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assumes a polymer matrix where both shear and transverse factors coexist. The bending equations 

are obtained by using the Hamiltonian principle. In order to apply the quantum effects for the 

nanosystem, the well-known nonlocal theory of Eringen is simply assumed, while checking for its 

numerical accuracy. A physically-consistent analysis of the nanostructures would investigate 

possible surrounding effects. Thus, the thermal and humidity influence is accounted for the 3D 

problem, whose governing equations are solved through a semi-analytical polynomial method 

(SAPM), as recently proposed in literature for different applications. The proposed method is 

based on a simple procedure with very accurate numerical outcomes, whose performance is 

checked against the available literature. After computing the deflection relations, a systematic 

study is performed for the bending response of nanoporous FGMs in a hygro-thermal 

surrounding environment, with promising results for practical applications. 
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        Symbols 

 , ,U x  y z : Displacement function of the plate along x direction 

 , ,V x  y z : Displacement function of the plate along y direction 

 , ,W x  y z : Displacement function of the plate along z direction 

 , ,u x  y z : Nodal kinematic displacement of the plate along the x axis 

 , ,v x  y z : Nodal kinematic displacement of the plate along the y axis 

 , ,w x  y z : Nodal kinematic displacement of the plate along the z axis 

 denote the variational form of the strain energy 

z: A coordinate for the thickness changes 

 Thermal expansion coefficient

T : Variation of temperature concentration

H : Variation of moisture concentration

  : Variational form of the external work 

,x yL L : Length and width of the plate

pk : In-plane effects of the polymer foundation 

e0: Depends on the type of material 

T : Variational form of the kinetic energy 

 , , ,ij i j x y z  : Tensor of mechanical stresses 

mE : Young’s modulus for the metal phase

cE : Young’s modulus for the ceramic phase 

wk : Transverse effect of the polymer foundation 

 : Hygral expansion coefficient

L: Local analysis 

NL: Nonlocal analysis 

μ: Nonlocal parameter 

xx : Axial strain along x axis

yy : Axial strain along y axis

zz : Transverse strain along z axis

xy : Shear strain in x-y plan

yz : Shear strain in y-z plan

xz : Shear strain in x-z plan

a : A length scale 

h: Plate's thickness 

g: Grading index 

qz: Transverse loading 

t : Time variable 

1. Introduction

In the last decades the increased adoption of functionally graded materials (FGMs), has been 

mainly related to the gradual reduction of the internal thermal stresses of materials at high 

temperatures. Differently from classical composite materials with distinct substrates and sudden 

variations of properties, a functional variation of material properties is ensured in FGMs, such as 

thermal resistance, thermal conductivity and coefficient of thermal expansion. An abrupt change in 

the coefficient of thermal expansion throughout a joint (interface of two layers) leads to a 

meaningful internal thermal stress at high temperatures that could lead to the interfacial collapse 

[1]. In 1988, the basic concept of FGMs was developed to reduce thermal stresses within materials, 

and the well-known FGMs association was established in Japan [2], focusing on layered materials 

(i.e. structural materials, biomaterials, semiconductor and conductive materials) with continuously 

and gradually changing properties [2]. 

In a context where the scientific community reveals an increased attention to nanoscience and 

nanotechnology as new form of manufacturing materials, while controlling and manipulating their 

structural units at nanoscale levels, FGMs have been successfully applied for many practical 

applications [3]. In fact, a functional nanoscale material includes the beneficial properties of 

nanostructures and functional grading materials. Among the recent studies from the literature on 

the mechanical response of FGMs, Dastjerdi and Akgöz [4] analyzed the statics and dynamics a 

macro/nano functional grading thick plates embedded in a thermal surround based on an exact 

three-dimensional theory of elasticity. The nonlocal theory of elasticity was employed to capture 

nanoscale effects, whereby a SAPM was applied to compute the structural deflection. Based on the 

application of a three-dimensional approach, the thermal environment was found to yield a 

structural deflection even after the removal of the external mechanical load. On the other hand, 
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plate theories that do not account for the transverse static load, the thermal environment does not 

affect the mechanical response, such that deflections maintain equal to zero. An interesting 

analytical study of the stability response for nanoporous FGMs with even and uneven porosity 

distributions, was proposed by Malikan et al. [5] based on the nonlocal theory of Eringen, whose 

solutions were found by means of the volume integrals. In a further work by Ansari et al. [6], the 

three-dimensional elasticity was combined to the nonlocal continuum approach to check for the 

natural frequencies of graded nanosheets embedded in a polymer foundation, and solved the 

problem numerically through the generalized differential quadrature method. Moreover, Malikan 

et al. [7] proposed a modified version of the Timoshenko beam theory to examine the transient 

behavior of viscoelastic nanotubes, which was verified in its efficiency by means of a comparative 

evaluation with the available literature. Brischetto [8] derived a novel three-dimensional 

formulation for the study of the static behavior of single and multi-layer plates and shells. The 

problem was solved numerically for simply-supported structures by means of the exponential 

matrix method. Similar problems were explored by Ansari et al. [9] for functionally graded (FG) 

nonlocal plates under a static and dynamic loading, while applying successfully the differential 

quadrature technique, whose efficiency has been largely verified in many recent works, see [10-13], 

among others. 

Dastjerdi et al. [14] presented a novel approach for the static study of double-layered conical 

nanopanels including the presence of the van der Waals interactions, modeled as nonlinear springs. 

In some further works, the same authors applied the first-order shear deformation theory [15,16] or 

a higher-order shear deformation theory [17] to analyze the structural local and nonlocal behavior 

of annular sector sheets. In line with the previous works, Salehipour et al. [18] solved the static 

problem of FG micro and nanosheets, where a polymer substrate was fixed under the plate and a 

modified couple stress method was employed to account for the length scale effects on the 

structural behavior. 

In the context of coupled thermo-mechanical problems many works have been treated 

numerically or computationally by the scientific community for nanostructures with different 

geometries.   Alibeigloo [19] analyzed numerically the thermoelastic response of a sandwich plate 

made of a FG core, and subjected to a thermal shock, based on the Fourier series expansions.  

Possible effects of porosities on the thermomechanical response of plates can be found in [20], 

where the structure was immersed in a thermal surround, whereby in another work, Dastjerdi et al. 

[21] showed the influences of vacancy in graphene nanoplates subjected uniformly to a transverse

static load. Other coupled thermo-mechanical studies of multilayered sheets and structures with

different geometries can be found in [22-24], whereby Wang [25] accounted for the possible

exposure of porous FG structures to an electrical field, and its effect on their frequency response.

