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ABSTRACT

A thermodynamic relation between perturbations of pressure and mass density in the magnetohydrodynamic flow is theoretically studied.
Planar magnetohydrodynamic perturbations with the wave vector, which forms a constant angle with the equilibrium magnetic field, are
under study. The theory considers thermal conduction of a plasma and the deviation from adiabaticity of a flow due to some kind of
heating–cooling function. It also considers nonlinear distortion of a waveform and nonlinear excitation of the entropy mode in the field of
intense magnetosonic perturbations. In some conditions, the total density of a plasma enlarges over a cycle of magnetosonic perturbations.
These conditions depend on the type of magnetosonic waveform, heating–cooling function, thermal conduction, and equilibrium parameters
of a plasma. They depend also on the angle between the wave vector and the magnetic field. The diagrams in the plane of total variation of
pressure vs total variation of density indicate the nonlinear phenomena and irreversible processes in a flow. Harmonic perturbation and a
bipolar impulse of pressure are considered as magnetosonic exciters of the entropy mode. Exemplary diagrams are plotted and discussed for
these particular cases of exciters.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015944

I. INTRODUCTION

Hysteretic behavior reflects the history dependence of physical
processes in magnetic materials, mechanics, and engineering. Cycles
in the strain–stress diagrams for solids with hysteretic nonlinearity are
usually represented by loops.1,2 They are observed experimentally in
micro-inhomogeneous materials as ceramics, rocks, and microcrystal-
line metals.3 Irreversible processes that occur during propagation of
acoustic waves may also be represented by hysteresis curves in the
plane of thermodynamic parameters (total variation of pressure ()
total variation of density diagrams).4–6 The energy dissipated per cycle
of oscillations (the macroscopic energy is converted into the energy of
chaotic motion of molecules) measures the damping properties of a
medium such as viscosity, heat conduction, and molecular absorption.
Relaxation and mechanical losses are irreversible processes in general
described by some integral operator with a kernel reflecting dispersion
and frequency-dependent absorption due to the molecular properties
of a fluid.7–10 Among irreversible processes, the nonlinear damping at
shock fronts is of key importance. In Newtonian fluid flows, the rela-
tion between acoustic pressure and acoustic density includes a term
proportional to the partial derivative of acoustic density with respect
to time. This term responsible for hysteretic behavior is proportional
to the thermal conduction.8 The mechanical damping does not have

an impact on the relation between acoustic pressure and acoustic den-
sity but contributes to irreversible heating of a medium.5,11 The rela-
tion contains a nonlinear term that grows in absolute value with the
magnitude of acoustic pressure. As usual, quadratic nonlinearity is
considered. Attention to the structural features of loops in the phase
portraits in the plane of variations of pressure vs variations of density
for nonlinear wave processes in fluids has been attracted only
recently.4 Hedberg and Rudenko pointed to physical distinction
between various irreversible processes, which accompany nonlinear
propagation of intense sound in fluids. They considered loops in the
plane of acoustic perturbations for periodic harmonic and saw-tooth
sound in a Newtonian fluid flow and in a flow with relaxation and
made important conclusions about the frequency-dependent heredi-
tary properties of processes in linear and nonlinear regimes. It has
been concluded that hysteresis curves may indicate irreversible and
nonlinear processes in a fluid flow.

Open flows, that is, the flows with an external energy supply, are
characterized by some heating–cooling function, which incorporates
inflow of energy and radiative losses. The heating–cooling function
also introduces hysteresis in the thermodynamic diagrams and
contributes to the formation of loops.6 Damping mechanisms in open
systems may be overbalanced by the heating–cooling function or
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enhanced by it. This leads to various scenarios of wave propagation,
nonlinear phenomena in a flow, and diagrams in the thermodynamic
plane. To conclude about the connection of total perturbations of pres-
sure and density in a medium, one requires knowledge about not only
wave perturbations but also irreversible transfer of the wave energy
into the energy of the entropy mode. The nonlinear losses of wave
energy are followed by an isobaric slow increase in the fluid’s tempera-
ture and a decrease in its density specifying the entropy mode.7,8,12 A
variation of density in the entropy mode may be positive in acousti-
cally active flows due to some kind of non-equilibrium thermody-
namic process or the presence of the heating–cooling function. This
leads to unusual nonlinear cooling of a fluid. In spite of smallness of
the non-wave perturbations over one period of wave oscillations, they
may accumulate over time and take noticeable values. The total varia-
tion of density () total variation of pressure diagrams are not fully
closed in view of constantly growing absolute value of density pertur-
bation, which specifies the entropy mode. In the magnetohydrody-
namic (MHD) flows, the total variation of density is a sum of
magnetosonic variation and density perturbation of the entropy mode.
The description of hysteresis curves is fairly complex due to the variety
of magnetosonic modes (fast or slow) and the impact of the heating–
cooling function, the ratio of acoustic and magnetic equilibrium pres-
sures (that is, plasma-b), thermal conduction of a plasma, and an angle
between the equilibrium magnetic field and the wave vector. These
factors introduce a variety of hysteretic behaviors. The magnitudes of
perturbations in the excited entropy mode are proportional to the
intensity of the magnetosonic wave. We consider periodic and impul-
sive magnetosonic exciters in Sec. IV.

