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Abstract 

We focus on the mechanical strength of piezomagnetic beam-like nanosize sensors during 

post-buckling. An effective flexomagnetic property is also taken into account. The modelled 

sensor is selected to be a Euler-Bernoulli type beam. Long-range interactions between atoms 

result in a mathematical model based on the nonlocal strain gradient elasticity approach 

(NSGT). Due to possible large deformations within a post-buckling phenomenon, the 

resultant equations are essentially nonlinear. We establish the results using an analytical 

approach, including a variety of boundary conditions. We visualize the effective response of 

the designed sensor for several key components. It was obtained that the flexomagnetic effect 

is meaningful for less flexible boundary conditions. Besides, it was found that the failure 

originated from post-buckling occurs sooner if the numerical amounts of nonlocal parameter 

and the strain gradient one are respectively so small and exceedingly large. 
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       Symbols 

zH      Magnetic field component 

xxz   Gradient of the elastic strain 

 xx    Stress component 

 xx     Strain component

xxz    Hyper stress

zB      Magnetic flux component 

11C    Elasticity modulus 

xM Moment stress resultant 

xxzT   Hyper stress resultant 

U   Strain energy 

 Symbol of variations

xN         Axial stress resultant

  Magnetic potential

zI  Area moment of inertia 

 Nonlocal parameter (nm2)

l  Strain gradient parameter (nm)

Y  Residue in the solution method 

1C     A constant 

2C     Integration constant 

W      Works done by external objects 

1u  Cartesian displacements along x axis

3u  Cartesian displacements along z axis

L Length of the beam

h  Thickness of the beam

u  Axial displacement of the midplane

w  Transverse displacement of the midplane 

z  Thickness coordinate 

31q    Component of the third-order piezomagnetic 

tensor 

31g Component the sixth-order gradient elasticity 

tensor 

31f     Fourth order flexomagnetic component 

33a     Component of the second-order magnetic 

permeability tensor 
0
xN Initial total in-plane axial force 

 Initial magnetic potential

A Area of cross-section of the beam 
pN    Post-buckling load 

1    Introduction 

Post-buckling and collapsing behavior are critical to the design of thin structures (Timoshenko 

& Gere, 1989, Falzon & Aliabadi, 2008, Amabili, 2008, Stevens et al., 1995, Eltaher et al., 

2019). Sensitive and certain industrial parts should sustain maximum loads and should be 

such as to prevent instability and unwanted buckling to avoid large deformations and 

collapsing. Post-buckling means the deformation of the structure after the start of buckling 

(bifurcation point), which helps to better understand the failure resistance of the structure after 
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the amount of unauthorized and unallowable in-plane loading. The behavior of post-buckling 

is a nonlinear one that occurs in a very short time. Also, self-contact may occur during post-

buckling due to the high deformation amount. The initial onset of buckling is related to the 

modes obtained from the modal frequency analysis of the structure. After bifurcation point, 

the structure has become to confront with a new pattern of deformation, that is a large 

deformation which buckling load at this time refers to failure of structure. Basically, 

bifurcation buckling cannot imply collapsing in the structure. 

Recently the interest grows to electro- and magnetorheological materials including such 

coupling higher-order phenomena as flexoelectricity and flexomagneticity, see, e.g. 

(Basutskar, 2019, Ghayesh and Farajpour, 2019, Ghayesh and Farokhi, 2020, Eremeyev et al., 

2020, Espinosa-Almeyda et al., 2020, Mawassy et al., 2020) and the references therein.  In 

particular, magnetic nanoparticles (MNPs) have attracted the attention of many researchers 

due to their exclusive features (Freitas et al., 2007, Justino et al., 2010, Reddy et al., 2012, Xu 

and Wang, 2012, Agrawal et al., 2014). Numerous applications are expected for MNPs based 

on fabricating and developing biosensors. Some of these applications can be stated as biology, 

clinics, foods, and environments sensors. MNPs can be involved in any substances that are 

excited by an outer magnetic potential, for example transducers. MNPs are classified into two 

main categories, paramagnetic and ferromagnetic. Their distinguishing feature appears after 

the removal of the external magnetic field. Thus, there is no magnetic property in 

paramagnetic particles after removing the outer magnetic field, while the magnetic property 

is preserved in ferromagnetic materials.  

