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Abstract: Design of modern antennas faces numerous difficulties, partially rooted in stringent
specifications imposed on both electrical and field characteristics, demands concerning various
functionalities (circular polarization, pattern diversity, band-notch operation), but also constraints
imposed upon the physical size of the radiators. Conducting the design process at the level of
full-wave electromagnetic (EM) simulations, otherwise dictated by reliability, entails considerable
computational expenses, which is another and a serious challenge. It is especially pronounced
for the procedures involving repetitive EM analyses, e.g., parametric optimization. Utilization of
fast surrogate models as a way of mitigating this issue has been fostered in the recent literature.
Unfortunately, construction of reliable surrogates for antenna structures is hindered by their highly
nonlinear responses and even more by the utility requirements: design-ready models are to be
valid over wide ranges of operating conditions and geometry parameters. Recently proposed
performance-driven modeling, especially the nested kriging framework, addresses these difficulties
by confining the surrogate model domain to a region that encapsulates the designs being optimum
with respect to the relevant figures of interest. The result is a dramatic reduction of the number of
training samples needed to render a usable model. This paper introduces a variable-thickness domain,
which is an important advancement over the basic nested kriging. The major benefit demonstrated
using two antenna examples is a further and significant (up to seventy percent) reduction of the
training data acquisition cost. It is achieved while ensuring that the model domain covers the regions
containing optimum designs for various sets of performance specifications.

Keywords: antenna modeling; surrogate modeling; nested kriging; domain confinement;
variable-thickness domain; simulation-driven design

1. Introduction

Contemporary antenna structures are designed to meet the demands pertaining to different
application areas, including wireless communications [1] (along with the emerging 5G technology [2,3]),
satellite communications [4], medical imaging [5], or internet of things (IoT) [6]. In many cases, various
functionalities have to be implemented including multi-band operation [7], circular polarization [8],
band notches [9], MIMO operation [10], or pattern diversity [11]. At the same time, reduction of the
physical size of radiators is of concern for a growing number of situations (e.g., wearable [12] and
implantable devices [13]). In pursuit of fulfilling the stringent specifications, increasingly complex
antenna topologies are being developed. Their evaluation requires full-wave electromagnetic (EM)
analysis because other means are either unavailable or (as equivalent network models) can only be
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used for yielding rough initial designs that need further tuning [14]. Nowadays, EM-driven design
is ubiquitous, but its downside is high computational cost. This becomes a practical issue whenever
multiple simulations are necessary. A typical task is parameter adjustment [15,16]. It is imperative for
most antenna structures but generates considerable CPU expenditures, particularly when reasonable
initial design is not available, or the global search needs to be involved [17].

Expediting design optimization can be realized at the algorithmic level. Representative examples
are the gradient-based procedures where the speedup can be achieved by lowering the cost of antenna
response Jacobian estimation using adjoint sensitivities [18,19], or by suppressing finite-differentiation
sensitivity updates based on various criteria, e.g., monitoring design relocation [20] or gradient changes
between the algorithm iterations [21]. The employment of fast surrogate models provides viable
alternatives. These can be realized in the context of local [22] or global optimization [23]. For the
former, the surrogates are typically constructed along the optimization path, and can be data-driven
(polynomial regression [24], kriging [25], neural networks [26], polynomial chaos expansion [27])
or physics-based (space mapping [28,29], response correction [30], feature-based optimization [31]),
normally obtained from underlying low-fidelity models (in the case of antennas most often being
coarse-mesh EM simulations [32]). Global surrogate-assisted optimization often involves machine
learning techniques [33] but also all kinds of approximation surrogates [34]. In this context, sequential
sampling methods are typically employed [35], where iterative allocation of the infill points can be
aimed at improving the predictive power of the model, searching for the global optimum or the
combination thereof [36].

Utilization of the stand-alone surrogate models as replacements of CPU-heavy EM simulations
has been fostered in the literature as a way of accelerating various simulation-driven design procedures,
including design closure [37–39]. Data-driven surrogates seem to be especially attractive for these
purposes due to their versatility and widespread availability (e.g., [40,41]). Well established and popular
approximation techniques include polynomial regression [36], artificial neural networks [42], radial
basis functions (RBF) [37], kriging interpolation [36], Gaussian process regression (GPR) [38], or support
vector regression (SVR) [43]. Unfortunately, conventional methods are severely limited when applied
to antenna problems. The primary challenges include nonlinearity of antenna characteristics, the curse
of dimensionality affecting the modeling process due to a typically large number of geometry/material
parameters that need to be handled, as well as the need for covering wide ranges of operating conditions
and designable parameters. The latter is critical from the point of view of practical usefulness of the
surrogate for design purposes. Alleviating these difficulties is possible in specific situations using the
methods such as high-dimensional model representation (HDMR) [44], least-angle regression [45],
or incorporation of variable-fidelity models (two-stage GPR [46], co-kriging [47], Bayesian model
fusion [48]).

