
mathematics

Article

Generalized Gradient Equivariant Multivalued Maps,
Approximation and Degree

Zdzisław Dzedzej and Tomasz Gzella *

Faculty of Technical Physics and Applied Mathematics, Gdańsk University of Technology,
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Abstract: Consider the Euclidean space Rn with the orthogonal action of a compact Lie group G.
We prove that a locally Lipschitz G-invariant mapping f from Rn to R can be uniformly approximated
by G-invariant smooth mappings g in such a way that the gradient of g is a graph approximation of
Clarke’s generalized gradient of f . This result enables a proper development of equivariant gradient
degree theory for a class of set-valued gradient mappings.

Keywords: set-valued mapping; G-space; locally Lipschitz mapping; Clarke’s generalized gradient;
equivariant degree; graph approximation

1. Introduction

It is well known that various versions of degree theory are very useful in nonlinear analysis; see
the books [1–3] and their extensive references. A powerful special degree for maps commuting with an
action of a Lie group gives many multiplicity results; see the book [4]. In order to extend the degrees
to set-valued maps, a graph approximation method in the spirit of [5] appeared to be very successful.
In [6], a series of selection and graph approximation results for convex-valued mappings was obtained
in the presence of symmetries given by a compact group action as extensions of many classical results.
Some of them can be basic tools in the construction of equivariant degree theory. An equivariant version
of the Cellina approximation theorem for convex-valued upper semicontinuous mappings was used
in [7] to define the equivariant degree, which extended the one from [4,8]. The degree theory was applied
in [7] to obtain nontrivial solutions to multivalued boundary value problems. See also [9,10] for further
applications of that degree to obtain multiple solutions to some implicit functional differential equations.

On the other hand, in many applications, the considered maps are additionally gradients of
smooth functionals, and special invariants for this class are involved like the gradient equivariant
degree and Conley index; see [11,12]. There are plenty of papers on various applications, and we
mention only a few of them concerning second order ODEs [13], symmetry-breaking [14], bifurcations
of the Neumann problem [15] and symmetric Newtonian systems [16]. In the non-smooth case, one can
use Clarke’s generalized gradient notion [17] for locally Lipschitz functions, which is a convex-valued
u.s.c. map in this case (see Definition 3 or [18] for definition of u.s.c. for multifunction). It appears that
an approximation result is valid for such functions defined in Rn (see [19]), which may be treated as an
analogue of the Whitney approximation theorem.

The main purpose of this paper is to prove the equivariant version of the approximation theorem
of Ćwiszewski and Kryszewski. Then, we use this to provide an equivariant gradient degree theory
with all the usual properties including the Hopf classification theorem.

It is worth pointing out that the proof is strictly finite-dimensional, and it is a challenging problem
to extend the approximation theorem to Hilbert spaces. Nevertheless, the degree can be defined for
compact vector fields, i.e., maps of the form Id− ∂ f , by standard Leray–Schauder-type techniques.
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One can think also of the perturbations of unbounded self-adjoint operators in Hilbert spaces; see [20].
We postpone the details to another paper, as well as applications to set-valued variational problems.

2. Results

2.1. Preliminaries

Let us recall some basic information on group actions. For a more detailed description, see [21,22].
Let G be a group. Recall that a G-set is a pair (X, ξX), where X is a set and ξX : G × X → X is the
action of G on X, i.e., a map such that:

(i) ξX(g1, ξ(g2, x)) = ξX(g1g2, x) for g1, g2 ∈ G and x ∈ X;

(ii) ξX(e, x) = x for x ∈ X, where e ∈ G is the group unit.

In the sequel, we write gx instead of ξX(g, x), x ∈ X, g ∈ G, unless it leads to ambiguity.
Given G-sets X and Y, a map f : X → Y is G-equivariant if f (gx) = g f (x) for any x ∈ X and

g ∈ G. If the G-action on Y is trivial, then we say that f is G-invariant.
A subset A ⊂ X of a G-set X is G-invariant if gA := {gx | x ∈ A} ⊂ A for all g ∈ G. The set

Gx := {gx | g ∈ G} is called the orbit through x ∈ X, and X/G denotes the set of all orbits. Observe
that if A ⊂ X, then the set GA :=

⋃
x∈A Gx =

⋃
g∈G gA is G-invariant.

If G is a topological group, X is a topological space and a G-set, then X is a G-space, provided the
action ξX is (jointly) continuous. We say that a real (resp. complex) Banach space E is a real (resp. complex)
Banach representation of G if E is a G-space, and for each g ∈ G, the map ξE(g, ·) : E 3 x 7→ gx is linear
and bounded. Throughout the whole paper, we assume that G is a compact Lie group.

Set-valued maps are the main object of our studies. Recall that given sets X and Y, a set-valued
map ϕ from X into Y (written ϕ : X ( Y) is a map that assigns to each x ∈ X the value ϕ(x), being a
non-empty subset of Y. If X and Y are topological spaces and, for any closed (resp. open) set U ⊂ Y,
the preimage ϕ−1(U) := {x ∈ X | ϕ(x) ∩U 6= ∅} is closed (resp. open), then we say that ϕ is upper
(resp. lower) semicontinuous; ϕ is continuous if it is upper and lower semicontinuous simultaneously.