In the group of MNPs and spinel ferrites, cobalt-ferrite magnetic nanostructures 

(CFMNs) with chemical symbol CoFe4O2 have highlighted the significant studies and 

technological applications. The number of published papers on cobalt-ferrite magnetic 
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nanostructures have been unprecedented during last two decades (Arvand & Hassannezhad, 

2014, Theres Baby & Ramaprabhu, 2010; Xin et al., 2013). Of applications of this kind of 

MNPs are in using electronic devices, optical and magnetic storage in light of its extraordinary 

features, such as high electromagnetic performance, mechanical hardness, chemical stability, 

coercivity and high saturation magnetization (Eliseev et al., 2009, Fahrner, 2005, Ju et al., 

2008). It should be borne in mind that the CFMNs structure is in the group of ferromagnetic 

materials. Electromagnetic coupling may influence on the instabilities of such rheological 

materials, see, e.g., (Broderick et al., 2020, Jalaei and Civalek, 2019, Malikan et al., 2020).  

Compared to piezomagneticity (PM), flexomagneticity (FM) is a pervasive property 

with less restrictive structural symmetry and therefore expands the choice of materials that 

can be used for sensors and electromechanical actuators (Eliseev et al., 2019, Kabychenkov 

& Lisovskii, 2019, Lukashev & Sabirianov, 2010, Moosavi et al., 2017, Pereira et al., 2012, 

Zhang et al., 2012, Zhou et al., 2014). Reduced dimensions would result in larger gradients. 

This means that the strain difference at a small distance leads to a larger strain gradient. In 

MNPs technology, the small length scale is discussed, and therefore this type of material will 

increase the effect of FM, which may even be competitive with PM. This issue is growing 

rapidly due to the new developments and progresses that have taken place in recent years, 

especially at the nanoscale. 

First, a brief introduction to the first theoretical research on the mechanical response of 

FM nanostructures is given. Theoretical research performed in the field of FM to elementary 

papers by Sidhardh & Ray, (2018) and Zhang, Zhang & Chen, (2019). These two early works 

studied FM in CFMNs within the analysis of static bending deformation. Both research works 

utilized small deformations and the corresponding domain was assumed as Euler-Bernoulli 

beam. In these papers, the results were demonstrated on the basis of both direct and converse 
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magnetization effects. The acting static load imposed on the vertical alignment of the domain 

was uniformly applied. The superiority of the second research against the former one can be 

presenting several boundary conditions in the study. However, both research studies didn’t 

show perfectly size-dependent influences. Although the surface effect was examined, the 

nonlocality as a prominent and well-known impact in nanoscale was not evaluated. Recently, 

Malikan & Eremeyev, (2020a) explored linear frequency behavior of CFMNs on the basis of 

Euler-Bernoulli type beam. The stress-driven nonlocal elasticity was substituted in the 

mathematics formulation in order to survey the size-dependent impacts. Their numerical 

outcomes affirm the behavior of FM is size-dependent. In a nonlinear investigation, Malikan 

& Eremeyev, (2020b) inspected nonlinear frequency response of CFMNs containing FM 

effect. To survey the size-dependent influences, they implemented the well-worked nonlocal 

strain gradient elasticity theory in the mathematical modeling process. Continuing the 

reported research performed on CFMNs involving FM, we have tried to analyze the post-

stability state of the CFMNs in what follows with FM impact. In accordance with the large 

deformation which occurs in post-buckling conditions, the nonlinear strains of Lagrangian are 

mixed with Euler-Bernoulli kinematic field which leads to a local constitutive equation. This 

equation is changed into a nonlocal post-buckling relationship based on the characteristic 

equation of the nonlocal strain gradient model. Theoretically, four boundary conditions have 

been estimated, that is, the beam-like sensor with pivot-pivot, fully fixed, pivot-fixed, and 

fixed-free ends. The assessment is associated with two cases of the sensor, the first one is 

considered having only PM property and the second one consists of FM with apparent PM. 

Besides, two states of buckling are investigated, the bifurcation point and its post-time. Later, 

by variations in fundamental parameters which are vital factors in designing sensors, we 

measure their influences on the basis of sketched graphical figures.  
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The paper is organized as follows; by means of Section 2 we present the mathematical 

modelling process of the analysis. Thereafter, Section 3 is associated with the solution 

methodology. Afterwards, Section 4 of the article considers a preliminary validation by 

reducing the model into a simple one. Later, Section 5 comes to exhibit a parametric study in 

order to investigate different factors applicable to affect mechanical behavior of the smart 

sensor. Finally, by assistance of the conclusion section, we briefly survey the present paper.   