Model domain confinement has been recently suggested as an alternative approach to
computationally efficient surrogate modeling [49–51]. By focusing the modeling process on the region
containing designs that are optimum with respect to the selected performance figures (e.g., operating
frequencies of a multi-band antenna) or material parameters (e.g., relative permittivity of the dielectric
substrate the antenna is implemented on), reliable surrogate can be rendered over wide ranges of
operating conditions using small training data sets. Identification of such regions is realized with the
help of pre-existing reference designs [50], which could be available from the previous design work
with the same structure or obtained as a part of the modeling procedure.

One of the most recent methods adopting the domain confinement approach is the nested kriging
framework [51]. The two kriging metamodels are utilized: the first-level one to establish the region
of interest (model domain), and the second-level model being the actual surrogate. The important
advantage of the technique is a straightforward arrangement of uniform training data sampling as
well as model optimization, both enabled by a one-to-one mapping between the unity interval and the
surrogate domain being a part of the formulation of the procedure [51]. The critical (scalar) control
parameter of nested kriging is the thickness coefficient determining the ratio between the lateral
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and tangential size of the domain. Its value establishes the trade-off between the model predictive
power and the coverage of the regions containing potentially optimum antenna designs for various
sets of performance specifications. This paper proposes a variable-thickness domain for nested
kriging, where the thickness parameter is a function of the objective space vectors. The keystones of the
approach are the reference design triangulation and an appropriate mapping defined over the expansion
coefficients of the objective vector with respect to the vertices of the simplexes being a result of the
triangulation process. Using this mapping, the domain thickness is maintained small in the vicinity of
the reference designs (which are optimal by definition) and increases towards the simplex centers (where
the first-level model deviates the most from the optimum design manifold). The variable-thickness
domain method permits the construction of reliable surrogates using significantly (by up to seventy
percent) smaller data sets than required by the fixed thickness version. The computational benefits are
achieved without compromising the model coverage in terms of geometry parameter and operating
condition ranges. These properties are validated using two antenna examples as well as benchmarking
against conventional modeling methods (kriging, RBF) and the original nested kriging. The major
novelties and technical contributions of the paper, beyond what has been presented in the literature
so far, include: (i) introduction of the concept of variable-thickness domain including its rigorous
analytical formulation, (ii) incorporation of the concept into the nested kriging modeling framework,
(iii) demonstration of significant computational benefits that can be obtained (up to seventy percent
savings in terms of the training data acquisition cost) as compared to the state-of-the-art approaches,
without compromising the model predictive power, (iv) demonstration of the model efficacy as antenna
design tool. To the best of authors’ knowledge, the presented approach is the first modeling framework
that permits construction of fast and reliable surrogates of antenna structures within broad ranges of
geometry and operating parameters while using such a small number of data samples.

2. Surrogate Modeling by Nested Kriging

For the purpose of self-containment, this section briefly recalls the formulation of the nested kriging
modeling framework. The variable-thickness domain concept is outlined in Section 3, whereas its
numerical validation can be found in Section 4.

2.1. First-Level Surrogate

The nested kriging framework takes advantage of the correlations between antenna geometry
parameters corresponding to the designs that are optimum with respect to the typical figures of
interest [49]. For example, antenna re-design for various operating frequencies normally entails
synchronized adjustment of the parameters. The parameter sets being away from these correlation
patterns are of poor quality and excluding them from the modelling process may be beneficial from the
point of view of the computational efficiency. This is in opposition to conventional domains determined
by the lower and upper bounds for design parameters, which are indiscriminative with respect to the
aforementioned correlations. In nested kriging, identification of the regions containing high-quality
designs is realized using a set of reference designs and the first-level surrogate as elaborated on below.

We denote by x = [x1 . . . xn]T the vector of antenna parameters. The (conventional) parameter
space X is defined by the lower and upper bounds l = [l1 . . . , ln]T and u = [u1 . . . , un]T, so that
lk ≤ xk ≤ uk for k = 1, . . . , n. Furthermore, we denote by fk, k = 1, . . . , N, the figures of interest pertinent
to the design task at hand, operating conditions, or material parameters (e.g., operating frequency,
bandwidth, or substrate permittivity assuming that the antenna is to be re-designed for various
substrates). The ranges fk.min ≤ fk(j)

≤ fk.max, k = 1, . . . , N, define the objective space F, i.e., the region
over which the surrogate model is to be valid.
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The design optimality is understood, for a given objective vector f ∈ F, in the sense of minimizing
the functional U(x,f ), where U is the scalar merit function which quantifies the design quality. In other
words, the optimum design x* is given as

x∗ = UF(f) = argmin
x

U(x, f) (1)

We also define
UF(F) =

{
UF(f) : f ∈ F

}
(2)

which is the manifold consisting the designs being optimum in the sense of (1) for all f ∈ F.
For the sake of computational efficiency, it is advantageous to construct the surrogate model

in the vicinity of UF(F). Within the nested kriging framework, the first approximation of this set is
obtained using the reference designs x(j) = [x1

(j) . . . xn
(j)]T j = 1, . . . , p, optimized with respect to

the objective vectors f (j) = [f 1
(j) . . . fN(j)]; f (j) should be allocated in a possibly uniform manner in F.