In this last work, the nonlocal elasticity approach was combined with the first-order shear 

deformation theory, and the differential quadrature technique was applied to solve the equations of 

the problem. In addition, Jouneghani et al. [26] analyzed the thermo-hygro elastic behavior of a 

nonlocal FG beam subjected to in-plane forces. Malikan et al. [27] focused on the vibration of 

nanotubes in an external damping condition and a thermal environment. The thermo-vibrational 

equations of the problem were derived based on a novel beam theory in conjunction with a higher-

order nonlocal strain gradient theory. Fares et al. [28] investigated the free vibration and bending 

response of a FG shell with a doubly-curved geometry modeled through a multiple stratification. 

An enhanced layerwise theory was also used to drive the energy formulation. A different numerical 

tool based on a meshless method was applied by Sator et al. [29] for the thermoelastic study of FGM 

plates under a static loading condition. Higher-order nonlocal strain gradient theories involving 

different length scales were applied in [30, 31] for the study of the excited frequencies and critical 

stability loads under coupled electro-magnetic conditions. The first example of a viscoelastic 

nanoplate with a corrugated geometry was explored by Malikan et al. [32], where a vibrational 

problem was tackled trough a nonlocal strain gradient model and solved analytically according to 
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the Navier technique. Additional works on the topic can be found in [33-40] for different structural 

analyses of nanostructures and external conditions. 

As far as the three-dimensional elasticity analysis of nanostructures is concerned, different 

semi-analytical approaches, mixed formulations, and/or numerical methods have been adopted in 

literature to tackle the problem, see refs. [41-45], among others. More specifically, Lomte Patil et al. 

[42] solved three-dimensional elasticity relations by comparing several advanced approaches 

available from the literature. Dastjerdi and Jabbarzadeh [43] applied the nonlocal theory of Eringen 

for the structural study in static conditions of a double-layered rectangular graphene nanoplate in a 

continuum schema. The differential quadrature method and the SAPM were validated by the 

authors against the literature for several boundary conditions of the nanostructures. In the 

additional works by Dastjerdi et al. [44-46], different single-layer [44], bilayer [45] and multi-layer 

[46] annular/circular nanosheets on an elastic foundation were explored under a static transverse 

uniform loading, while employing the first-order shear deformation theory in conjunction with the 

nonlocal theory of Eringen. Possible effects on the mechanical behavior of nanostructures has been 

also studied in [47-52], always by involving combined versions of the nonlocal strain gradient 

model. More in detail, in Ref. [47] the dynamic stability of graphene sheets located on a visco-elastic 

medium was studied by using the neperian frequencies, while in [48] the three-dimensional 

elasticity problem was approached by means of the nonlocal theory of strain gradient theory in 

order to study an anisotropic FG spherical sample. She et al. [49] determined the natural frequencies 

and nonlinear static deflections of FG nanobeams by means of a nonlocal theory of strain gradient 

formulation. Ahmed Hasan and Kurgan [50] predicted critical buckling loads for FGM plate in the 

skew form while the plate was embedded in the Winkler matrix. A new study on the fullerene was 

done by Dastjerdi and Akgöz [51], in which a static bending analysis was conducted by a nonlocal 

model and solved with respect to the SAPM method. 

To a large extent, a smart nanomachine’s application depend on its nano parts, e.g. 

multifunctional sensors, actuators and etc. Piezoelectric sensors of nanomachines require large 

deformations to generate an appreciable electric voltage [53]. Electric voltage can be produced by 

strains as a result of transverse deflection. However, negligible electricity will be created by simple 

bending of a nano sensor. In light of the fact that poling direction in electromechanical sensors is 

same with the thickness direction according to the transverse electric field, any extra deformation 

plays vital role in generating electricity. The case is simple, let us divide the thickness into two 

sections, upper than mid-plan and lower than it. Hence, polarization in the upper section of 

thickness due to tension will cancel the polarization in the lower section due to compression. 

Therefore, thickness’s changes of the nano piezoelectric sensor lead to unsymmetrical deformation 

in the sensor and then can make it more efficient due to more capability of sensor to emergence 

stronger electric field. So, understanding both transverse deflection of a nano part beside its 

thickness variations will let us to design more precise these momentous smart parts. Although, this 

research does not consider a piezoelectric nano part, the effect of deformation in thickness of a 

functional nano part would be exhibited whilst deflections in all surfaces of thickness can be 

observed.  

Based on the above-mentioned literature, however, there is a general lack of attention to the 

possible effect of porosity on the three-dimensional elasticity analysis of composite nanoplates. This 

aspect is herein explored, while proposing a novel three-dimensional elasticity analysis and a 

nonlocal continuum theory, accounting for small scale effects. To this end, a moderately thick 

nanoplate FGM with porosity is considered, immersed in a hygro-thermal environment, including 

possible further effects related to the moisture and temperature parameters. The system is bridged 

on a two-parameter polymeric medium. To solve the problem, the SAPM is successfully employed 

as already proposed by the same authors in the previous literature for different applications. A 

large parametric study investigates the sensitivity of the three-dimensional bending response of 

porous nanoplates for several interior factors, i.e. nonlocality, length scale parameter, porosity, and 

hygrothermal impact. The work is organized as follows. Section 2 describes the mathematical 
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problem, for which a SAP solution is proposed in Section 3. Section 4 illustrates the numerical 

results from a large parametric investigation, and some remarkable conclusions are discussed 

finally in Section 5. 

2. Mathematical modelling

Let us consider a nano porous FG rectangular sheet (see Figure 1) with in-plane dimensions 

xL , yL along the x , y directions, respectively, and thickness h . Three-dimensional partial

differential elastic equations of a similar problem, are challenging and costly to be solved, such that 

bi-dimensional theories are usually preferred by engineers and mathematicians in literature.  