The main aim of this study is to attract attention to the
history-dependent processes in magnetohydrodynamics to
emphasize the importance of links between magnetosonic pertur-
bations and nonlinear excitation of the entropy mode, which
reveal hysteresis. The history-dependent processes occur due to
some factors reflecting irreversible processes, which may be indi-
cated by means of hysteresis diagrams. In particular, a plasma has
different thermodynamic properties before and after passing a
magnetosonic wave due to damping mechanisms and heating–
cooling function. A kind of magnetosonic wave also has an impact
on this difference.

II. INITIAL POINTS AND LINEAR ANALYSIS

The set of MHD equations for perfectly conducting gas includes
the continuity equation, momentum equation, energy balance equa-
tion, and electrodynamic equations. It considers unspecified inflow of
energy into a plasma and radiative losses due to some heating–cooling
function Lðp;qÞ [this function equals zero in the equilibrium thermo-
dynamic state (p0, q0)] and thermal conduction of a plasma v. The
classical Braginskii transport theory concludes that thermal conduc-
tion parallel to the magnetic field is much more efficient than the per-
pendicular one, v? � vjj, and contribution of only parallel compound
may be considered with a large margin.13 We follow conditions and
the geometry of a plasma’s flow accepted by Chin and Nakariakov
et al.:14,15 the wave vector of a planar flow is directed along axis z and
forms constant angle h (0 � h � p) with the straight equilibrium
magnetic field~B0. The y-component of~B0 equals zero, so as

B0;x ¼ B0 sin ðhÞ; B0;z ¼ B0 cos ðhÞ; B0;y ¼ 0:

All perturbations of magnetohydrodynamic variables depend on time
t and co-ordinate z. The leading-order system contains quadratically
nonlinear terms, and also these ones which are proportional to ther-
mal conduction and derivatives of the heating–cooling function with
respect to pressure and density as follows:16–18

@q0

@t
þ q0

@v0z
@z
¼ �q0

@v0z
@z
� v0z

@q0

@z
;

@v0x
@t
� B0;z

q0l0

@B0x
@z
¼ �v0z

@v0x
@z
� B0;z

q2
0l0

q0
@B0x
@z

;

@v0y
@t
� B0;z

q0l0

@B0y
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0l0
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@B0y
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;
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0
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� �
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@z

;
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� @

@z
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0
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� �
¼ �B0y

@v0z
@z
� v0z

@B0y
@z

;

where p, q, ~v; ~B denote the hydrostatic pressure and density of a
plasma, its velocity, and the magnetic field and l0 is the permeability
of free space. All thermodynamic quantities are expanded around the
equilibrium thermodynamic state as f ðz; tÞ ¼ f0 þ f 0ðz; tÞ. A plasma
is supposed to be static in equilibrium: ~v0 ¼~0. The ideal induction

equation yields @B0z
@t ¼ 0, and the Gauss law for magnetism ensures

@B0z
@z ¼ 0. Hence, B0z ¼ 0, and the number of unknowns reduces from
eight to seven. The fifth equation incorporates the energy conservation
and continuity equations for an ideal gas with adiabatic constant,
which equals a ratio of heat capacities under constant pressure and
constant volume, c ¼ CP

CV
. The partial derivatives Lp ¼ @L

@p ; Lq ¼ @L
@q ;

Lpp ¼ @2L
@p2 ; Lqq ¼ @2L

@q2 ; Lpq ¼ @2L
@p@q are evaluated at the equilibrium

state ðp0;q0Þ. The system describes perturbations of small magnitude,
that is, of small Mach numbers. The Mach number M is the ratio of
the magnitude of a plasma velocity and the magnetosonic speed. The
dispersion relations are established by the linearized equation [Eq. (1)]
if one looks for the solution in the form of a sum of planar waves pro-
portional to exp ðixðkÞt � ikzÞ, that is, in the integral form

f 0ðz; tÞ ¼
ð1
�1

~f ðkÞ exp ðixðkÞt � ikzÞdk;

where k designates the wave number. All forthcoming evaluations in
this study are leading-order, that is, they contain terms up to the first
powers of Lp, Lq, Lpp, Lqq; Lpq, and v. This concerns also quadratically
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nonlinear terms. Four dispersion relations are inherent to the magne-
tosonic modes, which rely on compressibility,

x ¼ Ckþ i
ðc� 1ÞðC2 � C2

AÞ
2c20ð2C2 � c20 � C2

AÞ
c20k

2 v
CPq0

� ðc20Lp þ LqÞ
� �

; (2)

where C is one of four magnetosonic speeds satisfying the equation

C4 � C2ðc20 þ C2
AÞ þ c20C

2
A;z ¼ 0; (3)

and CA and c0,

CA ¼
B0ffiffiffiffiffiffiffiffiffiffi
l0q0
p ; c0 ¼

ffiffiffiffiffiffiffi
cp0
q0

r
;

designate the Alfv�en speed and the acoustic speed in unmagnetized
gas in equilibrium, CA;z ¼ CA cos ðhÞ. We consider the weak individ-
ual impact of non-adiabaticity associated with the heating–cooling
function and thermal conduction on magnetosonic perturbations.
This means the weak variation of the MHD wave magnitude in the
course of propagation and in fact presupposes introduction of one
more small dimensionless parameter, say, k,

k ¼ ðc� 1ÞðC2 � C2
AÞ

2Cc20kð2C2 � c20 � C2
AÞ

Max c20k
2 v
CPq0

; jc20Lp þ Lqj
� �

:

Smallness of k depends on h and plasma-b,

b ¼ 2
c
c20
C2
A
;

and determines the domain of wave numbers of magnetosonic pertur-

bations. The analysis reveals that the ratio C2�C2
A

2C2�c20�C2
A
varies from 0 till 1

for both slow and fast magnetosonic modes. Hence, k is small with a

margin for ðc�1Þvk2CCPq0
� 1 and c�1

2Cc20k
jc20Lp þ Lqj � 1 in the case of both

slow and fast magnetosonic modes, and smallness of k is primarily
due to the small impact of thermal conduction and non-adiabaticity
introduced by the heating–cooling function. The dispersion relations
[Eqs. (2) and (3)] have been established by Chin and Nakariakov
et al.14,15 Linear magnetosonic perturbations of wave number k
enhance if

c20Lp þ Lq > c20k
2 v
CPq0

: (4)

This is the condition of acoustical activity corrected by contribution of
thermal conduction.19–21 The dispersion relations [Eq. (2)] uniquely
determine the links between specific magnetosonic (ms) perturbations
in a linear flow,

wlin;ms ¼ ðqms vms;x vms;y vms;z pms Bms;x Bms;yÞT

(T denotes transpose). The links inherent to perturbations in all mag-
netosonic modes in terms of magnetosonic density perturbation take
the form

vms;x ¼ �
CA;zðC2 � c20Þ

CA;xCq0
qms þ

ðc� 1ÞCA;zðC2 � c20ÞðC2 � 2c20 � C2
AÞ

2CA;xC2c20ð2C2 � c20 � C2
AÞq0

� ðc20Lp þ LqÞ
ð

qmsdzþ c20
v

CPq0

@qms

@z

� �
;

vms;y ¼ 0; (5)

vms;z ¼
C
q0

qms �
ðc� 1ÞðC2 � C2

AÞ
2c20ð2C2 � c20 � C2

AÞq0

� ðc20Lp þ LqÞ
ð

qmsdz þ c20
v

CPq0

@qms

@z

� �
;

pms ¼ c20qms �
ðc� 1Þ

C
ðc20Lp þ LqÞ

ð
qmsdz þ c20

v
CPq0

@qms

@z

� �
;

Bms;x ¼
ðC2 � c20Þl0

B0;x
qms �

ðc� 1ÞðC2 � c20ÞðC2 � c20 � C2
AÞl0

B0;xCc20ð2C2 � c20 � C2
AÞ

� ðc20Lp þ LqÞ
ð

qmsdz þ c20
v

CPq0

@qms

@z

� �
;

Bms;y ¼ 0:

These links may be used for an unequivocal definition of magneto-
sonic modes on a par with the corresponding dispersion relation. Two
Alfv�en modes (A) are specified by the dispersion relations

xA ¼ 6CA;zk

and links

BA;y ¼ 7
B0

CA
vA;y

(all other perturbations are zero), and the perturbations in the entropy
mode are determined by the dispersion relation and links as follows:

xent ¼ i
ðc� 1ÞLq

c20
þ i

v
CPq0

k2;

vent;z ¼
ðc� 1ÞLq

c20q0

ð
qentdz �

v
Cpq2

0

@qent

@z
; vent;x ¼

CA;x

CA;z
vz;ent

(6)

(all other perturbations are zero). Vectors of perturbations, corre-
sponding to different modes, are linearly independent. Once all spe-
cific links are determined, the projector may be evaluated, which
distinguishes the density perturbation in the entropy mode from the
vector of total perturbations wlin, which represents a sum of all specific
ones.11,22 The projector is a linear operator, which consists of seven
elementsm1;…;m7, so as

Pentwlin ¼ ðm1 m2 m3 m4 m5 m6 m7Þwlin ¼ qent ;

wlin ¼ ðq0 v0x v0y v0z p0 B0x B0yÞ
T :

(7)

The projector’s elements take the leading-order form

m1 ¼ 1; m2 ¼ �
ðc� 1ÞCA;xq0

CA;zc40
ðc20Lp þ LqÞ

ð
dz þ c20

v
CPq0

@

@z

� �
;

m3 ¼ 0; m4 ¼
CA;z

CA;x
m2; m5 ¼ �

1
c20
; m6 ¼ m7 ¼ 0:

Linear modes, that is, specific perturbations of infinitely small magni-
tudes, propagate independently on each other. This means that
dynamic equations for different specific perturbations do not couple.
In particular, application of Pent at the linearized system (1) (which is
briefly represented by

@

@t
Ewlin þ Kwlin ¼ 0;
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with K being the matrix operator containing spatial derivatives and E
denoting the unit matrix) readily results in the evolutionary equation
for qent,

Pent
@

@t
EwlinþKwlin

� �
¼ @

@t
qentþ

ðc�1ÞLq

c20
qent�

v
CPq0

@2qent

@z2
¼0:

The dynamic equation for the specific perturbation in the entropy
mode evidently corresponds to the dispersion relation xent. The pro-
jecting retains perturbations belonging to the entropy mode exclu-
sively and reduces all other specific perturbations in the linear fluid
field. The projecting is a powerful tool in studies of weakly nonlinear
flow since it allows us to derive dynamic equations for interacting
modes with properly distributed nonlinear terms. Going to the studies
of nonlinear flows, we still determine modes by specific links.
Application of Pent at the system (1) represented by