2    Mathematical statement 

2.1 Basic formulation of structures involving PM and FM 

In continue with (Kabychenkov & Lisovskii, 2019, Eliseev et al., 2009, Lukashev & 

Sabirianov, 2010), the elasticity relations which govern the PM-FM structures would be 

introduced in what follows. The deformations are restricted to the infinitesimal ones on the 

basis of early isothermal. Thus, vector-values variables can be magnetic field H and 

displacements u as follows (H is a first-order tensor) 

   u = u x , H = H x                                                                                                                     (1) 

in which x  denotes a position vector. The free energy density U based on the PM-FM can be 

written in the below form 

 
1 1 1

:
2 2 2

:

U U       

   

ε,η,H H a H ε :C :ε η g η ε r η

H q ε H f η

                                                  (2) 

in which the strain tensor is defined by ε . Moreover, the gradient of the strain tensor can be 

presented as below 

 1
,

2

T      ε u u η ε                                                                                                       (3) 

  interprets the 3D nabla-operator. Different tensors are introduced by Eq. (2) for material 
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characterisitcs. Among the mentioned tensors; f is the fourth-order flexomagnetic tensor, C is 

the fourth-order elasticity coefficient tensor, the strain and strain-gradient tensors are coupled 

by r that itself is a fifth-order tensor, g is the sixth-order gradient elasticity tensor, a is the 

second-order magnetic permeability tensor, q is the third-order piezomagnetic tensor, and in 

addition, “∙”, “:”, and “⋮” define scalar (inner) products in spaces of vectors, second-order and 

third-order tensors, respectively. 

We will now present the relation between H through the magnetic potential  , 

 H                                                                                                                                   (4) 

Static model of flexomagneticity is derived on the basis of principle of virtual work as 

A                                                                                                                                      (5) 

where 
V
UdV   , and V is the volume of the domain occupying the flexomagnetic structure 

and A  expresses the work done by outer loads.  

To make the process simpler, a simple form is assumed as below 

V V

A ds  



    F u t u                                                                                                                              (6) 

in which t and F illustrate surface traction and external forces. 

On the basis of the standard form of calculus of variations and regarding Eq. (5), one 

can get 

    σ ξ F 0                                                                                                                               (7a) 

0 B                                                                                                                                   (7b) 

where B denotes the vector of magnetic induction.  

Hence, we introduce the following constitutive equations 

:
U

    


σ C ε r η H q
ε

                                                                                                                 (8a) 
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: :
U

    


ξ g η ε r H f
η

    (8b) 

:
U

     


B a H q ε f η
H

(8c) 

In what follows we consuider one-dimensional counterparts of these constitutive relations.  

2.2 The PM-FM beam-like sensor model 

The presented figures determine the physical conditions of the problem in mathematical 

definitions. Respectively, Figures 1, 2, and 3, display a fully fixed, fully pivot and cantilever 

beam-like smart sensor with both ends clamped-clamped, guided-guided and clamped-free. A 

magnetic field is perpendicularly applied which ensues an extra axial force. An axial 

mechanical load works on the beam to convey the post-buckling state. Boundary conditions 

are mathematically conducted on the figures. All the boundary objects are rigid. And the beam 

is configured in a square shape. 

Figure 1. A square beam-like nano sensor containing PM and FM embedded in fully fixed 

ends 
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Figure 2. A square beam-like nano sensor containing PM and FM embedded in pivot ends 

 

Figure 3. A cantilever square beam-like nano sensor containing PM and FM 

It is assumed that the magnetic sensor behaves like a beam structure. Thus, a thin beam 

approach is carried out as (Hamed et al., 2020, Reddy, 2010, Song & Li, 2007) 

   
 

1 ,
dw x

x z u x z
x

u
d

                                                                                                          (9) 

   3 ,u x z w x                                                                                                                         (10) 

As mentioned before, after buckling and bifurcation point, there would appear the large 

deformations. Hence, the formulation employs the nonlinear Lagrangian strains as 

22

2

1

2
xx

du d w dw
z

dx dx dx


 
    

 
                                                                                                      (11) 
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2

2

xx
xxz

d d w

dz dx


                                                                                                                       (12) 

To expand the components of stress, hyper stress, and magnetic induction, one can write 

(Sidhardh & Ray, 2018, Zhang, Zhang & Chen, 2019). 

11 31xx xx zC q H                                                                                                                   (13) 

31 31xxz xxz zg f H                                                                                                                  (14) 

33 31 31z z xx xxzB a H q f                                                                                                        (15) 

To derive the characteristics equation, the following variational energy formula based on the 

Lagrange functional is defined 

  0U W                                                                                                                                 (16) 

The entire strain energy of the system is established as 

 xx xx xxz xxz z z

V

U B H dV                                                                                       (17) 

By computing the above equation, one can obtain the magnetic and mechanical parts of the 

strain energy as 

1 21 2

Mag MagMech Mech
U UU U

U                                                                                           (18) 

where 

1

2 2

2 2
0

L
Mech x x xxz
U x

dN d M d Td dw
u w N w w dx

dx dx dxdx dx
    

  
          