By considering the strain variation along the thickness leads to more accurate results, 

especially for moderately thick sheets, where numerical errors could be reduced especially in 

presence of coupled problems. In this context, the key point of the present research is to examine 

through-the-thickness strain variation, by proposing an accurate three-dimensional approach, while 

limiting the numerical cost. Based on the three-dimensional elasticity approach, the displacement 

field is assumed as [4-5] 

   

   

   

, , , , ,

, , , , ,

, , , , ,

U x y z t u x y z

V x y z t v x y z

W x y z t w x y z







(1a-c) 

in which  , ,U x  y z ,  , ,V x  y z and  , ,W x  y z  are the displacement functions of the plate along x, 

y and z directions, and  , ,u x  y z ,  , ,v x  y z  and  , ,w x  y z refer to the nodal kinematic 

displacement of the plate along the mentioned axes. These kinematic variables depend on the grid 

points locations, with the distribution represented in Figure 2. Furthermore, t  exhibits the time 

variable in a dynamic analysis. Applying strains of Lagrangian on Equations (1) and based on the 

variational energy and minimizing the total potential energy of the system, the actual three-

dimensional displacement field yields to the following governing equations (see Ref. [5]), for which 

a very hard solving process would be required. It should be noted that the nonlinear terms (e.g. 

xz w

z x

 

 
in Eq. (2c)) are considered in obtained governing equations. Nonlinear analysis gives

more accurate results specially for large deformations. However, the number of calculations 

increases dramatically which is challenging in solution process. Neglecting nonlinear terms (in Eq. 

(2c)) can be possible for small and moderate deformations such as buckling analysis. 

0
xyx xz

x y z

  
  

  
(2a) 

0
xy y yz

x y z

    
  

  
(2b) 

2

2 2 2 2 2

2 2 2

1 1 2

2 2  1 0

yz yzxz xz
xz

z
yz x y xy z

w w w w w

x z z x y z z y x z

w w w w w w

y z x y z zx y z

  



    

         
        

            

      
        

         

(2c) 

in which  , , ,ij i j x y z  represents the tensor of mechanical stresses. However, according to a 

quasi-three-dimensional elasticity field, as proposed in this work, the solution procedure would be 

much easier, since grid points distribution refers to a bi-dimensional domain. Thus, the equilibrium 

relations would be derived starting with the following definition of the kinematic field 
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             

             

             

2 3 4 5
1 2 3 4 5 6

2 3 4 5
1 2 3 4 5 6

2 3 4 5
1 2 3 4 5 6

, , , , , ,

, , , , , ,

, ,

, ,

, , , , , , , ,

u x y zu x y z u x y z u x y z u x y z u x y

v x y zv x y z v x y z v x y z v x y z

U x  y z

V x  y z v x y

W w x y zw x y z w x y z w x y z w x y z w x yx  y z

     

     

     

(3a-c) 

in which z symbolizes a coordinate for the thickness changes. Also, the strain field can be formulated as 

follows 

; ;

1 1 1
; ;

2 2 2

  
  
  

         
         

          

xx yy zz

xz xy yz

U V W

x y z

U W U V V W

z x y x z y

  

  

(4a-f) 

By combination of Equations (3) and (4) we get 

2 3 4 53 5 61 2 4
xx

u u uu u u
z z z z z

x x x x x x


    
     
     

(5a) 

2 3 4 53 5 61 2 4
yy

v v vv v v
z z z z z

y y y y y y


    
     
     

(5b) 

2 3 4
2 3 4 5 62 3 4 5zz w zw z w z w z w      (5c) 

2 3 4 53 5 61 2 4

2 3 4 53 5 61 2 4

xy

v v vv v v
z z z z z

x x x x x x

u u uu u u
z z z z z

y y y y y y


    

     
     

    
     
     

(5d) 

2 3 43 51 2 4

5 2 3 46
2 3 4 5 62 3 4 5

xz

w ww w w
z z z z

x x x x x

w
z u zu z u z u z u

x


   

    
    


     



(5e) 

2 3 43 51 2 4

5 2 3 46
2 3 4 5 62 3 4 5

yz

w ww w w
z z z z

y y y y y

w
z v zv z v z v z v

y


   

    
    


     



(5f) 

As far as the hygro-thermal surround is concerned, the mechanical strain field should be combined 

with thermal and hygral ones as follows [31],  

:    
 

Hygralmech Thermal
ij ijkl kl kl klC    (6) 

and 

Thermal T   (7a) 
Hygral H   (7b) 

 and  being the thermal and hygral expansion coefficients. In addition, T and H  in 

Equations (7) refer to the variation of temperature and moisture concentration, respectively [31]. 

In this paper, a FG nanoplate is assumed, whose thermoelastic material properties vary as [4-5] 

   
1

2

g

m c m

z
E z E E E

h

 
    

 
(8a) 
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    
1

2

g

m c m

z
z

h
   

 
    

 
 (8b) 

where mE  and cE  stand for the Young’s modulus for the metal and ceramic phase, h is the plate's 

thickness. The Poisson’s ratio is assumed that to be constant along the z direction, because of its 

meaningless variation in that direction. The index g  in the Equation (8) refers to the material 

grading index, which assumed a null value, i.e. 0g  , for a pure ceramic, whereas g  , for a 

pure metal. 

Porosity yields a different response for the model proposed in [5], such that it is highly 

recommended to take into account such manufacturing defect, for an appropriate estimation of the 

mechanical behavior especially in presence of FG material properties. Thus, the Young’s modulus 

for FG plates with even or uneven porosities takes the following form [5] 

      
1

2 2

g

m c m c m

z
E z E E E E E

h

 
      

 
 (9a) 

      
21

1
2 2

g

m c m c m

zz
E z E E E E E

h h

   
        

   

 (9b) 

in which   denotes the type of porosities distribution.  

In this paper, the governing equations and boundary conditions of the problem have been 

derived based on the principle of minimum potential energy. According to the Hamiltonian law, 

the variation of the potential energy F must be zero, namely 

  
0

0
t

F T dt     (10) 

where   , T  and   denote the variational form of the external work, the kinetic energy (equal 

to zero because of the static analysis here is considered), and the strain energy. The bending 

problem is defined as reported in what follows.  