@

@t
Ewlin þ Kwlin ¼ /nonl;

where /nonl is the nonlinear vector on the right-hand side, yields the
dynamic equation for qent with the source Pent/nonl containing in gen-
eral contribution of all modes,

Pent
@

@t
Ewlin þ Kwlin

� �
¼ @

@t
qent þ

ðc� 1ÞLq

c20
qent �

v
CPq0

@2qent

@z2

¼ Pent/nonl:

The frames of this study do not allow us to discuss the mathematical
content closer. The method has been applied by the author in the
description of nonlinear interaction of modes in various fluid flows.
The detailed analysis and many examples may be found in Ref. 11 and
the related literature. As regards to the MHD flows and excitation of
magnetosonic heating, the method has been applied in Refs. 16, 17,
and 23

III. EXCITATION OF THE ENTROPY MODE IN THE FIELD
OF INTENSE MAGNETOSONIC PERTURBATIONS

For definiteness, we consider one dominant magnetosonic mode
(fast or slow) propagating in the positive direction of axis z, that is,
with C> 0. The dominance means that magnitudes of perturbations
in all other wave and non-wave modes are comparatively small.
Hence, only magnetosonic terms are considered in Pent/nonl among all
varieties of nonlinear ones. We focus on the nonlinear excitation of
the entropy mode since it is the only mode contributing in the varia-
tion of density, which may accumulate in time. In the studies of non-
linear phenomena, the linear magnetosonic links should be corrected
by nonlinear terms. The leading-order links are as follows:

wnonl;ms¼wlin;msþ 0 A1c0
q2
ms

q2
0

0 A2c0
q2
ms

q2
0

A3c
2
0
q2
ms

q0
A4B0

q2
ms

q2
0

0

 !T

;

(8)

where

A1 ¼
CA;zðC2 � c20Þ

2ð3C6 � 3C2c20C
2
A;z þ C4ðc20ðc� 2Þ � C2

A;zÞ � c20C
4
A;zðc� 3ÞÞ

4c0C5C3
A;xð2C2 � c20 � C2

AÞ
;

A2 ¼
Cðc20 þ C2ðc� 4Þ � C2

Aðc� 3ÞÞ
4c0ð2C2 � c20 � C2

AÞ
;

A3 ¼
c� 1
2

;

A4 ¼
ðC2 � c20Þ

2ðc20 þ C2
A � C2Þðc20 þ C2

Aðc� 1Þ � cC2Þ
2c20CAC3

A;xð2C2 � c20 � C2
AÞ

:

They have been obtained in terms of vms;z in Ref. 17. Quadratically nonlinear terms correct the linear links, making the dominant magnetosonic
mode isentropic in a flow without thermal conduction and zero L, that is, these terms are of order M2k0. In the absence of the magnetic field,
C¼ c0, CA¼ 0, and the relations are readily transformed as

vs;x ¼ vs;y ¼ 0;

vs;z ¼
c0
q0

qs �
ðc� 1Þ
2q0

v
CPq0

@qs

@z
�
ðc� 1Þðc20Lp þ LqÞ

c20q0

ð
qsdz þ

ðc� 3Þc0
4q2

0
q2
s ;

ps ¼ c20qs � c0ðc� 1Þ v
CPq0

@qs

@z
�
ðc� 1Þðc20Lp þ LqÞ

c0

ð
qsdz þ

ðc� 1Þc20
2q0

q2
s ;

Bs;x ¼ Bs;y ¼ 0;

(9)

which correspond to the sound (s) planar wave. The nonlinear terms
support isentropicity of the Riemann wave, and the linear terms in the
links reflect the dispersion relation.8,24 The link between ps and qs

generalizes the equation of state in the Riemann wave by including
terms associated with the thermal conduction and heating–cooling
function. It may be considered as a “constitutive equation” instead of
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“an equation of state,” which implies an instantaneous relation of vari-
ables.4 It has been used by Soluyan and Khokhlov in studies on nonlin-
ear acoustics in 1961.25 An energy loss that does not associate with L
results in a term proportional to the derivative of an acoustic density
with respect to time and thermal conduction. This term was consid-
ered erroneously as proportional to the total attenuation (including
mechanical one due to shear and bulk viscosity) in Ref. 4.

The variations of pressure associate only with the magnetosonic
wave, but the total variation of density consists of parts belonging to
the magnetosonic wave and to the entropy mode, qent. By means of
projecting, we are able to derive dynamic equations accounting for
weak nonlinear interaction of finite-magnitude modes. Particularly,
application of Pent at the system (1) taking into account links (6) and
(8) distinguishes the dynamic equation for density perturbation in the
entropy mode, yielding nonlinear terms properly attributed to specific

equations.17,18 Among all nonlinear terms that form a driving “source”
of the entropy mode, we consider only these belongings to the domi-
nant magnetosonic wave. A variation of density in the entropy mode
is governed by the leading-order dynamic equation

@qent

@t
þ ðc� 1ÞLq

c20
qent �

v
Cpq0

@2qent

@z2
¼ QL þ Qv ¼ Qms; (10)

where the magnetosonic source Qms is a sum of two parts, QL and Qv,

QL ¼ QL;1q
2
ms þ QL;2

@qms

@t

ð
qmsðz; tÞdt; (11)