                                  (19) 

1

2

0 2

hL
Mag z
U

h

dB
dzdx

dz
 



                                                                                                       (20) 

2

0

L

Mech x xxz
U x x xxz x

dM dTd w d w dw
N u M T N w w w

dx dx dx dx dx

 
    

 
        

 
                     (21) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
2

/2

0 /2

h
L

Mag
zU

h

B dx 



                                                                                                          (22) 

Here we introduced the parameters as follows  

/2

/2

h

x xx

h

N dz


                                                                                                                          (23) 

/2

/2

h

x xx

h

M zdz


                                                                                                                        (24) 

/2

/2

h

xxz xxz

h

T dz


                                                                                                                         (25) 

which specify the resultants of stresses on any element of the beam. The external factors, such 

as magnetic field and mechanical in-plane force, create the work on the system as (Malikan & 

Eremeyev, 2020c, d) 

2
0

0

1

2

L

x

dw
W N dx

dx

 
   

 
                                                                                                             (26) 

0

0

L

x

d w dw
W N dx

dx dx




 
   

 
                                                                                                       (27) 

There is a relation between the component of the magnetic field and the magnetic potential as 

z

d
H

dz


                                                                                                                                (28) 

Assuming the magnetic potential changes along the thickness of the beam and on the 

basis of converse effect description and closed circuit of the magnetic field, one can present 

the electrical boundary conditions as 

,  0
2 2

h h


   
        
   

                                                                                                      (29) 

Substituting and combining Eqs. (15), (20), (22), (28) and (29) and simplyfying rigorously, one 
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can achieve the magnetic potential and the relevance component as (Sidhardh & Ray, 2018, 

Zhang, Zhang & Chen, 2019) 

2 2
231

2
332 4 2

q h d w h
z z

a hdx

   
            

                                                                                   (30) 

2
31

2
33

z

q d w
H z

a hdx


                                                                                                                   (31) 

Consequently, by the help of Eqs. (11), (12), (30), and (31), one can re-write Eqs. (13)-(15) as 

2 2 2
31 31

11 11 2
33

1

2
xx

q qdu dw d w
C z C

dx dx a hdx




    
               

                                                         (32) 

2
31 31 31

31 2
33

xxz

q f z fd w
g

a hdx




 
    

 

                                                                                       (33) 

2 2
33

31 31 2

1

2
z

adu dw d w
B q f

dx dx hdx

  
     

   

                                                                           (34) 

Let us write the local resultants of stresses as 

2

11 31

1

2
x

du dw
N C A q

dx dx


  
    

   

                                                                                         (35) 

2 2

31
11 2

33

x z

q d w
M I C

a dx

 
   

 
                                                                                                      (36) 

2

31 312xxz

d w
T g h f

dx
                                                                                                              (37) 

Eq. (35) plays the role of axial stress resultant which consisted of both mechanical and magnetic 

terms. Therefore, the magnetic part can be provided as 

31

MagN q                                                                                                                                (38) 

Then, the total axial loading can be noted as below 

0 p Mag
xN N N                                                                                                                                (39) 
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Ultimately the bond of all formulation will lead to local nonlinear equilibrium equations as 

follows 

0xdN

dx
                                                                                                                                  (40) 

2 2 2
0

2 2 2
0x xxz

x x

d M d T d dw d w
N N

dx dx dx dx dx

 
    

 
                                                                                           (41) 

Size-dependent properties should be established into the mathematical model in order 

to address nanoscale influences. The size-dependent model is not here restricted to the nonlocal 

interactions  of atoms, but it also considers the higher strain gradients in a constitutive postulate 

as follows (Lim, Zhang & Reddy, 2015) 

2 2
2

2 2
1 1NonLocal Local

xx xx

d d
l

dx dx
  

   
     

   

                                                                                  (42) 

where  
2

0e a  . For applications of nonlocal approach to beam models we refer also to 

(Barretta and de Sciarra, 2019, Barreta et al., 2020).  