If Y is a metric space, then ϕ : X ( Y is lower semicontinuous if and only if for any y ∈ Y,
the function X 3 x 7→ d(y, ϕ(x)) := infz∈ϕ(x) d(y, z) is upper semicontinuous (as a real function) or,
equivalently, given x0 ∈ X and y0 ∈ ϕ(x0), limx→x0 d(y0, ϕ(x)) = 0.

A similar characterization of upper semicontinuity is not true, i.e., the lower semicontinuity of
d : X 3 x 7→ d(y, ϕ(x)) ∈ R does not imply in general that ϕ is upper semicontinuous. However, if ϕ

has closed values, is locally compact, i.e., each point x ∈ X has a neighbourhood U such that ϕ(U)

is compact, and d is lower semicontinuous, then ϕ is upper semicontinuous (with compact values).
The graph Gr (ϕ) := {(x, y) ∈ X × Y | y ∈ ϕ(x)} of an upper semicontinuous map ϕ with closed
values is closed; ϕ : X ( Y is upper semicontinuous with compact values if and only if the projection
Gr (ϕ) → X is perfect (recall that a continuous map f : X → Y is perfect if it is closed and f−1(y) is
compact for any y ∈ Y). We say that a map ϕ is compact if it is upper semicontinuous and the closure
of the image ϕ(X) :=

⋃
x∈X ϕ(x) is compact. For other details on set-valued maps, see [23] or [18].

Let X, Y be metric spaces and ε > 0. Recall the notion of graph approximations.

Definition 1. A continuous map f : X → Y is an ε-approximation of ϕ : X ( Y if for every x, there exists x′

such that d(x, x′) < ϕ and f (x) ∈ Bε(ϕ(x′)).

One can formulate the above condition as follows: f (x) ∈ Bε(ϕ(Bε(x))) for all x ∈ X. It is also
equivalent to the condition that the graph of f is contained in the ε-neighbourhood of the graph of
ϕ. It is well known that such approximations are a good tool for extending topological invariants,
and they have been proven to exist for example for convex-valued u.s.c. maps; see [5]. We are interested
in equivariant versions of the results.
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Definition 2. Let X and Y be G-sets. A set-valued map ϕ : X ( Y is G-equivariant (resp. G-invariant) if
ϕ(gx) = gϕ(x) (resp. ϕ(gx) = ϕ(x)) for all g ∈ G and x ∈ X.

Note that ϕ is G-equivariant if and only if ϕ(gx) ⊂ gϕ(x) for all g ∈ G and x ∈ X (or gϕ(x) ⊂ ϕ(gx)
for all g ∈ G and x ∈ X). Moreover, it is easy to see that ϕ is G-equivariant if and only if its graph Gr (F)
is a G-invariant subset of X×Y with a natural action g(x, y) := (gx, gy), x ∈ X, y ∈ Y. Observe that if
ϕ : X ( Y, where Y is a topological space, is G-equivariant, then so is its closure, i.e., the map ϕ : X ( Y
given by ϕ(x) := ϕ(x), x ∈ X.

Let us collect simple examples of G-equivariant set-valued maps.

Example 1. (1) Let ϕ : [0, T] × U ( E, where T > 0 and U ⊂ E is an open G-invariant subset of a
Banach G-representation E, be G-equivariant, i.e., ϕ(t, gx) = gϕ(t, x) for 0 ≤ t ≤ T and x ∈ U. Consider a
differential inclusion (under suitable assumptions assuring the existence of solutions):{

x′(t) ∈ ϕ(t, x(t)),
x(0) = x0.

Consider the space C([0, T],E) of continuous maps from [0, T] to E with the G-action defined by (g, x) 7→
gx, where (gx)(t) := g(x(t)) for x ∈ C([0, T],E), g ∈ G and t ∈ [0, T]. If x : [0, T] → E is a solution
to the above problem, i.e., there is an integrable function y : [0, T] → E such that x(t) = x0 +

∫ t
0 y(s) ds,

t ∈ [0, T], then gx is also a solution to this problem with the initial condition gx0. Therefore, the solution
map P : U ( C([0, T],E) that assigns to each initial value x0 ∈ U the set of all solutions is G-equivariant,
whenever well defined.

(2) Let f : E→ R ∪ {∞}, where E is a real Banach representation of G, be a convex function. For each
x0 ∈ dom( f ) := {x ∈ E | f (x) < ∞}, the subdifferential:

∂ f (x0) := {p ∈ E∗ | f (x) ≥ f (x0) + 〈p, x− x0〉 for all x ∈ E}

is defined. Let f be G-invariant. Then, the map ∂ f : dom( f ) ( E∗ is G-equivariant. Clearly, dom( f ) is
invariant, and if p ∈ ∂ f (x0), then for all x ∈ E, 〈p, x− x0〉 ≤ f (x)− f (x0). Hence:

〈gp, x− gx0〉 = 〈p, g−1x− x0〉 ≤ f (g−1x)− f (x0) = f (x)− f (gx0),

which gives the assertion. In a similar manner, one shows that the Clarke generalized gradient ∂ f : U → E∗,
where U is a G-invariant open in E and f : U → R is a G-invariant locally Lipschitz function, is G-equivariant.