Qv ¼ Qv;1
@qms

@t

� �2

þ qms
@2qms

@t2

 !
þ Qv;2qms

@2qms

@t2
; (12)

and

QL;1 ¼ �
ðc� 1Þ

4q0c
2
0ðC4 � c20C

2
A;zÞ

	
�ðc

4
0CA;z þ C4ðCA;x þ CA;zÞ � 2C2c20CA;zÞðð4þ cÞC2 � ðcþ 1ÞC2

A � 3c20Þ
CA;x

� ðc20Lp þ LqÞ þ 0:5c20ð�2c40ðc20Lp þ LqÞ þ 4C4ðð5� 2cÞLq þ 2c40q0Lpp þ 2q0Lqq þ 3c20Lp þ 4c20q0LpqÞ

�2C2ð2c60q0Lpp þ c40ðð2c� 1ÞLp þ 2C2
Aq0Lpp þ 4q0LpqÞ þ 2C2

Aðð4� 2cÞLq þ q0LqqÞ þ c20ðLq þ 2q0Lqq þ C2
Að2ð3� cÞLp þ 4q0LpqÞÞÞ




QL;2 ¼
ðc� 1ÞC2ðc20Lp þ LqÞ
2q0c

2
0ðC4 � c20C

2
A;zÞ

ð2cc20 þ ðcþ 1ÞC2
A � ð3cþ 1ÞC2Þ

� �
;

Qv;1 ¼
ðc� 1Þv

2Cpq2
0c

2
0C

3
A;xC

2ðC4 � c20C
2
A;zÞ

ðC6ðc20CA;x þ 2ðC2
A;xCA;z þ CA;xC

2
A � C3

A;zÞÞ � C4c20ð2c20CA;x þ 2C2
A;xCA;z þ 7CA;xC

2
A;z � 6C3

A;z

h
þ 4ðc� 1ÞC3

A;xÞ þ C2c20ðc40CA;x þ c20ð8CA;xC
2
A;z � 6C3

A;z þ ðc� 1ÞC3
A;xÞ þ 2C2

A;xC
2
A;zðCA;xðc� 2Þ � cCA;zÞÞ

þc40ðC2
A;zðc20ð2CA;z � 3CA;xÞ þ C2

A;xððc� 1ÞCA;x þ 2cCA;zÞÞÞ
i
;

Qv;2 ¼
ðc� 1Þ2v
CPC2q2

0
:

The reason for the separation of two sources QL and Qv on the right-
hand side of Eq. (10) is in association of different terms with various
non-adiabatic effects caused by the heating–cooling function and ther-
mal conduction. The dynamic equation for the variation of density in
the entropymode without account of thermal conduction and the corre-
sponding source QL have been derived by the author in Ref. 17. Taking
in mind that for the wave mode @

@z � � 1
C
@
@t, the total pressure perturba-

tion relates to the total density perturbation in the leading order as

p0 ¼ pms ¼ c20ðq0 � qentÞ þ
ðc� 1Þc20

2q0
q2
ms �

c� 1
C
ðc20Lp þ LqÞ

�
ð

qmsdz �
ðc� 1Þc20

C
v

CPq0

@qms

@z

� c20ðq0 � qentÞ þ
ðc� 1Þc20

2q0
q02 þ ðc� 1Þðc20Lp þ LqÞ

�
ð

q0dt þ ðc� 1Þc20
C2

v
CPq0

@q0

@t
(13)

and respectively,

q0 ¼ qent þ
p0

c20
� ðc� 1Þ

2q0c
4
0
p02 � ðc� 1Þ

c40
ðc20Lp þ LqÞ

ð
p0dt

� ðc� 1Þ
C2c20

v
CPq0

@p0

@t
: (14)

There are terms of different orders on the right-hand side of Eq. (13).
The leading-order term is c20qms, where qms is a difference of q0

[O(M)] and qent, which is governed by Eq. (10) with the magnetosonic
source [OðM2kÞ]. The next terms in Eq. (13) are of comparative order,

that is, ðc�1Þc
2
0

2q0
q02 [OðM2Þ], ðc� 1Þðc20Lp þ LqÞ

Ð
q0dt [OðMkÞ], and

ðc�1Þc20
C2

v
CPq0

@q0

@t [OðMkÞ]. In these terms, we replace qms by the total q0

in view of smallness of damping/enhancement due the heating–
cooling function, thermal conduction, and nonlinear effects. The
sources (11) and (12) in the unmagnetized case (C ¼ c0, CA ¼ 0)
take the forms

QL ¼
ðc� 1ÞLT
2q2

0CP

3ðc� 1Þ
2

q2
s � ðcþ 1Þ @qs

@t

ð
qsdt

	 

; (15)
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Qv ¼ �
ðc� 1Þv
2q2

0c
2
0CP

ð3c� 5Þ @qs

@t

� �2

þ ðc� 3Þqs
@2qs

@t2

" #
: (16)

We will treat L as a function of temperature T, so as

Lp ¼
cLT

CPðc� 1Þq0
; Lq ¼ �

c20LT
CPðc� 1Þq0

;

Lpp ¼
c2LTT

C2
Pðc� 1Þ2q2

0

; Lqq ¼
c20ð2CPðc� 1ÞLT þ c20LTTÞ

C2
Pðc� 1Þ2q2

0

;

Lpq ¼ �
CPðc� 1ÞcLT þ c20cLTT

C2
Pðc� 1Þ2q2

0

;

and discard the second derivative of L with respect to T, LTT. The con-
dition (4) rearranges as

LT > LT;0 ¼
x2v
c20

:

Equation (15) matches the result of Ref. 26 for weak magnetic strength
and nearly periodic sound, and Eq. (16) agrees with conclusions of
Refs. 22 and 24.