By developing Eq. (42) for the axial stress of present problem (Eq. (42)), one can see 

2 22 2 2
2 31 31

11 112 2 2

33

1
1 1

2

NonLocal

xx

q qd d du dw d w
l C z C

dx dx dx dx a dx h


 

         
              

          

          (43) 

By integrating rigorously from both parts of Eq. (43) based on the dz and using Eqs. (23-25), 

one can express 

22 2
2

11 312 2

1
1

2

x
x

d N d du dw
N C A l q

dx dx dx dx
 

     
         

      

                                                               (44) 

2 2 2 2
231

112 2 2

33

= 1x
x z

d M q d d w
M I C l

dx a dx dx


   
       

   

                                                               (45) 

2 2 2
2

31 312 2 2
1xxz

xxz

d T d d w
T l g h f

dx dx dx
 

  
      

  

                                                                  (46) 

By re-writing Eq. (41) based on the first term and plugging it in Eq. (45), one can have (Karami 
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& Janghorban, 2019, Karami et al., 2020, Karami & Janghorban, 2020, Eyvazian et al., 2020, 

Li & Hu, 2017, Malikan et al., 2019, Malikan et al., 2020, Malikan et al., 2018, Sahmani & 

Safaei, 2019, Ebrahimi et al., 2019) 

2 22 2 4
0 231

112 2 2 4

33

= xxz
x x x z

d T qd dw d w d w d w
M N N I C l

dx dx dx dx a dx dx


     
          

      

                       (47) 

Since there are two unknown variables (u and w) in the equations, it would result in 

difficulties to solve the equations as far as there is a third unknown, which is post-critical 

buckling load (Np). Therefore, let us write the u based on the w as 

2

11 1

1

2
x

du dw
N C A C

dx dx

  
    

   

                                                                                                        (48) 

Writing Eq. (48) based on the u and integrating gives 

2

1
2

110

1

2

L
Cdw

u dx x C
dx C A

 
    

 
                                                                                                         (49) 

Imposing the initial conditions as u(0)=u(L)=0, one can obtain 

2

11

0

=
2

L

x

C A dw
N dx

L dx

 
 
 
                                                                                                              (50) 

Thereafter, based on the Eqs. (39), (41), (47), and (50), the model of the problem can be 

formulated mathematically as a single integro-differential equation 

   
4 2 6 4

31 31 31 314 2 6 4

2 24 3

11 11

4 3

0 0

22 2 3

11 11

2 2 3

0

2 2

2 2

p p

L L

L

d w d w d w d w
g h N q g h N q

dx dx dx dx

C A C Adw d w d dw d w
dx dx

L dx dx dx L dx dx

C A C Ad dw d w d dw
dx

dx L dx dx dx L dx

  

 

 

 
       

 

      
       

         

   
    

    

 


2

0

2 22

11 11

2

0 0

2 4 6
231

11 4 6

33

2 2

0

L

L L

z

dw
dx

dx

C A C Adw d w d dw dw
dx dx

L dx dx dx L dx dx

q d w d w
I C l

a dx dx

 
 

  

      
       

         

  
     

  
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3   Solution approach 

In this section, the aim is to solve the appropriate boundary conditions along with the nonlinear 

governing equation (Eq. (51)). Some admissible shape functions are described by which several 

end conditions are satisfied. The procedure is entirely analytical. However, as far as the 

boundary conditions seem to be homogeneous, the present analytical solution sounds like an 

exact solving method (Malikan & Eremeyev, 2020e). 

   w x W X x   (52) 

where the deflection resulted from post-buckling conditions is dedicated symbolically by W. 

The permissible shape functions appeared in the following can satisfy quite different end 

conditions (Malikan & Eremeyev, 2020e, Gunda, 2014). The notations are respectively 

allocated for guided or pivot (S), fixed or clamped (C) and free (F) border conditions (BCs) as 

follows 

SS:   sinX x x
L

 
  

 
 (53) 

CC:   2sinX x x
L

 
  

 
 (54) 

CS: 
         1 1 1 1 1

1 1

sin k 1

           0.1709382933,  k 1.4318

X x k x Lcos k x k L x L

L



 

   

 
 (55) 

CF:   sin cos
4 4

X x x x
L L

    
    

   
 (56) 

where for example CF accounts a side with free and another one with fully fixture conditions. 

Incorporating Eq. (51) with Eq. (52) and integrating over the length of the beam, one attains 

  0p

L NL GK K N K X    (57) 
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After some algebra, one obtains the nonlinear algebraic equation that by computing the 

Np, that presents post-buckling loads for the magnetic beam-like sensor considering FM. The 

coefficients in Eq. (57) can be expanded as below 

 1

0

L

LK x Y dx    (58) 

 2

0

L

NLK x Y dx    (59) 

 3

0

L

GK x Y dx    (60) 

in which Y illustrates a residue, 1 to 3 are as follows:

 
4 2 6 4

1 31 31 31 314 2 6 4

2 4 6
231

11 4 6

33

z

d w d w d w d w
x g h q g h q

dx dx dx dx

q d w d w
I C l

a dx dx

   
 

      
 

  
    

  

       (61) 