As mentioned before, x(j) may be available from the previous design work on the same structure or
obtained specifically for the purpose of surrogate model construction.

The first-level surrogate sI(f ): F → X is identified as a kriging interpolation model [51] using
{f (j),x(j)}, j = 1, . . . , p, as the training set. Figure 1 shows a graphical illustration of these concepts. Note
that sI(F) (the image of F) approximates UF(F) but it does not coincide with it because the number of the
reference designs is normally limited. It should be noted that the geometry of the reference set in the
objective space is generally different than that in the parameter space; however, the reference points in
the parameter space are arranged along the manifold UF(F), i.e., the object of the same dimensionality
as F.
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Figure 1. Fundamentals of the nested kriging concept (here, shown for two performance figures and 
three-dimensional parameter space): (a) objective space F, (b) parameter space X, the reference 
designs, the optimum design manifold UF(F), and the first-level model image sI(F). The manifolds 
UF(F) and sI(F) do not coincide for all f ∈ F but the agreement is perfect for all reference designs x(j), 
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Figure 1. Fundamentals of the nested kriging concept (here, shown for two performance figures and
three-dimensional parameter space): (a) objective space F, (b) parameter space X, the reference designs,
the optimum design manifold UF(F), and the first-level model image sI(F). The manifolds UF(F) and
sI(F) do not coincide for all f ∈ F but the agreement is perfect for all reference designs x(j), which are
optimal in the sense of (1).

2.2. Domain Definition

Due to imperfect approximation of UF(F) by sI(F) it is necessary to extend the latter so that all (or
most) of the designs UF(f ) are included. In [51], the extension is implemented using the vectors normal
to sI(F). We denote by {vn

(k)(f )}, k = 1, . . . , n – N, an orthonormal basis of vectors normal to sI(F) at f .
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Additional notation is also used: xmax = max{x(k), k = 1, . . . , p}, xmin = min{x(k), k = 1, . . . , p}, and
xd = xmax – xmin, which quantifies the parameter variations within sI(F). The extension coefficients are
then defined as

α(f) = [α1(f) . . . αn−N(f)]
T = 0.5T

[
|xdv(1)

n (f)| . . . |xdv(n−N)
n (f)|

]T
(3)

where T is a user-defined thickness parameter. The surrogate model domain XS is allocated between
the manifolds M+ and M–

M± =
{
x ∈ X : x = sI(f) ±

∑n−N

k=1
αk(f)v

(k)
n (f)

}
(4)

We have

XS =

 x = sI(f) +
n−N∑
k=1

λkαk(f)v
(k)
n (f) : f ∈ F,

− 1 ≤ λk ≤ 1, k = 1, . . . , n−N

 (5)

A graphical illustration of the manifolds M+, M–, and the domain XS has been provided in Figure 2.
The second-level (i.e., the actual) surrogate is implemented as a kriging interpolation model over the
domain XS. The training data is {xB

(k),R(xB
(k))}k = 1, . . . , NB, where xB

(k)
∈ XS are uniformly allocated

samples, whereas R stands for the response of the EM-simulation model of the antenna. Detailed
information about the design of experiments (sampling) procedure can be found in [51] (see also
Section 3.3).
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Figure 2. The image sI(F) of the first-level surrogate model and the normal vector v1
(k) at f (k);

the manifolds M– and M+ and the surrogate model domain XS defined as the orthogonal extension
of sI(F).

As demonstrated in [51], confining the surrogate model domain to XS, the volume of which is
significantly smaller than the volume of X, brings in considerable computational benefits. The major
advantage is a possibility of constructing reliable surrogates using a small number of training samples
and without formally restricting the ranges of antenna parameters and operating conditions the model
is valid for. Even more importantly, these benefits are especially pronounced in higher-dimensional
spaces where modeling within the conventional domain X is often computationally prohibitive.