IV. HYSTERESIS CURVES FOR PERIODIC
AND IMPULSIVE EXCITERS

In general, qent satisfies Eq. (10), which is difficult for analytical
solution. In order to simplify evaluations, we suppose that the varia-
tion of density in the entropy mode may be evaluated by integrating
the magnetosonic source with respect to time (qent ¼ 0 at t¼ 0),

qent ¼
ðt
0
Qmsdt:

This approach imposes that the impact of thermal conduction and
heating–cooling function is considered on the right-hand side (that is,
in the magnetosonic source) but is discarded on the linear left-hand
side of equation.

A. Harmonic magnetosonic pressure

We consider harmonic magnetosonic dimensionless pressure at a
transducer in the form

P ¼ p0

Mc20q0
¼ sin ðxtÞ; (17)

where x is the magnetosonic frequency. The leading-order form of
the total dimensionless variation of density in accordance with Eq.
(14) is described by

R ¼ q0

Mq0
¼ sin ðxtÞ þ ðc� 1Þ

xCPq0
LT �

x2

C2
v

� �
cos ðxtÞ

� 1
2
Mðc� 1Þ sin2ðxtÞ þ Rent ; (18)

where

Rent ¼
qent

Mq0
¼ Mq0

QL;1 � QL;2 � Qv;2x2

2x
xt

�Mq0
QL;1 þ QL;2 � ð2Qv;1 þ Qv;2Þx2

4x
sin ð2xtÞ: (19)

Equations (17)–(19) determine the dependence of the total density
perturbation q0 on the total pressure perturbation p0 in the parametric
form. One may conclude that the term

ðc� 1Þ
xCPq0

LT �
x2

C2
v

� �
cos ðxtÞ (20)

is responsible for the width of a hysteresis curve in the plane of magne-
tosonic pressure vs magnetosonic density [it is nonzero if the factor by
cos ðxtÞ is non-zero], that is, P() R diagram not taking into
account Rent. If LT > x2

C2 v, a hysteresis curve in the magnetosonic per-

turbation diagram has the clockwise direction, and if LT < x2

C2 v; it has
the counterclockwise direction. The term

1
2
Mðc� 1Þ sin2ðxtÞ (21)

is responsible for the nonlinear distortion of a curve (quadratic nonlin-
earity deforms an elliptic diagram into a crescent with downcast ends).
The term

Mq0
QL;1 þ QL;2 � ð2Qv;1 þ Qv;2Þx2

4x
sin ð2xtÞ (22)

with non-zero factor by sin ð2xtÞ may lead to formation of intersec-
tions in a hysteretic curve. This term reflects the contribution of the
entropy mode, as well as the term

Mq0
QL;1 � QL;2 � Qv;2x2

2x
xt: (23)

This is the only term that may be non-zero on the average over the
magnetosonic period. It is responsible for slow accumulation of posi-
tive or negative variations of density due to excitation of the entropy
mode. It could unlimitedly enlarge in absolute value if it were not
opposed by the growing nonlinear interaction with other modes.
When the variation of density in the entropy mode becomes compara-
ble with density perturbation in the dominant mode, Eq. (10) is no
longer valid. The inflow of energy balances losses due to thermal con-
duction over a period if

LT ¼ LT;th;

which ensures QL;1 � QL;2 � Qv;2x2 ¼ 0. Figure 1 shows the ratio
LT;th
LT;0

for the fast magnetosonic mode as a function of b at different h

values. In the cases h ¼ 0 and h ¼ p, b < 2
c corresponds to C ¼ CA

and ratio 0 (b > 2
c corresponds to C ¼ c0 and ratio 2). In all evalua-

tions, c ¼ 5
3.

So, the threshold values for acoustical activity, LT;0, and that for
an anomalous decrease in the background temperature associated
with the entropy mode, LT;th, are different. This is due to the distribu-
tion of incoming/outcoming energy between the wave and non-wave
modes. The acoustical activity is the linear effect, but excitation of the
entropy mode in the field of intense MHD waves is the nonlinear phe-
nomenon in essence. Acoustical activity makes the energy associated
with the magnetosonic mode enlarge until suppressed by damping
and/or nonlinear transfer of energy into the entropy mode and other
wave modes. This part of energy “goes away” with the running wave.
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The part of energy, which accumulates in the space domain, associates
with the entropy mode. The sketchy plots of two cycles of hysteresis
curves for different ratios of LT;th and LT;0 are shown in Fig. 2. The
starting time of excitation is t¼ 0.