First, we define the strain energy in a virtual form as 

   0        xx xx yy yy zz zz xy xy xz xz yz yz

v

dxdydz              (11) 

By using Equations (5) and (11), the energy formulation can be written as below 

2 3 4 53 5 61 2 4

2 3 4 53 5 61 2 4

2 3 4
2 3 4 5 6

2 331 2

2 3 4 5

      
              

     
      

      

     
 

  
   

  

 xx

V

yy

zz

xy

u u uu u u
z z z z z

x x x x x x

v v vv v v
z z z z z

y y y y y y

w z w z w z w z w

vv v v
z z z

x x x

    
 

    


     

  
 4 55 64 1 2   

        

v v u u
z z z

x x x y y

   
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2 3 4 5 23 5 6 34 1 2

3 4 5 2 3 45 64
2 3 4 5 6

2 3 4 53 5 61 2 4

2
2 3

2 3 4 5

2 3

     
             

 
        
  

    
    

     

  

xz

yz

u u u wu w w
z z z z z z

y y y y x x x

w ww
z z z u z u z u z u z u

x x x

w w ww w w
z z z z z

y y y y y y

v z v z

     


 
    

    


  3 4
4 5 64 5 0  


v z v z v dxdydz  

(12) 

where the stress resultants can be defined as 

   2

2

, , , , , , , , , ,



 

h

xx yy zz xy xz yz xx yy zz xy xz yzh
N N N N N N dz      (13a) 

   2

2

, , , , , , , , , ,



 

h

xx yy zz xy xz yz xx yy zz xy xz yzh
M M M M M M zdz      (13b) 

    22

2

, , , , , , , , , ,



 

h

xx yy zz xy xz yz xx yy zz xy xz yzh
P P P P P P z dz      (13c) 

    32

2

, , , , , , , , , ,



 

h

xx yy zz xy xz yz xx yy zz xy xz yzh
H H H H H H z dz      (13d) 

    42

2

, , , , , , , , , ,



 

h

xx yy zz xy xz yz xx yy zz xy xz yzh
Y Y Y Y Y Y z dz      (13e) 

    52

2

, , , , , , , , , ,



 

h

xx yy zz xy xz yz xx yy zz xy xz yzh
S S S S S S z dz      (13f) 

Thus, Equation (12) can be formulated by considering the stress resultants as follows 

3 5 61 2 4

3 5 61 2 4

2 3 4 5 6

1

2 3 4 5

      
              

     
      

      

     
 

 
 



 xx xx xx xx xx xx

A

yy yy yy yy yy yy

zz zz zz zz zz

xy xy

u u uu u u
N M P H Y S

x x x x x x

v v vv v v
N M P H Y S

y y y y y y

N w M w P w H w Y w

v v
N M

x

    


    

    

  3 5 62 4  
         

xy xy xy xy

v v vv
P H Y S

x x x x x

  

3 5 61 2 4

3 5 61 2 4

2 3 4 5 6

31 2

2 3 4 5

     
     

      

    
          

     


 
  

  

xy xy xy xy xy xy

xz xz xz xz xz xz

xz xz xz xz xz

yz yz yz yz

u u uu u u
N M P H Y S

y y y y y y

w w ww w w
N M P H Y S

x x x x x x

N u M u P u H u Y u

ww w
N M P H

y y y

    

    

    

 



5 64

2 3 4 5 62 3 4 5 0

  
 

  

     


yz yz

yz yz yz yz yz

w ww
Y S

y y y

N v M v P v H v Y v dxdy

 

    

(14) 

The external work related to the transverse loading qz acting on the structure is expressed as [43] 
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       2, , , , , , 0z w p

A

q k W x y z k W x y z W x y z dxdy        (15) 

where wk  and pk  refer to the transverse and in-plane effects of the polymer foundation. After a 

mathematical manipulation, Equation (15) can be expanded as 

 

 

 

 

2 3 4 5
1 2 3 4 5 6

2 2 3 4 5
1 2 3 4 5 6

2 3 4 5
1 2 3 4 5 6

2 2 2
2

2 2 2

0

z w

A

p

q k w zw z w z w z w z w

k w zw z w z w z w z w

w z w z w z w z w z w dxdy

x y z



     

        


     


     

   
        



 (16) 

Substituting Equation (14) and (16) into Equation (10) and after integration by parts, the local 

governing equations can be obtained as 

 1 : 0


 
 

xyxx
NN

u
x y

  (17a) 

 2 : 0


  
 

xyxx
xz

MM
u N

x y
  (17b) 

 3 : 2 0


  
 

xyxx
xz

PP
u M

x y
  (17c) 

 4 : 3 0


  
 

xyxx
xz

HH
u P

x y
  (17d) 

 5 : 4 0


  
 

xyxx
xz

YY
u H

x y
  (17e) 

 6 : 5 0


  
 

xyxx
xz

SS
u Y

x y
  (17f) 

 1 : 0
 

 
 

yy xyN N
v

y x
  (18a) 

 2 : 0
 

  
 

yy xy

yz

M M
v N

y x
  (18b) 

 3 : 2 0
 

  
 

yy xy

yz

P P
v M

y x
  (18c) 

 4 : 3 0
 

  
 

yy xy

yz

H H
v P

y x
  (18d) 

 5 : 4 0
 

  
 

yy xy

yz

Y Y
v H

y x
  (18e) 

 6 : 5 0
 

  
 

yy xy

yz

S S
v Y

y x
  (18f) 
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2 3 4

1 1 2 3 4 5

5 2 3 4
2 2 2 2 2

6 1 2 3 4 5

5
2

6

:
2 2 2 2

2 2 2 2 2

0
2

        
                       

          
                           

 
     

yzxz
z w

p

NN h h h h
w q k w w w w w

x y

h h h h h
w k w w w w w

h
w



(19a) 

2 3 4

2 1 2 3 4

5 6 2 3 4
2 2 2 2

5 6 1 2 3 4

5
2 2

5 6

:
2 2 2 2 2

2 2 2 2 2 2

2 2

          
                          

            
                               

   
   

   

yzxz
zz z w

p

MM h h h h h
w N q k w w w w

x y

h h h h h h
w w k w w w w

h h
w w



6

0

 



(19b) 

2 2 3 4

3 1 2 3

5 6 7 2 3 4
2 2 2

4 5 6 1 2 3

5 6
2 2 2

4 5 6

: 2
2 2 2 2

2 2 2 2 2 2

2 2 2

        
                      

            
                               

    
     

   

yzxz
zz z w

p

PP h h h h
w M q k w w w

x y

h h h h h h
w w w k w w w

h h h
w w w



7

0

    

(19c) 

3 3 4 5

4 1 2 3

6 7 8 3 4 5
2 2 2

4 5 6 1 2 3

6 7
2 2 2

4 5 6

: 3
2 2 2 2

2 2 2 2 2 2

2 2 2

        
                     

            
                               

    
     

   

yzxz
zz z w

p

HH h h h h
w P q k w w w

x y

h h h h h h
w w w k w w w

h h h
w w w



8

0

    

(19d) 

4 4 5 6

5 1 2 3

7 8 9 4 5 6
2 2 2

4 5 6 1 2 3

7 8
2 2 2

4 5 6

: 4
2 2 2 2

2 2 2 2 2 2

2 2 2

        
                     

            
                               

    
     

   

yzxz
zz z w

p

YY h h h h
w H q k w w w

x y

h h h h h h
w w w k w w w

h h h
w w w



9

0

    