 
2 24 3

11 11
2 4 3

0 0

2 22 2 3

11 11

2 2 3

0 0

2 2

11

0

2 2

2 2

2

L L

L L

L

C A C Adw d w d dw d w
x dx dx

L dx dx dx L dx dx

C A C Ad dw d w d dw dw
dx dx

dx L dx dx dx L dx dx

C A dw d
dx

L dx

  

 

      
        

         

      
       

         

  
   

   

 

 


2

11

2

0

0
2

L
C Aw d dw dw

dx
dx dx L dx dx

  
   

   


 (62) 

 
2 4

3 2 4

d w d w
x

dx dx
     (63) 

If we assume 0NLK  , the bifurcation buckling will result. 
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4    Validity 

To begin the discussion and results of the present study, a results comparison is required to 

verify the analytical solution’s efficiency and accuracy. This is performed regarding Tables 1 

to 4 (Wang et al., 2006, Pradhan & Reddy, 2011). In the existing data, bifurcation buckling of 

a common squared section nanoscale beam was investigated on the basis of the following 

elasticity properties; E=1TPa, υ= 0.19, the exact solution method (Wang et al., 2006) and 

differential transformed solution method (DTM) (Pradhan & Reddy, 2011). Both references 

benefited from the Euler-Bernoulli beam. All the boundary conditions examined in the present 

paper are validated. A reasonable agreement is observed between the present solution and those 

reported in (Wang et al., 2006, Pradhan & Reddy, 2011). 

Table 1. For a SS beam.  

PCr (nN) 

L 

(nm) 

µ=0 nm2 µ=1 nm2 µ=4 nm2 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

10 4.8447 4.8447 4.84473 4.4095 4.4095 4.40953 3.4735 3.4735 3.47346 

12 3.3644 3.3644 3.36439 3.1486 3.1486 3.14859 2.6405 2.6405 2.64049 

14 2.4718 2.4718 2.47180 2.3533 2.3533 2.35330 2.0574 2.0574 2.05739 

16 1.8925 1.8925 1.89247 1.8222 1.8222 1.82222 1.6396 1.6396 1.63962 

18 1.4953 1.4953 1.49529 1.4511 1.4511 1.45109 1.3329 1.3329 1.33288 

20 1.2112 1.2112 1.21118 1.182 1.182 1.18201 1.1024 1.1024 1.10238 
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Table 2. For a CS beam. 

PCr (nN) 

L 

(nm) 

µ=0 nm2 µ=1 nm2 µ=2 nm2 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

10 9.887 9.887 9.91111 8.2295 8.2295 8.24614 7.048 7.048 7.06015 

12 6.886 6.886 6.88271 6.0235 6.0235 6.03631 5.3651 5.3651 5.37530 

14 5.044 5.044 5.05668 4.5744 4.5744 4.58441 4.1844 4.1844 4.19285 

16 3.8621 3.8621 3.87152 3.5804 3.5804 3.58849 3.337 3.337 3.34403 

18 3.0516 3.0516 3.05898 2.873 2.873 2.87954 2.7141 2.7141 2.71998 

20 2.4718 2.4718 2.47777 2.3533 2.3533 2.35871 2.2456 2.2456 2.25057 

 

Table 3. For a CC beam. 

PCr (nN) 

L 

(nm) 

µ=0 nm2 µ=1 nm2 µ=2 nm2 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

10 19.379 19.379 19.37895 13.8939 13.8939 13.89386 10.828 10.828 10.8288 

12 13.458 13.458 13.45760 10.652 10.652 10.56197 8.6917 8.6917 8.69178 

14 9.877 9.877 9.88721 8.2296 8.2296 8.22960 7.0479 7.0479 7.04799 

16 7.4699 7.4699 7.56990 6.5585 6.5585 6.55849 5.7854 5.7854 5.78550 

18 5.9811 5.9811 5.98115 5.3375 5.3375 5.33153 4.8091 4.8091 4.80918 

20 4.8447 4.8447 4.84473 4.4095 4.4095 4.40953 4.046 4.046 4.04607 
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Table 4. For a CF beam. 