The counterclockwise direction in the last plot in the low row is
due to a constant increase in the density perturbation associated with
the entropy mode, Rent. The total density perturbation decreases or
increases after passing of a wave period in dependence on energy bal-
ance. The variation in the internal energy of a medium during the
magnetosonic period is determined by dynamics of the entropy mode.
The relative variation of the internal energy U over the period may be
positive or negative. It equals

x
2p

dU
U0
¼ � 1

q0

@qe

@t


 �
¼ �Mq0ðQL;1 � QL;2 � Qv;2x

2Þ; (24)

where square brackets denote average over the exciter’s period and U0

is an unperturbed internal energy of a plasma.

B. A bipolar impulse

The next kind of an exciter is bipolar at a transducer,

P ¼
ffiffiffiffiffi
2e
p

xt exp ð�ðxtÞ2Þ; (25)

where x denotes the characteristic inverse duration of an impulse (the
multiplier

ffiffiffiffiffi
2e
p

ensures unit maximum P). The leading-order form
of the total dimensionless density perturbation in accordance with
Eq. (13) equals

FIG. 2. Dependence of the dimensionless total density perturbation on the dimensionless total pressure perturbation in the MHD flow: case of the periodic pressure at a trans-
ducer and LT < LT;th (a), LT ¼ LT;th (b), and LT > LT ;th (c). The upper row corresponds to LT <

x2v
C2 , and the lower row corresponds to LT >

x2v
C2 . Arrows indicate the direc-

tion of evolution. The curves show two cycles of the harmonic excitation.

FIG. 1. The ratio LT ;th
LT ;0

for the fast magnetosonic mode as a function of b at different
h values.
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R ¼ q0

Mq0
¼

ffiffiffiffiffi
2e
p 	

xt exp ð�ðxtÞ2Þ þ ðc� 1ÞLT
2xCPq0

exp ð�ðxtÞ2Þ

� ðc� 1Þx
C2

v
Cpq0

exp ð�ðxtÞ2Þðxt � 2ðxtÞ3Þ

�
ffiffiffiffiffi
2e
p

2
Mðc� 1Þ exp ð�2ðxtÞ2ÞðxtÞ2



þ Rent

and

Rent ¼ �Mq0
exp ð1� ðxtÞ2Þ

2x
ðxt ðQL;1 þQL;2Þ
�

þx2ð�4Qv;1 � 3Qv;2 þ 4x2t2ð2Qv;1 þQv;2ÞÞÞ

þeMq0

ffiffiffi
p
p
ðQL;1 �QL;2 � 3x2Qv;2Þ

4
ffiffiffi
2
p

x
ðErf

ffiffiffi
2
p

xt
� �

þ 1Þ: (26)

The threshold LT;th is determined by equality QL;1 � QL;2 � 3x2Qv;2

¼ 0 and hence is three times larger than the threshold value for the
harmonic signal. Figure 3 shows exemplary P() R diagrams as an
impulse develops from�1 till1 in time.

The total relative increase/decrease in the internal energy due to
the balance of incoming energy and increase/decrease in the magneto-
sonic energy is given by the following formula:

dU
U0
¼� 1

q0

ð1
�1

Qmsdt¼�eMq0

ffiffiffi
p
2

r
ðQL;1�QL;2�3x2Qv;2Þ

2x
: (27)

V. CONCLUDING REMARKS

The subject of study is the relation of total variation of density
and total variation of pressure taking into account excitation of the
entropy mode in the field of intense magnetosonic perturbations. The
pictorial rendition of these relations is a diagram that reflects the hys-
teretic character of irreversible thermodynamic processes. The main
results of this study are Eq. (13) [Eq. (14)] along with the evolutionary
equation for qent given by Eq. (10). They determine diagrams in the
plane of total perturbation of pressure vs total perturbation of density
in a magnetohydrodynamic flow, p0 () q0. Equation (13) makes use
of the links between dominant magnetosonic pressure and magneto-
sonic density and considers nonlinear excitation of the entropy mode.
After passing a wave, a medium does not return back to the

equilibrium, and the parameters behavior in both the wave and a
medium is irreversible. As usual, the temperature of a medium gets
larger (and its density smaller) due to transfer of the wave energy into
that of the chaotic motion of the molecules in nonlinear flows with
attenuation. Some kinds of the heating–cooling function may overbal-
ance damping and lead to a cooling of a plasma. This is reflected in
the hysteresis diagrams.

Equation (10) is simplified by discarding terms ðcþ1ÞLq

c20
qent ;

v
Cpq0

@2qent
@z2 in the first approximation, so as the solution is a simple inte-

gral of Qms over time. The impact of these disregarded terms may
decrease or increase (this is the case of thermal instability Lq < 0 and
comparatively small thermal conduction) the magnitude of qent evalu-
ated by simple integration. For more precise evaluations, Eq. (10) with
a magnetosonic source should be solved. The variation of density in
the entropy mode qent is the only term that may accumulate and
enlarge in absolute value with time until suppressed by nonlinear
transfer of energy between modes. When the absolute value of qent
approaches a magnetosonic density, other modes also enhance, the
dominant mode weaken, and Eqs. (10) and (13) are no longer valid.
The terms on the right-hand side of Eq. (13) ðc� 1Þðc20Lp þLqÞ