(19e) 

5 5 6 7

6 1 2 3

8 9 10 5 6 7
2 2 2

4 5 6 1 2 3

8 9
2 2 2

4 5 6

: 5
2 2 2 2

2 2 2 2 2 2

2 2 2

        
                      

            
                               

   
     

   

yzxz
zz z w

p

SS h h h h
w Y q k w w w

x y

h h h h h h
w w w k w w w

h h h
w w w



10

0
 
    

(19f) 

As far as the Eringen differential nonlocal model is concerned, the following formulation can be 

employed in terms of the stress resultants, where we adopt the superscript L  to define the local 

stress and the superscript NL stands for the nonlocality, 
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 

  

   

2

2

2

0

1

1 , , , , , , , , , ,

, , , , , ,

NL L
ij ij

NL NL NL NL NL NL L L L L L L
ij ij ij ij ij ij ij ij ij ij ij ijN M P H Y S N M P H Y S

i j xx yy zz xy xz yz      e a

  





   



  


 

 (20) 

In Equation (20), μ represents the small scale usually named as nonlocal parameter; e0 depends on 

the type of material and the parameter a  is a length scale [4]. In addition, the local stress resultants 

can be converted into the nonlocal ones by considering the effect of the nonlocal parameter   on 

the governing equations. Based on Equation (20) which relates the nonlocal and local stress 

resultants, after a long mathematical manipulation, here not reported for the sake of brevity, the 

governing Equations (17-19) can be converted into the following final form 

 1 : 0


 
 

xyxx
NN

u
x y

  (21a) 

 2 : 0


  
 

xyxx
xz

MM
u N

x y
  (21b) 

 3 : 2 0


  
 

xyxx
xz

PP
u M

x y
  (21c) 

 4 : 3 0


  
 

xyxx
xz

HH
u P

x y
  (21d) 

 5 : 4 0


  
 

xyxx
xz

YY
u H

x y
  (21e) 

 6 : 5 0


  
 

xyxx
xz

SS
u Y

x y
  (21f) 

 1 : 0
 

 
 

yy xyN N
v

y x
  (22a) 

 2 : 0
 

  
 

yy xy

yz

M M
v N

y x
  (22b) 

 3 : 2 0
 

  
 

yy xy

yz

P P
v M

y x
  (22c) 

 4 : 3 0
 

  
 

yy xy

yz

H H
v P

y x
  (22d) 

 

 
5 5 6

2
6 1 2

7 8 9 10 5 6
2 2

3 4 5 6 1 2

7 8
2 2 2

3 4 5

: 5 1
2 2 2

2 2 2 2 2 2

2 2 2

       
                   

            
                               

     
      

     

yzxz
zz z w

p

SS h h h
w Y q k w w

x y

h h h h h h
w w w w k w w

h h h
w w w

 

9 10
2

6 0
2

 
      

h
w

 (22e) 
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 
4 4 5

2
5 1 2

6 7 8 9 4 5
2 2

3 4 5 6 1 2

6 7
2 2 2

3 4 5

: 4 1
2 2 2

2 2 2 2 2 2

2 2 2

       
                   

            
                               

     
       

     

yzxz
zz z w

p

YY h h h
w H q k w w

x y

h h h h h h
w w w w k w w

h h h
w w w

 

8 9
2

6 0
2

 
     

h
w

(22f) 

 
2

2
1 1 2 3

3 4 5 2
2 2 2

4 5 6 1 2 3

3 4 5
2 2 2

4 5 6

: 1
2 2

2 2 2 2 2

0
2 2 2

     
                

          
                           

     
               

yzxz
z w

p

NN h h
w q k w w w

x y

h h h h h
w w w k w w w

h h h
w w w

 

(23a) 

 
2

2
2 1 2

3 4 5 6 2
2 2

3 4 5 6 1 2

3 4 5
2 2 2 2

3 4 5

: 1
2 2 2

2 2 2 2 2 2

2 2 2

       
                   

            
                               

     
        

     

yzxz
zz z w

p

MM h h h
w N q k w w

x y

h h h h h h
w w w w k w w

h h h
w w w

 

6

6 0
2

 
     

h
w

(23b) 

 
2 2 3

2
3 1 2

4 5 6 7 2 3
2 2

3 4 5 6 1 2

4 5
2 2 2

3 4 5

: 2 1
2 2 2

2 2 2 2 2 2

2 2 2

       
                   

            
                               

     
       

     

yzxz
zz z w

p

PP h h h
w M q k w w

x y

h h h h h h
w w w w k w w

h h h
w w w

 

6 7
2

6 0
2

 
     

h
w

(23c) 

 
3 3 4

2
4 1 2

5 6 7 8 3 4
2 2

3 4 5 6 1 2

5 6
2 2 2

3 4 5

: 3 1
2 2 2

2 2 2 2 2 2

2 2 2

       
                   

            
                               

     
       

     

yzxz
zz z w

p

HH h h h
w P q k w w

x y

h h h h h h
w w w w k w w

h h h
w w w

 

7 8
2

6 0
2

 
     

h
w

(23d) 

 
4 4 5

2
5 1 2

6 7 8 9 4 5
2 2

3 4 5 6 1 2

6 7
2 2 2

3 4 5

: 4 1
2 2 2

2 2 2 2 2 2

2 2 2

       
                   

            
                               

     
       

     

yzxz
zz z w

p

YY h h h
w H q k w w

x y

h h h h h h
w w w w k w w

h h h
w w w

 

8 9
2

6 0
2

 
     

h
w

(23e) 
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 
5 5 6

2
6 1 2

7 8 9 10 5 6
2 2

3 4 5 6 1 2

7 8
2 2 2

3 4 5

: 5 1
2 2 2

2 2 2 2 2 2

2 2 2

       
                   

            
                               

     
      

     

yzxz
zz z w

p

SS h h h
w Y q k w w

x y

h h h h h h
w w w w k w w

h h h
w w w

 

9 10
2

6 0
2

 
      

h
w

(23f) 

The numerical analysis of the thermoelastic response considers several boundary conditions at 

0, 0, ,y xy x y L x L    . For example, CFCF boundary conditions means that the plate is clamped 

at 0, yy L  and free in 0, xx L . Here below a detailed definition of the boundary conditions are 

demonstrated 

1- Clamped (C)

 

 

 

1...6 0 0, ; 0,

1...6 0 0, ; 0,

1...6 0 0, ; 0,

i x y

i x y

i x y

u i   x L y L

v i   x L y L

w i   x L y L

    