3. Variable-Thickness Domain

This section discusses the importance of the surrogate model thickness parameter T in the light
of the trade-offs between the model predictive power, the cost of training data acquisition, as well
as the model utility in the sense of the domain encapsulating the optimum design manifold UF(F).
The concept and implementation of variable-thickness domain is subsequently introduced along with
its incorporation into the nested kriging modelling framework.
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3.1. Domain Thickness: Model Accuracy vs. Utility Trade-Offs

The thickness parameter T plays an essential role in the nested kriging framework. On one hand,
it determines the volume of the domain XS. Increasing the value of T by a factor of two enlarges the
domain by a factor 2n–N, which may be orders of magnitude for highly-dimensional space. This directly
affects the number of training data samples required to yield the accurate model. In particular, keeping
T at low values is beneficial for computational efficiency. On the other hand, reducing the domain
thickness leads to keeping a part (or even a majority) of the optimum design manifold UF(F) out of
XS. This compromises the design utility of the surrogate because the true antenna optimum becomes
unattainable for certain regions of the objective space as indicated in Figure 3. Thus, the trade-off is to
set T at the minimum value ensuring that most of UF(F) is in XS. Clearly, this leaves a very limited
room for reducing the cost of training data acquisition given a target level of the model error.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 19 

 

Figure 2. The image sI(F) of the first-level surrogate model and the normal vector v1(k) at f(k); the 
manifolds M– and M+ and the surrogate model domain XS defined as the orthogonal extension of sI(F). 

x1

x2

UF(F)

sI(F)

v1(k)

x(k)

M+ (increasing T)

M- (increasing T)

Preferred trade-off 
domain thickness T 
(minimum volume 
while 
encapsulating 
majority of UF(F))XS

 
Figure 3. The meaning of the domain thickness parameter T, here, explained for two-dimensional 
parameter space. Increasing T enlarges the model domain which allows for encapsulating the 
optimum design manifold UF(F). At the same time, larger domain requires more training samples to 
render reliable surrogate. The desired trade-off is to find the minimum value of T enabling 
incorporation of the majority of UF(F) into XS. 

3.2. Variable-Thickness Domain 

The surrogate model domain defined using an appropriate value of the thickness parameter T 
(cf. Figure 3) ensures incorporation of the majority of the optimum design manifold UF(F). At the 
same time, maintaining fixed T for the entire objective space is not really a necessity. 

In particular, as UF(F) coincides with sI(F) (the image of F through the first-level surrogate) at all 
reference designs x(j), at these points, the required domain thickness is zero. Based on these 
observations, this section introduces a variable thickness domain as a mean to reduce the number of 
training data samples without compromising the model predictive power. The prerequisites are as 
follows: 

The thickness parameter should be a function of the objective vector f, i.e., T = T(f); 
T(f(j)) = 0 for all j = 1, …, p, i.e., the domain thickness is zero for all reference designs x(j) = sI(f(j)); 
T(f) = Tmax (the T-value ensuring UF(F) ⊂ XS) for f corresponding to objective space locations 

where the expected first-level surrogate inaccuracy (w.r.t. UF(F)) is the highest; 
T(f) changes monotonically for intermediate locations. 
The first task is to determine vectors f for which ||sI(f) – UF(f)|| is maximized. One option would 

be to identify locations maximizing the mean square error (MSE) of the first-level model, which can 
be determined directly from the formulation of the kriging interpolation surrogate [52]. Another 
approach is to make a reasonable assumption that the error is the highest near the geometrical centers 
of the simplexes S(j), j = 1, …, NS, obtained by triangulating the reference designs, cf. Figure 4. Here, 
Delaunay triangulation is employed [53] to avoid degenerated simplexes. The simplex centers in the 
objective space will be denoted as fT(j); their parameter space counterparts are xT(j) = sI(f(j)).  

In order to develop the analytical form of the thickness function T(f), the location of any f ∈ F 
with respect to the simplexes S(j) has to be established. Let x(j.k), k = 1, …, N + 1, be the simplex vertices, 
where x(j.k) ∈ {x(1), …, x(p)} (the set of reference designs) for j = 1, …, NS, and k = 1, …, N + 1. For any j = 
1, …, NS, the following expansion holds 

+

=

= 
1

( . )
.

1
( )

N
j k

j k
k

af f x  (6) 

where aj.1(f) + … + aj.N+1(f) = 1. Let J(f) be any j for which min{k : aj.k(f) ≥ 0}. It follows that f ∈ Hconv(S(J(f))), 
where Hconv(S) is the convex hull of S. Note that aj.k(fT(i)) = (N + 1)–1 for j = J(fT(i) and all i = 1, …, NS (recall 
that fT(i) were the simplex centers). At the same time, aj.k(f(i)) = 1 for a certain k = 1, …, N + 1, and zero 
for the remaining values of k. Furthermore, for N > 1, the expansion coefficients assume 

Figure 3. The meaning of the domain thickness parameter T, here, explained for two-dimensional
parameter space. Increasing T enlarges the model domain which allows for encapsulating the optimum
design manifold UF(F). At the same time, larger domain requires more training samples to render
reliable surrogate. The desired trade-off is to find the minimum value of T enabling incorporation of
the majority of UF(F) into XS.

3.2. Variable-Thickness Domain

The surrogate model domain defined using an appropriate value of the thickness parameter T (cf.
Figure 3) ensures incorporation of the majority of the optimum design manifold UF(F). At the same
time, maintaining fixed T for the entire objective space is not really a necessity.