Ð
q0dt

and ðc�1Þc
2
0

C2
v

CPq0

@q0

@t , as well as qent, also reflect hysteretic behavior, that

is, the dependence of the current thermodynamic state on the history.
The first term that associates with the heating–cooling function
includes an integral operator. The exemplary exciters considered in
this study give non-zero variation in magnetosonic density over one
period or after an impulse passing due to this term. In some cases of
exciters, the non-zero integral results in non-zero magnetosonic den-
sity. In particular, this happens to mono-polar impulses. In the case of
the Gaussian exciter,

pms ¼ Mq0c
2
0 exp ð�ðxsÞ2Þ;

where x is the characteristic duration of an impulse, and a magneto-
sonic density after an impulse passes equals

qms ¼ �Mq0
2
ffiffiffi
p
p
ðc� 1Þðc20Lp þ LqÞ

c20x
: (28)

This is a constant quantity in contrast to the non-wave density pertur-
bation in the entropy mode, qent. In some parts of the curve q0ðp0Þ,

FIG. 3. P () R diagrams: case of the bipolar pressure impulse at a transducer and LT < LT ;th (a), LT ¼ LT;th (b), and LT > LT;th (c).
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density may temporarily additionally grow due to the term
ðc�1Þ
C2c20

v
CPq0

@p0

@t in Eq. (14). This may happen to the domains where pres-
sure decreases with time. This term is zero on average for periodic
exciters and tends to zero if t ! 61 for impulsive exciters. That is
why the ultimate variation in magnetosonic density is determined
exclusively by the integral term, which in turn is determined by the
heating–cooling function. The total density perturbation includes as a
part qent, which depends on the magnetosonic source in accordance
with Eq. (10) and may take positive and negative values. Involving
into consideration mechanical viscosity would contribute to Eq. (10),
enriching the source right-hand term with a part associated with
mechanical damping, Qmech, which is always negative: Q ¼ QL þ Qv

þQmech. Magnetosonic links (13) and (14) remain unchanged since
mechanical losses do not contribute to the pressure–density links for
wave perturbations.

The linear links (not to mention nonlinear corrections to them)
between specific perturbations are undeservedly underestimated. The
integral link between perturbations of pressure and density in the
wave motion is inherent to flows with relaxation of thermodynamic
parameters.7,8,10,27 It appears in flows of spatially inhomogeneous in
equilibrium media like the atmospheric gas affected by the gravita-
tional force.11 Generally, an integral link contains a kernel, which is
frequency-dependent. The links determine the dynamic equations for
wave and non-wave perturbations in all frequency ranges, including
weakly nonlinear ones accounting for the interaction of different
modes.5,28,29 This is of especial importance in the case of impulsive
exciters with the broad frequency spectrum. Wave processes reveal
frequency-dependent behavior due to the impact of the heating–cool-
ing function and thermal conduction. In this study, we consider high-
frequency magnetosonic perturbations weakly damping/amplified
over wavelength and make use the series expansion in the first powers
of Lp, Lq, and v. The dispersion relations, and in particular the real
part of magnetosonic frequency, will experience modification in the
general, not asymptotic case.30,31 Coverage of the entire frequency
range would have an impact on links of wave perturbations and the
source of the entropy mode as it happens to flows of gases with various
relaxation processes.5,28,29,32 The links between total perturbations
may indicate thermodynamic processes in a medium (characteristic
frequency of magnetosonic perturbations and their magnitude), its
equilibrium state, and parameters responsible for the deviation from
adiabaticity of a flow. The diagrams may be useful in reconstruction of
dispersive and viscous properties of a medium in the general case as
well.4,8 Plotted for different frequencies of wave perturbations, these
pictorial images make possible to evaluate the time scales at which the
dispersive properties of the wave are most pronounced. The analogous
problems in optics are usually solved by laser spectroscopy.33 In the
context of this study, the only term in pms () qms relation, which
depends on the magnetosonic speed C, that is, on an angle between

the magnetic field and the wave vector h and plasma-b, is ðc�1Þc
2
0

c20C
2

v
CPq0

@p0

@t . The diagrams may be used in order to determine these param-

eters. The links between thermodynamic perturbations in the wave
mode, which may be referred to as “the constitutive equation” or “the
polarization relation” rather than an equation of state, are useful in
many wave problems not only belonging to acoustics. Khokhlov used
a similar equation referring to nonlinear electromagnetic waves.34 The
mathematical tool for evaluations in this study is projecting, which is

actually a way for linear combination of conservation equations in
order to eliminate all linear non-specific terms.

An efficiency of the irreversible heating of a medium depends on
the magnitude and shape of an exciting magnetosonic pressure, as well
as p0 () q0 diagrams. It is also determined by QL;1; QL;2; Qv;1; Qv;2,
which in turn depend on plasma-b and h [Eq. (10)]. This causes stud-
ies of magnetohydrodynamic flows especially difficult even in a simple
geometry of a flow. For a medium with known thermodynamic prop-
erties, the diagrams may be useful in reconstruction of the remote
magnetosonic source. The type of excitation may be selected in order
to produce the lowest or highest heating at the same intensity of the
initial perturbations. We do not consider exciters with discontinuities
in this study. The saw-tooth wave forms in acoustically active flows if
mechanical damping and thermal conduction are comparatively
small,18 and it may appear at sudden excitation of a medium. The
magnetosonic wave with discontinuity experiences nonlinear damp-
ing.7,8 The peculiarities of nonlinear damping at the fronts compared
to Newtonian attenuation and difference in the hysteresis curves have
been discussed by Hedberg and Rudenko.4
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