2.2. Gradient approximations

In Rn, we shall use various analytic characterizations of graph-approximations. For A ∈ Rn,
we recall the notion of a support function σA : Rn → R∪ {∞} given by:

σA(v) := sup
a∈A
〈a, v〉, v ∈ Rn.

One easily checks that σA is finite and continuous if A is bounded. Moreover, convA = {x ∈ Rn |
∀v ∈ Rn〈x, v〉 ≤ σA(v)}.

We also define:
|||A||| := sup

u∈B1(0)
inf
a∈A
〈a, u〉,

or equivalently:
|||A||| = inf

a∈convA
sup
||u||≤1

〈a, u〉 = inf
a∈convA

||a||.
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Lemma 1. ([19], Lemma 2.2) Let U ⊂ Rn, ϕ : U ( Rn with closed convex values, g : U → Rn, and ε : U →
(0,+∞). The following conditions are equivalent:

(i) g is an ε-approximation of ϕ;
(ii) for every x ∈ U, there is x ∈ U ∩ Bε(x)(x) such that:

|||g(x)− ϕ(x)||| < ε(x);

(iii) for every x ∈ U, there is x ∈ U ∩ Bε(x)(x) such that:

∀||u|| ≤ 1 〈g(x), u〉 − σϕ(x)(u) < ε(x).

Let U ⊂ Rn be an open subset, and consider a locally Lipschitz function f : U → R. A generalized
directional Clarke derivative:

f o(x; v) := lim sup
y→x,H→0+

f (y + hv)− f (y)
h

is defined for all x ∈ U, v ∈ Rn. Clarke’s generalized gradient at x is the set:

∂ f (x) := {p ∈ Rn | for all v ∈ Rn 〈p, v〉 ≤ f o(x; v)}.

It is well known that the map ∂ f : U ( Rn is an u.s.c. mapping with compact convex values
(see [17] for this and more of the properties of the generalized gradient). One observes also that
σ∂ f (x)(v) = f o(x; v) for v ∈ Rn. Recall only the local u.s.c. property:

Definition 3. The map ∂ f is upper semicontinuous at x ∈ X if:

∀ε>0∃δ(x)>0 ∀x′∈X ‖x′ − x‖ < δ(x)⇒ ∂ f (x′) ⊂ Bε(∂ f (x)). (1)

The following approximation result was proved in [19]:

Theorem 1. Let f : U → R be locally Lipschitz and ε : U → (0, ∞) a continuous function. Then, there exists
a C∞-map g : U → R such that:

(i) | f (x)− g(x)| < ε(x) for all x ∈ U,
(ii) ∇g(x) ∈ Bε(x)(∂ f (Bε(x)(x))) for all x ∈ U.

In other words, g is a uniform approximation of f , and ∇g is an ε-approximation of ∂ f . We shall
call such pairs (g,∇g) Whitney approximations.

Definition 4. Suppose f : X → R, where X ⊂ Rn compact, is a locally Lipschitz function. If g ∈
C∞(X,R) satisfies:

1. | f (x)− g(x)| ≤ ε(x) for all x ∈ Rn (uniform ε-approximation),
2. ∇g(x) ∈ Bε(x)(∂ f (Bε(x)(x))) for all x ∈ Rn (ε-approximation (on the graph)),

for a continuous function ε : X → (0, ∞), then we say that (g,∇g) is the ε-WT-approximation
(ε-Whitney-type-approximation) of ( f , ∂ f ).

Let us assume that V is an n-dimensional orthogonal representation of a compact Lie group G
and U ⊂ V is open and G-invariant. Assume that a locally Lipschitz function f : U → R is G-invariant,
i.e., f (hx) = f (x) for all h ∈ G. It is easy to verify that ∂ f is then equivariant, i.e., ∂(gx) = g(∂(x))
as sets.
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We now modify the proof from [19] in order to obtain an equivariant version of Theorem 1.
Let us start from the remark that since G acts orthogonally, there exists an invariant C∞-mollifier,

i.e., a nonnegative invariant function ω : Rn → R with the support supp ω ⊂ B1(0) and such that:∫
Rn

ω(x)dx = 1.

We can take, e.g., a function given by:

ω1(x) =

{
e

1
‖x‖2−1 if ‖x‖ < 1,

0 if ‖x‖ ≥ 1
,

and then, we normalize it:

ω(x) :=
ω1(x)∫

Rn ω1(x)dx
.

Let f : Rn → R be an invariant L-Lipschitz map with a compact support, and let λ > 0. We define
the λ-regularization of f by the formula:

gλ(x) :=
∫
Rn

f (x− λz)ω(z)dz.

The following is a straightforward consequence of the definition.

Proposition 1. The regularization gλ satisfies the following properties:

(i) gλ is C∞-smooth;
(ii) gλ is G-invariant;
(iii) gλ is a uniform λL-approximation of f ;
(iv) supp gλ ⊂ Bλ(supp f ).

The following technical lemma was proven in detail in [19], Lemma 3.4.

Lemma 2. Let f1, ..., fk : Rn → R be Lipschitz functions of common rank L and with compact supports.
For any ε > 0, there exists sufficiently small µ > 0 with the property that for every x ∈ Rn, there exists
x ∈ Bε(x) such that:

∀u ∈ B1(0) sup
z∈Bµ(x),t∈(0,µ)

fi(z + tu)− fi(z)
t

< f o
i (x; u) +

ε

2

for each i = 1, ..., k.