In particular, as UF(F) coincides with sI(F) (the image of F through the first-level surrogate)
at all reference designs x(j), at these points, the required domain thickness is zero. Based on these
observations, this section introduces a variable thickness domain as a mean to reduce the number
of training data samples without compromising the model predictive power. The prerequisites are
as follows:

The thickness parameter should be a function of the objective vector f , i.e., T = T(f );
T(f (j)) = 0 for all j = 1, . . . , p, i.e., the domain thickness is zero for all reference designs x(j) = sI(f (j));
T(f ) = Tmax (the T-value ensuring UF(F) ⊂ XS) for f corresponding to objective space locations

where the expected first-level surrogate inaccuracy (w.r.t. UF(F)) is the highest;
T(f ) changes monotonically for intermediate locations.
The first task is to determine vectors f for which ||sI(f ) – UF(f )|| is maximized. One option would

be to identify locations maximizing the mean square error (MSE) of the first-level model, which can
be determined directly from the formulation of the kriging interpolation surrogate [52]. Another
approach is to make a reasonable assumption that the error is the highest near the geometrical centers
of the simplexes S(j), j = 1, . . . , NS, obtained by triangulating the reference designs, cf. Figure 4. Here,
Delaunay triangulation is employed [53] to avoid degenerated simplexes. The simplex centers in the
objective space will be denoted as f T

(j); their parameter space counterparts are xT
(j) = sI(f (j)).
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(j) of
the resulting simplexes S(j) are mapped into the parameter space as xT

(j) = sI(f T
(j)).

In order to develop the analytical form of the thickness function T(f ), the location of any f ∈ F with
respect to the simplexes S(j) has to be established. Let x(j.k), k = 1, . . . , N + 1, be the simplex vertices,
where x(j.k)

∈ {x(1), . . . , x(p)} (the set of reference designs) for j = 1, . . . , NS, and k = 1, . . . , N + 1. For any
j = 1, . . . , NS, the following expansion holds

f =
N+1∑
k=1

a j.k(f)x( j.k) (6)

where aj.1(f ) + . . . + aj.N+1(f ) = 1. Let J(f ) be any j for which min{k:aj.k(f ) ≥ 0}. It follows that f ∈
Hconv(S(J(f ))), where Hconv(S) is the convex hull of S. Note that aj.k(f T

(i)) = (N + 1)–1 for j = J(f T
(i) and all i

= 1, . . . , NS (recall that f T
(i) were the simplex centers). At the same time, aj.k(f (i)) = 1 for a certain k = 1,

. . . , N + 1, and zero for the remaining values of k. Furthermore, for N > 1, the expansion coefficients
assume “intermediate” distributions for f being at the boundaries between the simplexes. For example,
if N = 2, then, for f allocated at the center of the edge between two adjacent simplexes, we have
aj.k = 1/N for two out of three values of k and zero for the remaining one. These examples indicate
that it is reasonable to decide upon the analytical form of the T(f ) function based on the standard
distribution std([aj.1 . . . aj.N+1]) of the expansion coefficients aj.k. In particular, this distribution is zero
for the simplex centers and attains its maximum equal to std(EN+1), where the (N + 1) × 1 vector EN+1

= [1 0 . . . 0]T, for all reference designs.
This prompts us to the following definition

T(f) = Tmax
[
1− std

(
[aJ(f).1 . . . aJ(f).N+1]

)
/std(EN+1)

]
(7)

It can be observed that mapping (7) exhibits all properties listed at the beginning of this section.
Figure 5 shows the exemplary T(f ) for two-dimensional objective space.

3.3. Nested Kriging with Variable-Thickness Domain

Incorporating the concept of variable-thickness domain into the nested kriging surrogate is
straightforward. The domain definition (5) still holds, the only difference is the definition of extension
coefficients (3) which now takes the form of

α(f) = [α1(f) . . . αn−N(f)]
T = 0.5T(f)

[
|xdv(1)

n (f)| . . . |xdv(n−N)
n (f)|

]T
(8)

with T(f ) given by (7).
A few comments should be made about the design of experiments procedure. In the original

nested kriging with the fixed domain thickness parameter T, uniform sampling is straightforward
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owing to a one-to-one mapping between the unit interval [0,1]n onto XS. Given the point z ∈ [0,1]n,
the mapping h1 [51]

y = h1(z) = h1([z1 . . . zn]
T) = [ f1.min + z1( f1.max − f1.min) . . .