PCr (nN) 

L 

(nm) 

µ=0 nm2 µ=1 nm2 µ=2 nm2 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

10 1.2112 1.2112 1.21118 1.1820 1.1820 1.18201 1.1542 1.1542 1.15422 

12 0.8411 0.8411 0.84109 0.8269 0.8269 0.82693 0.8132 0.8132 0.81323 

14 0.6179 0.6179 0.61795 0.6103 0.6103 0.61026 0.6027 0.6027 0.60277 

16 0.4731 0.4731 0.47311 0.4686 0.4686 0.46860 0.4641 0.4641 0.46417 

18 0.3738 0.3738 0.37382 0.3710 0.3710 0.37099 0.3682 0.3682 0.36821 

20 0.3028 0.3028 0.30279 0.3009 0.3009 0.30094 0.2991 0.2991 0.29910 

5    Discussion and results 

After the preliminary comparison, the nonlinear buckling and post-buckling behaviors of a 

CFMN comprising FM in a parametric study based on some examples are calculated. It is well-

established that a CFMN structure gives perceptibly FM effect in a nanosize (Sidhardh & Ray, 

2018, Zhang, Zhang & Chen, 2019, Malikan & Eremeyev, 2020a, b). Accordingly, the 

properties of CFMNs in the framework of magnetic and mechanics are available as (Pan et al. 

2003, Pan et al., 2005, Senthil et al., 2018) 

Table 5. Magneto-mechanical properties for CFMN beam-like nanosize sensors. 

CoFe2O4 

C11=286e9 N/m2 

f31=10-9 N/Ampere 

q31=580.3 N/Ampere.m 

a33=1.57×10-4 N/Ampere2 
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5.1    Size-dependent effects 

Due to the existence of two variable parameters in NSGT, their exact amounts are momentous. 

However, with regard to the literature (Ansari et al., 2010, Akbarzadeh Khorshidi, 2018), their 

values are dependent on several cases and there cannot be a constant value for each one in 

association with every nanomaterial.  

Figures 4 and 5 focus on the effect of size-dependent parameters on the buckling and 

post-buckling behaviors of the nanobeam. In the first figure, by assuming the nonlocal 

parameter to be constant, we evaluate the changes in the strain gradient parameter. All four 

cases of boundary conditions mentioned before are presented in these figures. It is important 

to note that the buckling’s results obtained linearly are represented by the index (L) and the 

post-buckling results obtained by nonlinear analysis are displayed by the index (NL). This is 

true for all diagrams. Moreover, CBL in all diagrams means critical load whether from buckling 

or post-buckling. The first point that we get to a superficial look at Figure 4 is that the strain 

gradient parameter has the greatest impact on the beam with the boundary condition of the two 

sides completely clamped. Interestingly, this effect decreases with an increase in the degree of 

freedom of border conditions. If we pay attention to Figure 4, this result is quite clear in the 

behavior of the curves. Thus, the changes in the strain gradient parameter, for example, have 

completely differentiated the slope of the beam’s results with the fully fixed boundary 

conditions. Another important point that can be obtained by looking more closely at this figure 

is that by increasing the values of the strain gradient parameter, the buckling and post-buckling 

results of each boundary condition are converging. This theorem can be interpreted as meaning 

that at very large values of the strain gradient parameter, the distance between the occurrence 

of buckling and the failure of the material will be smaller. Therefore, large values of this 

parameter indicate faster failure of the material. On the other hand, with a brief overview of 
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Figure 5, other points can be extracted. In this figure, in contrast to Figure 4, we assume the 

strain gradient parameter is constant and examine the changes in the nonlocal parameter. It is 

quite clear from Figure 5 that increasing the values of the nonlocal parameter decreases the 

results. However, this decreasing trend in the results of buckling analysis is more regular and 

with a certain harmony. Also, the severity in the decrease of the results, which is as a result of 

increasing the nonlocal parameter, in the buckling results is more than the post-buckling ones. 

In a point of fact, it can be said that the effect of the nonlocal parameter decreases after 

buckling. Another interesting result is that with increasing the nonlocal parameter, the distance 

between the curves related to the buckling and post-buckling results increases. Therefore, it 

can be stated that if the value of the nonlocal parameter is large, it indicates that the material 

fails later after buckling. As a final point obtained from Figures 4 and 5, it can be stated that 

the cantilever beam behind the buckle will be extremely weak compared to the other cases. 

This result can be understood by comparing the difference between the curves of the cantilever 

beam in the two states of buckling and post-buckling with other boundary conditions. 

 

Fig. 4. Size-dependent parameters vs. CBL for different cases of BCs (Ψ=1 mA, e0a=0.5 nm, 

L=10h) 
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Fig. 5. Size-dependent parameters vs. CBL for different cases of BCs (Ψ=1 mA, l=0.5 nm, 

L=10h) 

5.2    Magnetic field effect 

Assuming that a magnetic field surrounds the sensor, changes, and increases or even decreases 

the magnitude of the magnetic potential can be very important and have a significant impact 

on the mechanical behavior of the sensor. Hence, we would like to examine this effect with the 

help of Figure 6. The magnitude of the magnetic potential is considered from negative 2 to 

positive 2 to include both positive and negative external fields. First, it is interesting to know 

that increasing the numerical value of the external potential leads to an increase in the stiffness 

of the material and ultimately its greater stability. As can be seen from the curves, the increasing 

slope of the results is linear. In addition, the distances between the post-buckling results’ curves 

are longer than the buckling-related curves. This means that the boundary condition becomes 

more important in the post-buckling mode. On the other hand, the cantilever beam goes into 

buckling and post-buckling in negative values of external potential with a tensile axial force, 
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which of course other cases will experience, but later than the cantilever beam with a larger 

negative potential. 