A local approximation result is a consequence of the above.

Proposition 2. Let fi(i = 1, ..., k) be G-invariant functions as in Lemma 2. Then, for any ε > 0, there exists
λ0 > 0 such that:

(i) for any λ ≤ λ0, the regularization gi
λ of fi is a uniform ε-approximation of fi, for each i = 1, ..., k;

(ii) for every x ∈ Rn, there exists x ∈ Bε(x) such that for all λ ≤ λ0 and i = 1, ..., k:

|||∇gi
λ(x)− ∂ fi(x)||| < ε.
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Proof. We put λ0 := min{µ, ε
L} > 0, and let λ ≤ λ0. Then, Property (i) follows from Proposition 1.

We prove (ii) by means of Property (iii) from Lemma 1. For this, we fix a point x and u ∈ B1(0). There exists
a δ = δ(λ, x, u) < µ such that, for all i, we have:

∀h ∈ (0, δ) 〈∇gi
λ(x), u〉 <

gi
λ(x + hu)− gi

λ(x)
h

+
ε

2
.

On the other hand, we have:

gi
λ(x + hu)− gi

λ(x)
h

=
1
h

∫
B1(0)

[ fi(x− λz + hu)− fi(x− λz)]ω(z)dz,

and by the use of Lemma 2, we find x such that:

gi
λ(x + hu)− gi

λ(x)
h

< f o
i (x; u) +

ε

2
.

Therefore, we have the inequality 〈∇gi
λ(x), u〉 < f o

i (x; u) + ε. This ends the proof because of the
equality σ∂ f (x)(u) = f o(x; u).

Theorem 2. Let f : U → R be a locally G-invariant map as in Theorem 1. Then, for every ε > 0, there exists a
C∞-smooth G-invariant map g : U → R such that (g,∇g) is an ε-WT-approximation of ( f , ∂ f ).

Proof. Since U is G-invariant, there exists an increasing family of G-invariant compact sets {Kk}∞
k=0

such that:

K0 = ∅; ∀k ≥ 1 ∅ 6= Kk ⊂ Kk+1 and U =
∞⋃

k=1

Kk.

For each k = 1, the set Pk := int Kk+1 \ Kk−1 is also G-invariant. Therefore, the family {Pk} is
an open G-invariant covering of U. Let {ϕk}∞

k=1 be a C∞-smooth and G-invariant partition of unity
subordinated to {Pk}.

Thus, the functions ϕk · f (k ≥ 1) are globally Lipschitz, G-invariant, and they can be considered
as defined on Rn.

We define a sequence of positive numbers:

ε1 := min
{

1
2

min
x∈K2

ε(x), dist(supp ’3, K2), dist(supp ’2, K1)

}
;

εk := min
{

1
2

min
x∈Kk+1

ε(x), dist(supp ’k−1,Rn \Kk), dist(supp ’k+2, Kk+1)

}
(k ≥ 2).

Now, we can apply Proposition 2 for each k ≥ 1. We find λk such that for any 0 < λ ≤ λk invariant
λ-regularizations: gk

λ of ϕk · f and gk+1
λ of ϕk+1 · f are uniform εk/2-approximations. Moreover,

for every x ∈ Pk ∪ Pk+1, there is x ∈ Bεk (x) ∩ (Pk ∪ Pk+1) such that:

|||∇gk
λ(x)− ∂(ϕk · f )(x)||| < εk

2
,

|||∇gk+1
λ (x)− ∂(ϕk+1 · f )(x)||| < εk

2

for all 0 < λ ≤ λn. We can assume that supp gk
λ ⊂ Pk, and the sequence {λk}∞

k=1 is nonincreasing.
The desired map g : U → R is defined by the formula:

g(x) :=
∞

∑
k=1

gk
λk
(x).
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It is obviously well defined, since at most two terms are different from zero at given x. By definition,
it is C∞-smooth and G-invariant. We have to check the approximation conditions. For a fixed x ∈ U,
there is a unique k ≥ 0 such that x ∈ Kk+1 \ Kk. If k = 0, then g(y) = g1

λ1
in some neighbourhood of x,

and the claim is clear from the choice of ε1.
If k ≥ 1, then in some neighbourhood of x contained in Bεk (x), we have g(y) = gk

λk
(y) + gk+1

λk+1
(y)

and ϕk(y) + ϕk+1(y) = 1. Therefore:

|g(x)− f (x)| ≤ |gk
λk
(x)− ϕk(x) f (x)|+ |gk+1

λk+1
(x)− ϕk+1(x) f (x)| < εn ≤ ε(x).

By the properties of the generalized gradient, we obtain:

|||∇g(x)− ∂ f (x)||| = |||(∇gk
λk
(x) +∇gk+1

λk+1
(x))− (∂(ϕk f )(x) + ∂(ϕk+1 f )(x))||| ≤

≤ |||∇gk
λk
(x)− ∂(ϕk f )(x|||+ |||∇gk+1

λk+1
(x)− ∂(ϕk+1 f )(x)||| < εn ≤ ε(x).