. . . fN.min + zN( fN.max − fN.min)] × [−1 + 2zN+1 . . . − 1 + 2zn]
(9)

transforms [0,1]n onto the Cartesian product F × [–1,1]n–N. Subsequently, the function h2

x = h2(y) = h2([y1 . . . yn]
T) = sI([y1 . . . yN]

T)+

+
n−N∑
k=1

yN+kαk([y1 . . . yN]
T)v(k)

n ([y1 . . . yN]
T)

(10)

maps F × [–1,1]n–N onto XS. Using these, uniformly distributed samples xB
(k) in XS are obtained as

x(k)B = H(z(k)) = h2(h1(z(k))) (11)

where {z(k)}, k = 1, . . . , NB, are uniformly distributed data points in [0,1]n, here, obtained using Latin
Hypercube Sampling [54].
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Figure 5. Visualization of the thickness parameter function T(f ) for the exemplary objective space F: (a) a
selected simplex and the corresponding thickness function. The vertical line illustrates the thickness
value for a particular objective vector marked ∗; (b) T(f ) for the entire objective space. The reference
objective vectors f (j) are shown using circles on the f 1-f 2 plane; the local maxima of T(f ) correspond to
the simplex centers f T

(j).
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In the case of variable-thickness domain, the situation is more complex. Although the mapping
(11) can still be used, the obtained sample allocation will not be uniform (w.r.t. to the objective space)
because the sample distribution will be compressed in the vicinity of the reference designs. This would
not bring any computational advantages: when using the above strategy, the sample density remains
the same as for the fixed-thickness case around the simplex centers f T

(j) but will be unnecessarily high
around the reference points f (j). In this work, a different approach is employed. More specifically,
the procedure (9)–(11) is used for T = Tmax, then all data samples xB

(k) such that xB
(k)
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T

XS are rejected
and the EM antenna model is not evaluated therein. Additionally, the training data set is supplemented
by all reference designs. This allows for maintaining uniform sample density throughout the domain
and leads to significant computational savings as demonstrated in Section 4.

4. Numerical Results

This section presents the results of numerical validation of nested kriging modelling with
variable-thickness domain. The method is compared to conventional surrogates (kriging and RBF)
as well as the original nested kriging employing the fixed thickness parameter. The benchmark set
includes two antenna structures, a dual-band dipole, and a broadband patch antenna with narrow
ground plane.

4.1. Case I: Dual-Band Microstrip Dipole Antenna

Our first example is a dual-band dipole antenna shown in Figure 6 [55]. The structure is
implemented on Rogers RO4003 substrate (εr = 3.38, h = 0.76 mm) and described by eight independent
parameters: x = [Lrr d Ws Wd S Ld Lgr Wgr]T (all dimensions in mm except those with r-subscript which
are relative). The parameters Wr = 5, Ls = 5, and L0 = 25 are fixed. The feed line width W0 = 4.5 mm
is calculated to ensure 50 ohm impedance. Other parameters are Lr = Lrr((Ws – W0)/2 – Wd – d), Wg

= WgrWs, Lg = Lgr(L0 – Wg/2 + W0/2), and g = Wd. The computational model is implemented in CST
Microwave Studio (~900,000 mesh cells, simulation time 250 seconds).
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Figure 6. Dual-band dipole antenna geometry [55]. Ground plane shown using the light-gray shade. Figure 6. Dual-band dipole antenna geometry [55]. Ground plane shown using the light-gray shade.

The surrogate model is to be constructed for the objective space parameterized by the operating
frequencies f 1 and f 2 = Kf 1 for 2.0 GHz ≤ f 1 ≤ 3.5 GHz, and 1.2 ≤ K ≤ 1.6. Nine reference designs (for
their allocation see Figure 7) are assigned, optimized for all combinations of f 1 ∈ {2.0, 2.75, 3.5} GHz
and K ∈ {1.2, 1.4, 1.6}. The parameter space X is determined by the lower and upper bounds for design
variables, l = [0.55 1.0 47.0 2.5 3.8 3.8 0.5 0.24]T, and u = [1.0 2.5 77.0 6.5 6.0 6.0 1.0 0.5]T, set up using the
reference points. For the sake of computational efficiency, the reference designs are obtained using the
feature-based optimization framework [31].

Numerical verification of the proposed approach has been realized by constructing the surrogate
model for several training data sets of various sizes as reported in Table 1. The nested kriging with
variable-thickness domain has been compared to conventional surrogates (kriging and radial basis
functions) as well as the (original) nested kriging with fixed domain thickness [51]. The nested kriging
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models have been constructed for two values of Tmax, 0.02 and 0.05. It can be observed that both
nested kriging models (with the fixed-thickness and variable-thickness domains) exhibit comparable
predictive power for the training data set sizes from 200 samples up (for original nested kriging
model) and 50 samples for the proposed model, which is much better than that of the conventional
surrogates. For smaller data sets, the results for the proposed model are not representative because
of very limited numbers of samples (15 and 19, respectively), which makes the estimation of the
predictive power unreliable. It should be emphasized that the number of training samples required
by the variable-thickness models is significantly smaller. The computational savings are as high as
75 percent with the average of 70 percent over the considered training data sets. Figure 8 shows the
surrogate responses for the variable-thickness nested kriging model at the selected testing designs
along with the corresponding EM simulation data. The visual agreement between the characteristics
is satisfactory.
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Table 1. Modeling Results for Antenna of Figure 6.