   


   

(24) 

2- Free (F)

0

0, : 0

0

0

0, : 0

0

xx xy xy xy xy xy xy

x xx xx xx xx xx

xz xz xz xz xz xz

yy xy xy xy xy xy xy

y yy yy yy yy yy

yz yz yz yz yz yz

N N M P H Y S  

x L  M P H Y S

N M P H Y S

N N M P H Y S  

y L  M P H Y S

N M P H Y S

      


     
      

       


     


     

(25) 

3- Simply-supported

1 1 1 2 3 4 5 6

1 1 1 2 3 4 5 6

0

0, : 0

0

0

0, : 0

0

x xx xy xy xz xz

xx xx xx xx xx

y yy yy yy yy yy

yy xy xy yz yz

u v w w w w w w

x L  N N M N M

M P H Y S

u v w w w w w w

y L  M P H Y S

N N M N M

        


     


    

        


     


    

(26) 

3. Semi-Analytical Polynomial solution

In this work we propose a semi-analytical polynomial solution method (SAPM) to solve the 

system of partial differential equations with any boundary conditions, due to its relative simplicity 

and efficiency. According to the proposed method, a polynomial expression of the kinematic 

unknowns (  , , 1...6i i iu v w i  ) is introduced as follows 
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      
     

      
     

      
     

1 1

1 1 1 1
1 1

1 1

1 1 1 1 6
1 1

1 1

1 1 1 1 12
1 1

1..6

1..6

1..6

N M
k t

i k t k M i M N
k t

N M
k t

i k t k M i M N M N
k t

N M
k t

i k t k M i M N M N
k t

u a x y                   i

v a x y        i

w a x y       i

 

        
 

 

           
 

 

           
 

 

 

 







 (27) 

Please, note that the kinematic variables are ia , for a total number of unknowns equal to 

18 M N  , where N , M  refers to discretization in the x - and y -direction, respectively. More 

specifically, 2 2 4M N   unknowns follow the boundary conditions of the problem, whereas 

  2 2M N   unknowns must be a function of the obtained basic equations (with 

  2 2 2 2 4M N M N M N       ). 

Now, if the total number of equations obtained from boundary conditions ( 2 2 4M N  ) are 

summed up with the governing relations of the problem (   2 2M N  ), we obtain M N  

equations for each kinematic unknown iu . Totally, there are 18 basic equations and 18 variables, 

such that a total number of 18 M N  equations is achieved. A Newton-Raphson scheme is adopted 

to solve numerically this system of algebraic, and determine the functions  , , 1...6i i iu v w i  , which 

define the structural deflection of the plate. 

 

 

4. Numerical examples 

Within a large numerical investigation of the problem, first, we validate the results based on 

our formulation with predictions based on the third-order shear deformation theory (TSDT), and 

computations from the ABAQUS code (see Table 1). The following dimensions and mechanical 

properties are assumed for the plate in Table 1  

 111m; 2m; 1.9 10 Pa; 0.29; 0.1GPax y zL L E q       

Based on a comparative evaluation, the good agreement between our results and those ones 

from ABAQUS confirms the accuracy of our proposed formulation. However, some remarkable 

differences between our results and the TSDT-based results can be noticed for higher values of 

thickness ( 0.5mh  ). The TSDT, indeed, ignores the strain changes along the thickness, and the 

amount of z  is equal to zero, accordingly. In other words, the applied SAPM in combination with 

the proposed displacement field (Equations (3a-c)) gives appropriate results for moderately thick 

rectangular plates. Two further comparative evaluations are presented in Tables 2 and 3 whose 

results are compared with the available literature. In Table 2, it is assumed: 

 

6 6 6

*
xy

18.7 10 ; 1.3 10 ; 0.6 10 ;

9.4nm; 7.75nm; 0.0624nm; 0.3; =

x y xy

x y
x

E E G

w
L L h w

L


     

   
 

where as in Table 3, the following data are considered 

 
6 6 6

xy

2.434 10 ; 2.473 10 ; 1.039 10 ;

9.519nm; 4.844nm; 0.129nm; 0.197

x y xy

x y

E E G

L L h 

     

   
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Both Tables 2 and 3 confirm the efficiency and accuracy of our proposed method. Thus, the 

results obtained in this paper can be used with high level of accuracy especially for moderately 

thick plates for which common plate theories such as CLPT, FSDT and TSDT could not give 

appropriate results. In line with the previous results, Figure 3 examines the rate of convergence of 

results when applying a SAPM solving procedure. For this scope, the double assumption of CCCC 

and CFCF boundary conditions is done. In this case, the plate features the following geometry and 

mechanical parameters:  

A dimensionless thickness-to-length ratio is considered to show the behavior of a thick sheet. 

In the following analysis, a graphene material is considered. The graphs are plotted across the 

thickness of the sheet, for a suitable representation of the 3D elasticity analysis. Differently from a 

two-dimensional elasticity approach for which the maximum deflection occurs at the center of the 

thickness, according to our formulation, the neutral axis shifts toward the upper (+z) levels and 

yields the maximum deflection in the upper layers.  

Based on a comparative evaluation of plots in Figures 3a and b, the rate of convergence is 

smoother for more rigid boundary conditions, although, the results are generally convergent at nine 

points for both boundary conditions. A sharp rise can be noticed, for a CCCC, when a 7x7 and a 9x9 

grid distribution is applied. Since the three-dimensional analysis means a change in thickness of the 

sheet, the dimensionless deflection at the upper surface is higher than the one at the lower surface. 

This is line with the through-the-thickness compression induced at the top surface by the external 

loading, which is added to the overall deflection of the sheet. 

Figure 4 compares the deflection response, as provided by the fifth-order expansion in 

Equations (3a-c), or a third-order three-dimensional displacement field defined below as. 