Because of Lemma 1, the last condition means that∇g is a graph ε-approximation of ∂ f . This ends
the proof.

Theorem 3. Let X be a compact G-invariant subset of V. Suppose that f : X → R is locally Lipschitz and
G-invariant. Then, for all ε > 0, there exists a δ > 0 with δ < ε and such that, for every two WTδ

2
-approximations

(g1,∇g1), (g2,∇g2) of ( f , ∂ f ), the pair (gt,∇gt) is an WTε-approximation of ( f , ∂ f ), where:

g : Rn × I → R, g(x, t) = gt(x) = tg1(x) + (1− t)g2(x),

is a linear homotopy.

Proof. For all x ∈ X, ∂ f (·) is upper semicontinuous (1) at x, so we can apply Definition 3 with a given
ε and obtain an appropriate, small δ(x).

We can assume that δ(x) < |x| for x 6= 0, and δ(0) = δ0 > 0. Then, we have x → 0⇒ δ(x)→ 0.
For all x ∈ X, we observe that x′ ∈ B(x, δ(x)) implies ∂ f (x′) ⊂ Bε(∂ f (x)). The family {B(x, δ(x))}x∈X
is an open covering of X. We can choose a finite subcovering:

η = {Ox1 , Ox2 , ..., Oxn} , where Oxk = B(xk, δ(xk)).

Let l > 0 be a Lebesgue number for the covering η, i.e.,:

‖x′ − x′′‖ < l ⇒ ∃i∈{1,2,...,n} x′, x′′ ∈ Oxi = B(xi, l),

and let δ = 2 min{l, 1
2 ε}.

Fix x ∈ X, and suppose that (g1,∇g1), (g2,∇g2) ∈ C∞(Rn) are WTδ
2
-approximations of

( f , ∂ f ). Then, we have: {
| f (x)− g1(x)| ≤ δ

2
∃x̃∈X ‖x̃− x‖ < δ

2 and ∇g1(x) ∈ B δ
2
(∂ f (x̃)) , (2)

{
| f (x)− g2(x)| ≤ δ

2
∃x̄∈X ‖x̄− x‖ < δ

2 and ∇g2(x) ∈ B δ
2
(∂ f (x̄)) , (3)

and:
∇gt(x) = t∇g1(x) + (1− t)∇g2(x).
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Then, from (2) and (3), we get:

| f (x)− gt(x)| = |t f (x) + (1− t) f (x)− tg1(x)− (1− t)g2(x)| ≤
≤ t| f (x)− g1(x)|+ (1− t)| f (x)− g2(x)| < δ

2 < ε.

From (2) and (3), we have:

‖x̃− x̄‖ ≤ ‖x̃− x‖+ ‖x− x̄‖ ≤ δ

2
+

δ

2
= δ,

so:

∃i∈{1,2,...,n} x̃, x̄ ∈ Oxi ⊂ B
(

xi,
δ

2

)
. (4)

We can use the upper semicontinuity property of ∂ f in xi:

∀ε>0∃δ>0 ∀x′∈X‖x′ − x‖ < δ⇒ ∂ f (x′) ⊂ B ε
2
(∂ f (x))

for points x̃, x̄, which are close enough to xi:

∂ f (x̃) ⊂ B ε
2
(∂ f (xi))

∂ f (x̄) ⊂ B ε
2
(∂ f (xi))

Now, we have:

∇gj(x) ∈ B δ
2
(∂ f (x̃)) ⊂ B δ

2

(
B ε

2
(∂ f (xi))

)
⊂ Bε (∂ f (xi)) , j = 1, 2.

However, Bε (∂ f (xi)) is a convex set, and therefore:

∇gt(x) = t∇g1(x) + (1− t)∇g2(x) ∈ Bε (∂ f (xi)) .

Finally, from (2) and (4), we have:

‖x− xi‖ ≤ ‖x− x̃‖+ ‖x̃− xi‖ <
δ

2
+

δ

2
< δ < ε.

This ends the proof.

2.3. Equivariant Gradient Degree

In this section, we outline an axiomatic approach to the equivariant gradient degree. To this end,
some preliminaries are in order.

Recall that the Euler ring U(G) of a compact Lie group G as an abelian group is equal to Z(Φ(G)),
where Φ(G) is the set of all conjugacy classes of normal subgroups of G. The multiplicative structure
of U(G) is quite involved (see [22] or [4] for details on the ring structure).

Let V be an orthogonal G-representation. Denote by C2
G(V,R) the space of G-invariant real

C2-functions on V. Clearly, if ϕ ∈ C2
G(V,R), then the gradient map∇ϕ is G-equivariant. Let Ω ⊂ V be

an open, bounded and G-invariant subset of V and f : V → V. A pair ( f , Ω) is said to be a G-gradient
Ω-admissible pair if f (x) 6= 0 for all x ∈ bd Ω, and there exists ϕ ∈ C2

G(V,R) such that ∇ϕ = f .
Denote by MG

∇(V, V) the set of all G-gradient Ω-admissible pairs, and put MG
∇ := ∪V MG

∇(V, V).
In an obvious way, one can define a G-gradient Ω-admissible homotopy between two G-gradient
Ω-admissible maps.