Number
of

Training
Samples

Relative RMS Error
Number

of
Training

Samples *

Relative RMS Error

Conventional
Models (Domain

X)

(Original) Nested Kriging
with Fixed Domain

Thickness

Nested Kriging with
Variable-Thickness
Domain [this Work]

Kriging RBF Tmax = 0.02 Tmax = 0.05 Tmax = 0.02 Tmax = 0.05

50 55.6% 58.1% 14.5% 18.9% 15 25.7% 31.2%
100 46.7% 46.9% 11.2% 13.5% 19 18.3% 22.5%
200 41.9% 44.1% 6.9% 7.8% 55 8.9% 12.1%
400 36.9% 41.2% 6.1% 6.6% 108 5.9% 6.9%
800 35.5% 37.5% 4.1% 4.9% 208 5.0% 6.7%
1600 33.2% 35.8% 3.9% 4.2% 405 4.3% 3.8%

* The number of training samples is determined by the relative volume of the variable-thickness and fixed-thickness
domains (see the design of experiments procedure description at the end of Section 3).
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The design optimized for f1 = 2.45 GHz and f2 = 3.3 GHz has been fabricated and measured for 

additional validation. Figure 10 shows the photographs of the antenna prototype, the reflection and 
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Figure 8. Dipole antenna: reflection responses at the selected test designs: EM model (—), nested
kriging with variable-thickness domain obtained using 400 training samples and Tmax = 0.02 (o).

Supplementary validation has been conducted to determine whether variable-thickness domain
affects the design utility of the surrogates. Figure 9 shows the initial and the optimized designs
obtained for the selected objective vectors. It can be observed that the designs obtained by optimizing
the fixed- and variable-thickness domain surrogates are comparable.
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Figure 9. Optimization of the antenna of Figure 6 using the variable-thickness nested kriging surrogate
for the four pairs of operating frequencies: (a) f 1 = 2.45 GHz, f 2 = 3.3 GHz, (b) f 1 = 3.2 GHz, f 2 = 5.0 GHz,
(c) f 1 = 3.4 GHz, f 2 = 4.8 GHz, (d) f 1 = 2.2 GHz, f 2 = 2.7 GHz. Shown are: the initial design obtained
from the first-level kriging model (····), response of the optimized variable-thickness nested kriging
surrogate (- - -), response of the optimized fixed-thickness surrogate (o), and EM-simulated antenna
response at the variable-thickness surrogate model optimum (—).
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This indicates that restricting the domain does not compromise the model ability to yield
high-quality designs. This was to be expected because the very definition of the variable-thickness
domain is founded on reducing the thickness in the vicinity of the reference designs (where the image
of the first-level model agrees perfectly with the optimum design manifold) and increasing it between
the reference points (where the two manifolds deviate from each other).

The design optimized for f 1 = 2.45 GHz and f 2 = 3.3 GHz has been fabricated and measured for
additional validation. Figure 10 shows the photographs of the antenna prototype, the reflection and
realized gain characteristics, as well as the H- and E-plane radiation patterns. The agreement between
the simulation and measurement data is satisfactory.
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Figure 10. Antenna of Figure 6 optimized for f 1 = 2.45 GHz, f 2 = 3.3 GHz: (a) photographs of the
prototype, (b) reflection |S11|, (c) end-fire realized gain, (d) yz-plane radiation pattern at both operating
frequencies (2.45 GHz and 3.3 GHz on the left- and right-hand-side, respectively). Simulated and
measured characteristics shown in gray and black, respectively.

4.2. Case II: Broadband Patch Antenna

The second example is a broadband patch antenna with a narrow ground plane shown in
Figure 11 [56]. The structure is described by five parameters x = [W L dW Wg hr]T. The computational
model is implemented in CST Microwave Studio and evaluated using the transient solver (~400,000
cells, simulation time 94 seconds).

The substrate parameters, dielectric permittivity εr and height h are the operating conditions
being a part of the objective space. The model incorporates the SMA connector. The design optimality
is understood as minimization of the antenna reflection within at least 10-percent fractional bandwidth
symmetric w.r.t. the target center frequency f 0.