         

         

         

2 3
1 2 3 4

2 3
1 2 3 4

2 3
1 2 3 4

, , , ,

, , , ,

,

, ,

, ,

, , , , ,

u x y zu x y z u x y z u x y

v x y zv x y z v x y z v x y

W w x y zw x y z w x y z w

U x  y z

V x  y z

x  y z x y

   

   

   

(28) 

Based on Figure 4, it is worth noticing the fast convergence of the solution for a third-order 

expansion, at least for a rigid CCCC boundary condition (see Figure 4a). In this case, indeed, the 

third-order-based results do not differ significantly from the ones provided by a fifth order 

expansion, whereas more flexible CFCF boundary conditions increase significantly the 

discrepancies between the two approaches, such that a third-order expansion would be no longer 

sufficient to guarantee accurate results. This means that the selection of the order of expansion is 

strictly related to the level of constraint of the plate. To study the possible effect of the grading 

index g  in a FGM, Figure 5 plots the kinematic response of a square nanoplate with length 

3nm,x yL L   thickness 1nm,h   and the following mechanical properties: 

201GPa; 602GPa;m cE E  0.25;  1GPa;zq  0 0e a  (see Table 4), under the double assumption 

of CCCC and FCFC boundary conditions. As visible in Figures 5a and b, the deflection of the plate 

increases monotonically for increasing grading indexes, with a similar response for both boundary 

conditions. In both cases, a very fast increase of the deflection can be observed moving from 0g   

up to 5g  , whereas very large values of g reduce their effect on the global deformability of the 

nanoplate. Please, note that, the limit cases of zero index or infinite index refer to the pure 

“ceramic” or “metal” material, for which the highest and lowest structural stiffness is enriched, 

respectively, due to the higher Young's modulus featuring the ceramic material. Please, note also 

that for FGMs, the top surface of the sheet features the maximum deflection, due to its higher 

compression and thickness reduction compared to the other layers. 
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Figure 6 plots the effect of the dimensionless ratio xL h  on the structural deflection of a thick 

plate, according to the proposed three-dimensional elasticity theory. For a moderately thick sheet 

with 2xL h  , the maximum increase of deflection is observed at the top layers of the plate. For 

thinner plates, instead, the reduction in the thickness becomes even more unrecognizable and the 

deflection at upper and lower layers (i.e. for * 0.5z    and * 0.5z  ) maintains almost constant. This 

emphasizes the importance of adopting a three-dimensional elasticity theory for moderately thick 

plates. For the sake of completeness, in Figure 7 we provide a comparative evaluation of the 

kinematic response of a thick plate, according to the current three-dimensional elasticity and the 

classical TSDT. The properties of the plate are assumed as follows: 

2nm; 1nm; 201GPa; 602GPa; 0.25;

9GPa; 1.13GPa/nm; 1.13Pa×m

x y m c

z w p

L L h E E

q k k

     

  
 

As expectable, the TSDT provides a constant deflection along the whole thickness domain of 

the thick plate, whereby the real graduation in the kinematic response along the thickness can be 

captured only when applying our proposed three-dimensional theory. Another interesting aspect is 

related to the effect of the nonlocal parameter on the structural response, which is more pronounced 

in a TSDT compared to our proposed 3D elasticity theory. This is probably due to the nonlocal 

effect in the direction of thickness ( 2 2z  ) which is ignored in plate theories. 

Two different values of the nonlocal coefficient are assumed, namely 0 1 ;e a nm  whereas the 

temperature variation is increased from a null value up to 400°C. As visible in Figure 8, the increase 

in temperature leads to an increased or decreased deflection for positive or negative layers along 

the thickness, respectively. According to the 3D elastic theory, even in absence of a transverse 

mechanical load, we can capture the structural deflection related to the only temperature increase, 

otherwise not visible through classical bi-dimensional plate theories (see, Ref. [4]). This confirms the 

importance of using a three-dimensional elasticity theory and the efficiency of our proposed 

formulation. Another key aspect is the sensitivity of the thermoelastic response to the nonlocal 

coefficient, where an increased nonlocal parameter leads to an increased stiffness of the material 

and a gradual reduction in the plate deflection, for the same fixed temperature variation. In 

addition, the displacement field for points located at the middle surface (i.e. for 0z  ) is visibly 

unaffected by the temperature variation, since it maintains exactly the same for different T  and a 

given value of the nonlocal parameter. Please, note that the nanostructure is initially at a room 

temperature of 27 °C, which is here assumed as reference temperature for further variations within 

the parametric analysis. 

Figure 9 also plots the effect of the environmental humidity on the modeled FGM sheet. To this 

end, moisture variations are considered up to a maximum percentage of 40%. By comparison 

between Figures 8 and 9, the structural deflection is much more affected by moisture than 

temperature, in line with findings by Malikan and Nguyen [31]. 

A small increase in the humidity vary significantly the deformability of the nanostructure, with 

a general increase or decrease of the displacement field for layers located at negative or positive *z -

coordinates, respectively. It is also interesting to note that for a low level of humidity, the *w z  

curves shift downwards for an increased nonlocality, which means that the stiffness increases 

proportionally along the thickness. An interesting comparison between results coming from our 

formulation and a classical TSDT plate theory is shown in Figure 10, for different temperature 

variations. Based on the plots of Figure 10, it is worth observing that the TSDT is quite inaccurate 

for thick or moderately thick plates, since it yields constant displacements independently of the *z -

coordinate and the surrounding temperature. A different monotone variation is predicted by the 

proposed three-dimensional theory along the thickness. 
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A further parametric investigation accounts for the possible effect of uneven or even porosities 

on the structural response of FGM nanoplates, as visible in Figures 11a and b, respectively, where 

we assume the following geometrical and mechanical parameters: 

6 6 o

4nm; 1nm; 201GPa; 602GPa; 10; 0.25; 1GPa

1 1
1.13Pa×m; 12 10 ; 5 10 ; 200C ; 0.33

0.1; 1.13GPa/nm; Boundaries: CCCC

x y m c z

p m c

w

L L h E E g q

k T
K K

H k



   

       

   
          

   

  

By comparing Figures 11a and b, it is clear that even porosities result in a weaker sheet [5]. In 

fact, the number of holes in the plate, due to the improper manufacturing process and errors, could 

weaken the material. This can be seen from the larger deflections in Figure 11b than those ones in 

Figure 11a. On the other hand, in Figure 11a it can be seen that whenever the nonlocal parameter is 

larger, the effect of porosity on the results becomes smaller. In addition, for both porosity 

distributions, the through-the-thickness deflection response is almost linear, while maintaining the 

same slope. 

For FGM sheets immersed within an elastic foundation, a further study aims at analyzing the 

effect of the Winkler or Pasternak coefficients to the overall deflection (see Figures 12a and b). In 

order to check for the accuracy of the results, the present elasticity theory is compared to the TSDT, 

for different dimensionless Lx/h parameters. More in detail, for thinner plates with 4xL h  , static 

deflections provided by the present theory and the TSDT are perfectly the same, at least, for positive 

layers. This is not still true for thicker plates ( 2xL h  ), where both positive and negative layers 

along the thickness feature quite different results depending on whether a 3D-based theory or a 

TSDT is applied. Whenever the plate thickness is increased, possible discrepancies between the 

results based on the two different approaches gradually increase. Moreover, by comparing Figures 

12a and b, a variation in the stiffness coefficient for a Winkler foundation affects more significantly 

the static deflection than the one related to a Pasternak foundation, for the same fixed geometry of 

the structure and nonlocal parameter. 