The notion of equivariant gradient degree we consider here was defined originally by K. Gȩba [12].
We use an axiomatic approach here adapted from [8].
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Theorem 4. There exists a unique map deg∇G : MG
∇ → U(G), which assigns to every (∇ϕ, Ω) ∈ MG

∇ an
element deg∇G (∇ϕ, Ω) ∈ U(G):

∇G deg( f , Ω) = ∑
(Hi)∈Φ(G)

nHi (Hi),

satisfying the following properties ((Hi) are generators of the Euler ring, and nHi are integer coefficients that
may be nonzero only if the orbit type (Hi) is present in the representation V):

1. (Existence) If deg∇G ( f , Ω) 6= 0, i.e., there is a nonzero coefficient nHi , then ∃x ∈ Ω such that ∇ϕ(x) = 0
and (Gx) ≥ (Hi).

2. (Additivity) Let Ω1, Ω2 be two disjoint, open, G-invariant subsets of Ω and∇ϕ−1(0)∩ (Ω) ⊂ Ω1 ∪Ω2. Then:

deg∇G (∇ϕ, Ω) = deg∇G (∇ϕ, Ω1) + deg∇G (∇ϕ, Ω2).

3. (Homotopy) If ∇vΨ : [0, 1]×Ω→ V is an admissible gradient G-equivariant homotopy, then:

deg∇G (∇vΨt, Ω) = constant.

4. (Normalization) Let ϕ ∈ C2
G(V,R) be a special Ω-Morse function such that

(∇ϕ)−1(0) ∩Ω = G(v0) and Gv0 = H. Then,

deg∇G (∇ϕ, Ω) = (−1)m−(∇2 ϕ(v0)) · (H),

where “m−(·)” stands for the total dimension of eigenspaces for negative eigenvalues of a (symmetric
Hessian) matrix.

5. (Multiplicativity) For all (∇ϕ1, Ω1), (∇ϕ2, Ω2) ∈ MG
∇,

deg∇G (∇ϕ1 ×∇ϕ2, Ω1 ×Ω2) = deg∇G (∇ϕ1, Ω1) ? deg∇G (∇ϕ2, Ω2),

where the multiplication “?” is taken in the Euler ring U(G).
6. (Suspension) If W is an orthogonal G-representation and B an open bounded invariant neighbourhood of

0 ∈W, then:
deg∇G (∇ϕ× IdW , Ω×B) = deg∇G ( f , Ω).

7. (Hopf property) Assume that B(V) is the unit ball of an orthogonal G-representation V, and for
(∇ϕ1,B(V)), (∇ϕ2,B(V)) ∈ MG

∇, one has:

deg∇G (∇ϕ1, B(V)) = deg∇G (∇ϕ2, B(V)).

Then, ∇ϕ1 and ∇ϕ2 are G-gradient B(V)-admissible homotopic.

Let us remark that in the case of the trivial action of G, the above degree reduces to the classical
Brouwer degree, as well as the usual non-gradient G-equivariant degree (comp. [8]). This follows from
the celebrated A. Parusiński theorem (see [24]), which says that every two gradient maps that are
B(V)-admissible homotopic are also gradient B(V)-admissible homotopic. However, this is no longer
true for equivariant maps.

Example 2. Take V = C with the natural S1-action. Clearly, Φ = Id and Ψ = −Id are S1-equivariant. Moreover,
h(t, z) = eiπtz is a B(V)-admissible S1-equivariant homotopy between Φ and Ψ. Clearly, this homotopy is not a
gradient. Moreover, it follows from [11] that such a gradient S1-equivariant homotopy does not exist.
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Since the equivariant gradient degree satisfies the Hopf property with respect to gradient
G-homotopies, as well as the ordinary equivariant degree with respect to equivariant homotopies,
the gradient degree is more delicate homotopy invariant.

The ordinary equivariant degree for multivalued convex-valued u.s.c. maps was defined in [7] by
means of the equivariant version of the Cellina approximation theorem (see [6]). The approximation
results from the previous section enable us to develop the equivariant degree theory in quite an
analogous way.

Let V be a finite dimensional orthogonal representation of a compact Lie group G, and let Ω be an
open, bounded G-invariant subset of V. Let f : V → R be a locally Lipschitz G-invariant map such that
its Clarke’s generalized gradient ∂ f : V → V is Ω-admissible, i.e., 0 6∈ ∂ f (x) for x ∈ bd Ω. Since the
map ∂ f is u.s.c., the image of the boundary ∂ f (bd Ω) is compact, and its distance from zero is positive.
The same is true for a sufficiently fine neighbourhood of bd Ω. Thus, there exists an ε0 > 0 such that for
every 0 < ε < ε0, each ε-WT-approximation of ( f , ∂ f ) is Ω-admissible. Moreover, Theorem 3 assures
that there exists a smaller δ > 0 such that all δ-approximations are Ω-admissible homotopic by a linear
homotopy. Take such a small δ.

Definition 5. We define the equivariant degree of Ω-admissible pair ( f , ∂ f ) as follows:

deg∇G (( f , ∂ f ), Ω) := deg∇G (∇g, Ω),

where (g,∇g) is a δ-WT-approximation (with g being G-invariant) of ( f , ∂ f ).

