1.0041 

0.2 0.04717 0.04719 0.9996 

0.5 0.01314 0.01323 0.9932 

1 0.00807 0.00838 0.9632 

 

Table 2. Comparison between the CUFQT results of present paper (P.P) and the exact three-

dimensional results in (Dastjerdi, and Akgöz 2018) 

Thickness-to-radius ratio, h / a 

g 

0 0.05 0.1 0.15 0.2 

P.P 

(Dastjerd

i, and 

Akgöz 

2018) 

P.P 

(Dastje

rdi, 

and 

Akgöz 

2018) 

P.P 

(Dastjerd

i, and 

Akgöz 

2018) 

P.P 

(Dastjerdi

, and 

Akgöz 

2018) 

P.P 

(Dastjerd

i, and 

Akgöz 

2018) 

0 2.345 2.521 2.399 2.516 2.487 2.579 2.623 2.701 2.814 2.875 

2 1.289 1.386 1.317 1.381 1.361 1.411 1.429 1.471 1.524 1.557 

4 1.178 1.267 1.205 1.263 1.244 1.290 1.305 1.344 1.392 1.422 

6 1.122 1.206 1.146 1.202 1.184 1.228 1.243 1.280 1.326 1.355 

8 1.085 1.167 1.109 1.163 1.147 1.189 1.205 1.241 1.286 1.314 

10 1.061 1.141 1.085 1.138 1.121 1.163 1.179 1.214 1.259 1.286 

15 1.024 1.101 1.046 1.097 1.083 1.123 1.139 1.173 1.217 1.244 

20 1.003 1.078 1.026 1.076 1.061 1.100 1.112 1.145 1.195 1.221 

25 0.990 1.064 1.012 1.061 1.048 1.087 1.102 1.135 1.180 1.206 

30 0.981 1.055 1.002 1.051 1.038 1.076 1.093 1.125 1.170 1.196 

35 0.974 1.047 0.996 1.044 1.031 1.069 1.086 1.118 1.163 1.188 

40 0.969 1.042 0.990 1.038 1.025 1.063 1.080 1.112 1.157 1.182 

50 0.961 1.033 0.982 1.030 1.017 1.055 1.072 1.104 1.149 1.174 

102 0.946 1.017 0.967 1.014 1.002 1.039 1.056 1.087 1.132 1.157 

103 0.931 1.001 0.952 0.998 0.986 1.023 1.040 1.071 1.117 1.141 

104 0.930 1.000 0.950 0.996 0.985 1.021 1.038 1.069 1.115 1.139 

105 0.930 1.000 0.950 0.996 0.985 1.021 1.038 1.069 1.115 1.139 

 

 

 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 3. Validation of the results of present paper (CUFQT) with ABAQUS and TSDT analysis 

for different values of thickness and boundary conditions 

w (mm) 

FC 

h (m) ABAQUS P.P TSDT 𝑅𝐴𝑃% 𝑅𝑇𝑃% 

0.25 72.64 67.46 71.77 -7.1 -6 

0.5 14.76 14.23 14.21 -3.6 +0.1 

1 5.83 5.68 4.17 -2.6 +36.1 

CC 

0.25 9.60 9.19 9.26 -4.4 -0.8 

0.5 3.77 3.66 3.08 -2.9 +18.9 

1 2.65 2.60 1.29 -1.8 +101.9 

 

Table 4. Runtime for present paper (CUFQT) and the exact three-dimensional elasticity theory 

for different types of boundary conditions and node numbers 

t (Second) 

CC 

N (Number of nodes) 

Exact three-

dimensional 

theory 

P.P 𝑅𝑃𝐸(Second) 

3 4.40 8.79 -4.39 

5 5.20 10.68 -5.48 

7 16.63 15.05 +1.58 

9 82.45 23.58 +58.87 

SS 

3 4.20 8.68 -4.48 

5 5.13 10.80 -5.67 

7 17.02 15.45 +1.57 

9 84.18 24.08 +60.10 
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