5. Conclusions

This work proposes a novel three-dimensional elasticity theory to study the coupled thermo-

hygro-mechanical behavior of FG nanostructures. The proposed approach requires an easy process 

to be solved, and investigates the small-scale effects in nanostructures, when combined with the 

Eringen nonlocal theory. The nanoplates studied herein, are assumed to lie on a two-parameter 

elastic base, and are immersed in a coupled thermal and moisture environment. Possible effects of 

the structural response account for the presence of different porosity distributions within the 

nanomaterial, as typically occurs during an actual manufacturing process. The problem is solved by 

means of a semi-analytical polynomial method (SAPM), which is validated against the available 

literature, while estimating its accuracy. Among a large parametric study, the following conclusions 

can be summarized as follows: 

- For two-dimensional elasticity analyses, the through-the-thickness deflection is constant,

whereas the proposed three-dimensional approach estimates any possible variation in the kinematic 

response for both negative and positive layers. In most cases, the maximum deflection is enriched at 

the top surface of the plate, because of its compressive reduction due to the external loading 

condition. As a common definition, many scholars assume the maximum deflection occurs in the 

mid-plan of the thickness. But, considering deflections through the thickness confirms that this is 

not always true. The maximum deflections occur in upper surfaces of the plate because of both 

transverse deflections and thickness variations. 
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- The sensitivity of the deflection response to the nonlocal parameter for the present theory is

less pronounced than the one based on the TSDT for thick plates, because of the use of three-

dimensional Laplacian operators for the nonlocal relations. 

- Plate theories fail for thick and moderately thick plates, and they become totally inaccurate, if

compared to the proposed three-dimensional approach, especially for more complex coupled 

problems accounting for different thermo-hygro-mechanical conditions. 
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Figure 1. Moderately thick nanoporous FG rectangular plate in a hygro-thermal surround. 

Figure 2. Grid points distribution within the 3D plate. D
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(a) CCCC boundary condition

(b) CFCF boundary condition

Figure 3. Effect of the grid points distribution N M  on the deflection w  (nm) along the 

dimensionless thickness direction *z . 

( 1.5nm; 0.34nm; 1.06TPa; 0.29; 10GPax y zL L h E q      ) 
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(a) CCCC boundary condition

(b) CFCF boundary condition

Figure 4. Comparative evaluation of the deflection w  (nm) along the dimensionless thickness 

direction *z  for a third-order or a fifth-order expansion. 

( 3nm;x yL L  01nm; 201GPa; 602GPa; 0.25; 1GPa; 0m c zh E E q e a      ) 
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(a) CCCC boundary condition

(b) FCFC boundary condition

Figure 5. Effect of the grading index g  on the structural deflection. 

 00.5nm; 201GPa; 602GPa; 0.25; 0; 1.13GPa/nm; 1.13Pa×mm c w ph E E e a k k      
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Figure 6. Effect of the dimensionless ratio xL h  on the structural deflection  w z . 

( 0 0; 1.13GPa/nm; 1.13Pa×mw pe a k k   ) 
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Figure 7. Effect of the nonlocal parameter 0e a on the results as given by the formulation proposed 

in the present paper and by a classical TSDT. 

( 2nm; 1nm; 201GPa; 602GPa;x y m cL L h E E     10; 0.25; 9GPazg q   ; 

1.13GPa/nm; 1.13Pa×m; Boundaries: CCCCw pk k  ) 
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Figure 8. Thermo-elastic response for different values of 0e a and T . 
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Figure 9. Effect of humidity on the results of  w z  for different values of nonlocal parameter and

H . 

Figure 10. Comparative evaluation of the results, as given by the formulation proposed in the 

present paper and a TSDT, for different values of T . 
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(a) Uneven porosity

(b) Even porosity
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Figure 11. Deflection vs. the dimensionless thickness for different values of the nonlocal parameter 

and porosity distributions. 

(a) Winkler foundation
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(b) Pasternak foundation

Figure 12. Effect of the elastic foundation parameters on the structural deflection. 0 1nme a  . 

Table 1. Comparative evaluation of the kinematic response according to the present formulation, or 

according predictions from ABAQUS and TSDT, for different values of the thickness h  and 

boundary conditions. 

 2w h (m)

CCCC 

h (m) ABAQUS 
Present 

results 
TSDT 

0.1 16.5 15.9 16.5 

0.2 2.79 2.68 2.79 

0.5 0.53 0.52 0.48 

CFCF 

0.1 270 262 250 

0.2 37.0 35.8 34.3 

0.5 3.78 3.68 3.52 

Table 2. First validation for the new quasi three-dimensional elasticity results with those ones 

obtained through several plate theories from literature. 

Dimensionless deflection ( *w ) 

FSDT [54] CPT [55] S-FSDT [57] FSDT [56] Present results zq (psi) 

0.048 0.048 0.048 0.048 0.048 0.5 

0.064 0.064 0.064 0.064 0.063 1.0 

0.083 0.083 0.076 0.083 0.081 2.0 

0.090 0.089 0.078 0.088 0.088 2.5 
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0.096 0.095 0.085 0.095 0.095 3.0 

Table 3. Second validation for the new quasi three-dimensional elasticity results with those ones 

obtained through several plate theories from literature. 

*w

zq

(MPa) 

S-FSDT [57]

0e a

FSDT [55] 

0e a

Present result 

0e a

0 0.8nm 0 0.8nm 0 0.8nm 

0.1035 0.0956 0.1037 0.0960 0.1035 0.0958 20 

0.1377 0.1208 0.1382 0.1274 0.1380 0.1221 40 

0.1544 0.1396 0.1609 0.1488 0.1550 0.1435 60 

Table 4. Mechanical properties of the modeled FG porous nanosheet. 

FG porous nanosheet 

( 0.33  (wt. %H2O)-1) 

[58-61] 

Porous metal; 

Stainless steel-grade 304 (SUS304) 

201GPamE  , 6 112 10 Km
   , 0.3262m 

Nano-oxide ceramic; 

Silicon carbide (SiC4) 

602GPacE  , 6 15 10 Kc
   , 0.1c  νc=0.1 
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