The properties of the degree are consequences of Theorem 4. The first three of them are the most
important for applications. Properties 1 and 2 are quite straightforward. The homotopy property needs
some comment. Recall that the generalized gradient of a locally Lipschitz map is a multivalued u.s.c.
map with convex compact values. Considering homotopies as continuous families of maps, we need
here a stronger regularity than the u.s.c. property, which may admit quite a rapid change of values.

Definition 6. A gradient G-homotopy is a pair ( ft, ∂ ft), where ft : V → R are locally Lipschitz G-invariant
maps and the family of maps ∂ ft : V → V is continuous with respect to t ∈ [0, 1], as well as the family ft.

Observe that in the most popular case of linear homotopy ft(x) = t f1(x)+ (1− t) f2(x), the Clarke
gradient with respect to the x variable satisfies the condition:

∂ ft(x) ⊂ t∂ f1(x) + (1− t)∂ f2(x).

In some cases, an equality holds, e.g., if at least one of the fi is of class C1, or if both of them are
convex functions.

Theorem 5. Let the linear homotopy of locally Lipschitz maps ft(x) = t f1(x) + (1− t) f2(x) be Ω-admissible,
and let the condition ∂ ft(x) = t∂ f1(x) + (1− t)∂ f2(x) be satisfied for all x and t ∈ [0, 1]. Then:

deg∇G (∇vΨt, Ω) = constant.

Proof. The proof is similar to the proof of Theorem 3. For all x ∈ X, ∂ fi(·) (i = 1, 2) are upper
semicontinuous (1) at x, so we can apply Definition 3 with a given ε and obtain an appropriate δ(x).

Let δ(x) < |x| and δ(0) = δ0 > 0. Then, x → 0⇒ δ(x)→ 0.
For all x ∈ X, we have that x′ ∈ B(x, δ(x)) implies ∂ fi(x′) ⊂ Bε(∂ fi(x)) and {B(x, δ(x))}x∈X is

an open covering of X. We can choose a finite subcovering:

η = {Ox1 , Ox2 , ..., Oxn} , where Oxk = B(xk, δ(xk)).
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Let l > 0 be a Lebesgue number for the covering η, i.e.,:

‖x′ − x′′‖ < l ⇒ ∃i∈{1,2,...,n} x′, x′′ ∈ Oxi = B(xi, l)

and let δ = 2 min{l, 1
2 ε}.

Fix x ∈ X = Ω, and suppose that (g1,∇g1), (g2,∇g2) ∈ C∞(Rn) are WTδ
2
-approximations of

( f1, ∂ f1), ( f2, ∂ f2), respectively. Then, we have:{
| f1(x)− g1(x)| ≤ δ

2
∃x̃∈X ‖x̃− x‖ < δ

2 and ∇g1(x) ∈ B δ
2
(∂ f1(x̃)) , (5)

{
| f2(x)− g2(x)| ≤ δ

2
∃x̄∈X ‖x̄− x‖ < δ

2 and ∇g2(x) ∈ B δ
2
(∂ f2(x̄)) , (6)

and:
∇gt(x) = t∇g1(x) + (1− t)∇g2(x).

Then, from (5) and (6), we get:

| ft(x)− gt(x)| = |t f1(x) + (1− t) f2(x)− tg1(x)− (1− t)g2(x)| ≤
≤ t| f1(x)− g1(x)|+ (1− t)| f2(x)− g2(x)| < δ

2 < ε.

From (5) and (6), we have:

‖x̃− x̄‖ ≤ ‖x̃− x‖+ ‖x− x̄‖ ≤ δ

2
+

δ

2
= δ,

so:

∃i∈{1,2,...,n} x̃, x̄ ∈ Oxi ⊂ B
(

xi,
δ

2

)
. (7)

We can use the upper semicontinuity of ∂ f j in xi:

∀ε>0∃δ>0 ∀x′∈X‖x′ − x‖ < δ⇒ ∂ f j(x′) ⊂ B ε
2
(∂ f j(x))

for points x̃, x̄:
∂ f1(x̃) ⊂ B ε

2
(∂ f1(xi))

∂ f2(x̄) ⊂ B ε
2
(∂ f2(xi))

Now, we have:

∇gj(x) ∈ B δ
2

(
∂ f j(x̃)

)
⊂ B δ

2

(
B ε

2

(
∂ f j(xi)

))
⊂ Bε

(
∂ f j(xi)

)
, j = 1, 2.

This means that there exist y1 ∈ ∂ f1(xi), y2 ∈ ∂ f2(xi) such that:

‖∇g1(x)− y1‖ < ε, ‖∇g2(x)− y2‖ < ε.

Therefore:
‖∇gt(x)− (ty1 + (1− t)y2)‖ < ε

and ty1 + (1− t)y2 ∈ ∂ ft by our assumption. Thus:

∇gt(x) = t∇g1(x) + (1− t)∇g2(x) ∈ Bε (∂ ft(xi)) .
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Finally, from (5) and (7), we have:

‖x− xi‖ ≤ ‖x− x̃‖+ ‖x̃− xi‖ <
δ

2
+

δ

2
< δ < ε.

This ends the proof.

The above theorem is satisfactory in many applications. In particular, the Hopf property follows
from this weak version of the homotopy property.