 

Fig. 6. Magnetic potential vs. CBL for different cases of BCs (l=1 nm, e0a=0.5 nm, L=10h) 

5.3    Slenderness ratio effect 

The amount of narrowing of structures in buckling has always been a vital issue in their design. 

The ratio of length to thickness (slenderness ratio) in the design of beams and plates is a serious 

parameter for their stability. We will evaluate this for the nanosensor under study using Figures 

7 and 8. Figure 7 is plotted for the two boundary conditions CC and SS and Figure 8 is drawn 

for the two boundary conditions CS and CF. As can be seen from both figures, with increasing 

the slenderness coefficient of the beam, the results of buckling and post-buckling tend to each 

other. This means that in beams with long lengths and small thicknesses, the post-buckling 

state and failure occur in a very short time after buckling. It can even be said that in very long 

beams, buckling and post-buckling occur together. But if the slenderness coefficient of the 
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in beam-like sensors with long lengths, designers should think of measures to prevent material 

failure with the occurrence of buckling. 

 

Fig. 7. Slenderness ratio vs. CBL for different BCs (Ψ=1 mA, e0a=0.5 nm, l=1 nm) 

 

Fig. 8. Slenderness ratio vs. CBL for different BCs (Ψ=1 mA, e0a=0.5 nm, l=1 nm) 
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The study of the effect of FM in post-buckling conditions is the main goal of this research. For 

this purpose, Figures 9 to 12 are drawn. In Figure 9 and the horizontal axis of the diagram, we 

examine the changes in the nonlocal parameter while the beam is embedded in the two 

boundary conditions CC and SS. The beam is modeled in two modes without FM effect (PM 

sensor) and considering this effect (PFM sensor). The same factors, however, are presented for 

the two boundary conditions CF and CS in Figure 10. Figures 11 and 12 are similar to Figures 

9 and 10, but with the difference that the horizontal axis of the diagrams shows the changes in 

magnetic potential. At the first glance, it can be seen that the flexomagnetic effect is noticeable 

when the boundary conditions are fully fixed in at least one of the two ends of the beam. It can 

be seen from the figures that in the CC and CS boundary conditions, the greatest effect can be 

obtained from the FM influence. On the other hand, the results of buckling and post-buckling 

load in PFM mode are larger, which indicates that the FM effect in the positive magnetic field 

leads to greater stability of the material. 

 

Fig. 9. Nonlocal parameter vs. CBL for different cases of BCs (Ψ=1 mA, l=0.5 nm, L=10h) 
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Fig. 10. Nonlocal parameter vs. CBL for different cases of BCs (Ψ=1 mA, l=0.5 nm, L=10h) 

 

Fig. 11. Magnetic potential vs. CBL for different cases of BCs (l=1 nm, e0a=0.5 nm, L=10h) 
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Fig. 12. Magnetic potential vs. CBL for different cases of BCs (l=1 nm, e0a=0.5 nm, L=10h) 

6    Conclusions 

Both bifurcation buckling and post-buckling phenomena for cobalt-ferrite magnetic 

nanostructures (CFMNs) were discussed in this paper while the magnetic nanoparticle (MNP) 

accommodated flexomagneticity (FM) influence. The mathematical model was derived 

according to the Euler-Bernoulli beam, nonlinear Lagrangian-von Kármán strains and nonlocal 

approach of strain gradient elasticity (NSGT). The buckling and post-buckling were 

analytically studied for changes in size-dependent parameters, slenderness ratio, magnetic field 

in the presence and absence of the FM when the ends conditions of the beam-like nanosensor 

were differed. This research work concluded that: 

 The post-buckling and failure resulted from it, would happen sooner for nanostructures 

whilst the values of strain gradient and the nonlocal parameters are respectively very 

large and negligible. 
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 In post-buckling, both small scale parameters affect remarkably results of boundary 

conditions with lower degrees of freedom. 

 In so-called lengthy sensors, critical buckling and post-buckling loads can occur 

simultaneously. This means, exactly at the time of critical buckling the structure will 

fail. 

 The boundary condition with lower degrees of freedom makes the flexomagnetic effect 

more pronounced. 
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