We aim at constructing the surrogate model within the objective space defined by the following
ranges of the center frequency and surrogate parameters: 3.0 GHz ≤ f 0 ≤ 6.0 GHz, permittivity
2.0 ≤ εr ≤ 5.0 and height 0.5 mm ≤ h ≤ 1.0 mm. There are thirteen reference designs assigned (shown in
Figure 12), corresponding to {f 0,εr,h} = {3.0,2.0,0.5}, {3.0,2.0,1.0}, {3.0,5.0,0.5}, {3.0,5.0,1.0}, {4.5,3.5,0.75},
{4.5,3.5,0.5}, {4.5,3.5,1.0}, {4.5,2.0,0.75}, {4.5,5.0,0.75}, {6.0,2.0,0.5}, {6.0,2.0,1.0}, {6.0,5.0,0.5}, and {6.0,5.0,1.0}.
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The parameter space X is determined by the lower and upper bounds for design variables l = [12.5
10.0 4.0 8.0 0.02]T, and u = [40.0 34.0 17.0 10.0 0.2]T.
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Model validation has been arranged similarly as for the first example. Table 2 shows the numerical
data for the models constructed using the training data sets of different sizes. The benchmark methods
include conventional models established in the parameter space X (kriging interpolation and radial
basis functions), as well as the nested kriging with fixed-thickness domain. The nested kriging models
have been constructed for the two values of Tmax, 0.025 and 0.05. The obtained results are consistent
with those reported in Section 4.1. In particular, the accuracy of both nested kriging models (with
the fixed-thickness and variable-thickness domains) is essentially the same; however, the number of
samples required by the variable-thickness domain model is considerably smaller.
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Table 2. Modeling Results for Antenna of Figure 11.

Number
of

Training
Samples

Relative RMS Error
Number

of
Training

Samples *

Relative RMS Error

Conventional
Models (Domain

X)

(Original) Nested Kriging
with Fixed Domain

Thickness

Nested Kriging with
Variable-Thickness
Domain [this Work]

Kriging RBF Tmax = 0.025 Tmax = 0.05 Tmax = 0.025 Tmax = 0.05

50 43.4% 52.0% 10.1% 17.8% 30 13.0% 14.8%
100 21.2% 25.4% 7.9% 9.0% 63 7.8% 9.1%
200 16.0% 18.2% 7.2% 6.5% 125 7.3% 6.4%
400 12.8% 14.7% 4.7% 6.1% 247 4.9% 5.3%
800 9.8% 11.3% 3.3% 4.8% 505 3.8% 5.1%

* The number of training samples is determined by the relative volume of the variable-thickness and fixed-thickness
domains (see the design of experiments procedure description at the end of Section 3).

The computational savings are close to forty percent. The responses for the variable-thickness
nested kriging model at the selected testing designs along with the corresponding EM simulation data
are shown in Figure 13.
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validation. The objective was to assess whether variable-thickness domain affects the model capability
to reach the optimum design across the objective space. The results obtained for selected objective
vectors have been shown in Figure 14. It can be noted that the designs produced by variable- and
fixed-thickness domain models are of comparable quality, which corroborates the design utility of the
presented technique.

One of the optimized designs, corresponding to f 0 = 4.8 GHz, εr = 3.38, h = 0.51 mm, has been
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Figure 14. Optimization of the antenna of Figure 11 using the variable-thickness nested kriging
surrogate set up using 800 samples (Tmax = 0.05): initial design obtained from the first-level model
(····), surrogate model response at the optimized design obtained using variable thickness model (- - -),
response of the optimized fixed-thickness surrogate (o), EM simulated response at the variable-thickness
surrogate model optimum (—): (a) f 0 = 4.8 GHz, εr = 3.38, h = 0.51 mm, (b) f 0 = 3.8 GHz, εr = 2.5,
h = 0.76 mm, (c) f 0 = 5.3 GHz, εr = 3.38, h = 0.81 mm, (d) f 0 = 5.3 GHz, εr = 4.4, h = 1.0 mm.
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5. Conclusions

The paper proposed a novel variation of the nested kriging framework, the recent
performance-driven modelling method. The keystone of our approach was to introduce a functional
dependence of the lateral size (thickness) of the surrogate model domain on the objective space location.
This approach was motivated by the fact that the first-level model uncertainty (in terms of representing
the optimum design manifold) ranges from zero at the reference designs used to set up the surrogate,
to its maxima between these designs. From this perspective, maintaining fixed domain thickness, as in
the original nested kriging, is not imperative.

The variable-thickness domain developed in this work enables a significant reduction of the
training data set size without compromising the model accuracy. The presented concept has been
explained, formalized, and its implementation has been validated in a comprehensive manner using
two examples of microstrip antennas. The numerical results conclusively demonstrate that the
computational savings pertinent to training data acquisition can be as high as seventy percent while
maintaining the predictive power of the surrogates essentially intact as compared to the fixed-thickness
version. The same has been observed concerning the design utility of the models, i.e., their ability to
encapsulate the optimum designs across the entire objective space.

The authors believe that the presented methodology is a step towards the development of
computationally efficient methodologies for reliable modelling of antenna structures. Perhaps the
most important aspect is addressing the dimensionality and parameter range issues that normally
constitute the most serious obstacle for constructing accurate and representations for antenna systems.
Appropriate combination of various approaches, here, the nested kriging model, and variable-thickness
domain, allow for further enhancement of already efficient procedure, and construction of metamodels
using very small number of training data samples. The error levels achieved for the presented
verification examples are—given a small number of EM data samples required to render the
surrogates—way beyond what has been offered in the literature so far. The future work will be
focused on generalization of the technique to enable efficient modelling in higher-dimensional
parameter spaces.
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