Theorem 6. Assume that Ω = B(V) is the unit ball of an orthogonal representation V and ( f1, ∂ f1), ( f2, ∂ f2))

are Ω-admissible pairs such that:

deg∇G (( f1, ∂ f1), Ω) = deg∇G (( f2, ∂ f2), Ω).

Then, the pairs are Ω-admissible homotopic.

Proof. It is enough to observe that if we choose a δ-WT-approximation (g,∇g) of ( f , ∂ f ) defining the
equivariant degree, then the linear formula:

ft(x) = tg(x) + (1− t) f (x)

defines an Ω-admissible homotopy satisfying the assumptions of Theorem 5. Therefore, we apply this
to both pairs. Now, we can apply the Hopf property for smooth maps ∇gi, i = 1, 2. The transitivity
property of the homotopy relation for single-valued maps ends the proof.

We are ready to prove the full homotopy property now.

Theorem 7. Let ( ft, ∂ ft), t ∈ [0, 1] be an Ω-admissible gradient G-homotopy. Then:

deg∇G (( f0, ∂ f0), Ω) = deg∇G (( f1, ∂ f1), Ω).

Proof. First, we observe that because of the continuity of the homotopy with respect to t ∈ [0, 1],
for each ε > 0 and every fixed t, there exist a δ(t) > 0 and a Whitney approximation (gt,∇gt) of ( ft, ∂ ft),
which is also an ε-Whitney approximation of ( fτ , ∂ fτ) for τ ∈ [t− δ(t), t + δ(t)]. Therefore, (gt,∇gt)

is linearly homotopic to ( ft−δ, ∂ ft−δ), as well as to ( ft+δ, ∂ ft+δ). Thus, by Theorem 5, the gradient
degree is constant in the interval [t− δ(t), t + δ(t)]. Now, we consider the open covering of [0, 1] by
the intervals (t− δ(t), t + δ(t)) (for t = 0, 1, we put half-open intervals). We find a finite subcovering
and apply the transitivity of the homotopy property to finish the proof.

3. Discussion and Conclusions

The main technical result of this paper is contained in Theorem 2. It says that for a symmetric
(G-invariant, where G acts orthogonally on Rn) and locally Lipschitz function f : Rn → R, there exists
an arbitrarily fine smooth and G-invariant uniform approximation g of f such that the gradient ∇g
is a graph approximation of Clarke’s generalized gradient ∂ f . This is the equivariant version of the
result from [19]. It is known that a version of the Whitney smooth approximation theorem is valid not
only in finite-dimensional spaces, but also in Hilbert spaces. However, the presented proof does not
work in infinite dimensions because it uses the compactness of closed balls. Moreover, the generalized
Clarke gradient is only a weakly upper semicontinuous map with bounded closed values in general.
Thus, it as an open question if a similar approximation theorem is true in general (it is also an open
problem in the non-equivariant case).

As an application, we developed a gradient equivariant degree theory for the class of set-valued
equivariant maps, which are generated by locally Lipschitz potentials together with the Hopf-type

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Mathematics 2020, 8, 1262 13 of 14

classification theorem. It should be mentioned that thanks to our approximation theorem, the classes
of homotopy equivalence of such maps can be represented by smooth equivariant gradient maps,
and these are different from the usual equivariant homotopy classes.

Further applications into nonlinear analysis are expected, for example some multiplicity results for
Hamiltonian systems as those considered for C2-maps in [8,16] and some references therein. By means
of an infinite-dimensional extension of our degree theory by Leray–Schauder-type finite-dimensional
approximations, we can expect similar results under a bit weaker smoothness assumptions. In search of
periodic solutions for differential equations (inclusions), a natural action of the group S1 is considered
besides some additional spatial symmetries as one can see in the book [4] and the references therein.
Compact multivalued perturbations of the identity operator in a Hilbert space will be considered,
as well as perturbations of some unbounded self-adjoint operators (comp. [20]). We treat our paper as
the preliminary step towards this direction.
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12. Gȩba, K. Degree for gradient equivariant maps and equivariant Conley index. In Topological Nonlinear

Analysis II (Frascati), of Progr. Nonlinear Differential Equations Appl.; Matzeu, M., Vignoli, A., Eds.; Birkhäuser:
Boston, MA, USA, 1997; Volume 27, pp. 247–272.

13. Balanov, Z.; Krawcewicz, W.; Nguyen, M.L. Multiple solutions to symmetric boundary value problems for
second order ODEs: Equivariant degree approach. Nonlinear Anal. 2014, 94, 45–64. [CrossRef]
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19. Ćwiszewski, A.; Kryszewski, W. Approximate smoothings of locally Lipschitz functionals. Boll. Della Unione

Mat. Ital. B 2002, 2, 289–320.
20. Bartłomiejczyk, P.; Kamedulski, B.; Nowak-Przygodzki, P. Topological degree for equivariant gradient

perturbations of an unbounded self-adjoint operator in Hilbert space. Topol. Appl. 2020, 275, 107037.
[CrossRef]

21. Bredon, G. Introduction to Compact Transformation Groups; Academic Press: New York, NY, USA, 1972.
22. Tom Dieck, T. Transformation Groups; Walter de Gruyter: Berlin, Germany, 1987.
23. Górniewicz, L. Topological Fixed Point Theory of Multivalued Mappings; Kluwer Academic Publishers:

Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1999.
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