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a b s t r a c t 

We discuss the propagation of localized surface waves in the framework of the linear

Gurtin–Murdoch surface elasticity and taking into account a roughness of a free boundary.

We derive a boundary-value problem for anti-plane motions with curvilinear boundary and

surface stresses. Using the asymptotic technique developed earlier, we obtain the form of a

localized wave and analyze its amplitude evolution. As the main result we present the de- 

pendence of the wave amplitude on the roughness magnitude. The presented results could

be used for non-destructive evaluation of the surface microstructure using surface waves- 

based devices. In particular, measuring the decay rate with the depth one can estimate

roughness of a surface and appearance of new surface defects.
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1. Introduction

Actual advances in engineering of micro- and nano-electromechanical systems (MEMS and NEMS) such as sensors 

and actuators result in a certain extension of the classic continuum and structural mechanics towards application of 

new non-classic models. In particular, nowadays it is rather well established that material properties at small scales may 

be essentially different from their counterparts at the macroscale. In other words, we can observe so-called size-effect 

which could be explained on the base of some generalized models of continua. Among these models it is worth to

mention the surface elasticity approach which extends the notion of surface tension in fluids to more complex phenomena 

in solids. The most used models of the surface elasticity were proposed by Gurtin and Murdoch (1975, 1978) and by

Steigmann and Ogden (1997, 1999) . These models found various applications in the mechanics at the nanoscale, see, e.g. ,

Duan, Wang, and Karihaloo (2008) , Wang et al. (2011) , Kim, Ru, and Schiavone (2013) , Eremeyev (2016) , Han, Mogilevskaya,

and Schillinger (2018) , Gorbushin, Eremeyev, and Mishuris (2020) , Zemlyanova (2020) and Doan, Le-Quang, and To (2020) ,

where various problems of mechanics of nanostructured materials are considered. From the physical point of view the 

surface elasticity approach describes finite or infinitesimal deformations of a solid body with attached on its surface an 
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elastic membrane or a shell. For discussion of the surface stresses nature we also refer to Murdoch (2005) , Huang and

Wang (2006) , Duan et al. (2008) and Ru (2010) . In particular, the boundary conditions on a surface or interface within the

linear surface elasticity are similar to ones found for coatings of finite thickness and for so-called rigidly stiff interfaces 

analyzed by Benveniste (2006) , Benveniste and Miloh (2001) , Benveniste and Berdichevsky (2010) , Mishuris, Movchan, and 

Movchan (2006) , Mishuris, Movchan, and Movchan (2010) , Kaplunov and Prikazchikov (2017) and Baranova, Mogilevskaya, 

Nguyen, and Schillinger (2020) , see also recent discussions by Gorbushin et al. (2020) and Eremeyev, Rosi, and Naili (2020) .

Similar to surface elasticity phenomenon can be observed using atomistic models by Eremeyev and Sharma (2019) where 

the correspondence between Gurtin–Murdoch model and square lattice dynamics. 

The surface elasticity is also closely related to a nonlocal models of continuum as stress and strain gradient elasticity, see

Mindlin (1965) , Eremeyev, Rosi, and Naili (2019) and Li, Lin, and Ng (2020) . Considering non-local phenomena and surface

waves it is worth to mention here the analysis performed by Chebakov, Kaplunov, and Rogerson (2016) and Gorbushin and

Mishuris (2016) . 

The presence of such surface microstructure may essentially affected the effective material properties, stress concen- 

tration in the vicinity of crack tip, etc. Obviously, surface microstructure may also change the condition of surface waves 

propagation. For example, in the case of the linear Gurtin–Murdoch model and its generalization there exist surface anti- 

plane waves which are in the classic elasticity, see Eremeyev, Rosi, and Naili (2016) , Eremeyev (2020) and Zhu, Pan, Qian,

and Wang (2019) for layered structures. 

Considering propagation of surface waves for curved surfaces it is worth to note initial works in the field by Babich and

Rusakova (1963) , Gregory (1966) and Rulf (1969) , see also recent review by Kaplunov and Prikazchikov (2017) . Let us also

note that curved and corrugated surfaces lyes also in the focus of interests of the electromagnetism theory as they found

various applications, see e.g. antennas design ( Volakis, 2007 ). Under certain assumptions the governing equations of the elec- 

tromagnetic theory could coincide with the equations of acoustics, see original paper by Auld, Gagnepain, and Tan (1976) . 

Let us note that in the most results related to surface elasticity authors consider an ideal surface as a plane, cir-

cle, cylinder, etc. In the framework of lattice dynamics it was shown that the presence of surface or interfacial im-

perfection may significantly change the picture of wave transmission, reflection and leakage, see, e.g. , Sharma (2015) , 

Sharma (2017) , Sharma (2020) , Mishuris, Movchan, and Slepyan (2007) , Mishuris, Movchan, and Slepyan (2009) , Sharma and

Eremeyev (2019) , Lal Sharma and Mishuris (2020) and Nieves, Carta, Pagneux, and Brun (2020) . Different types of surface

imperfections were considered by Mishuris et al. (2006) , Mishuris et al. (2010) and Mishuris, Movchan, and Slepyan (2020) .

Eremeyev (2020) proposed a homogeneous model for a surface/interface with highly anisotropic properties. Another prop- 

erty of any surface considered at small scales is its roughness. Indeed, a roughness of a real surface or interface con-

stitutes an almost unavoidable property and be reached only in few rare cases. Considering a surface roughness the 

static analysis of stress concentration was performed by Grekov and Kostyrko (2015, 2016) and Kostyrko, Grekov, and 

Altenbach (2019) , contact problems and cross-property connections are studied by Sevostianov and Kachanov (2009) , 

Sevostianov and Kachanov (2007) , Sevostianov and Kachanov (2020) , Kuzkin and Kachanov (2015) and Lapin, Kuzkin, and 

Kachanov (2019) , where other references could be found. 

In contrast to the aforementioned papers on propagation of harmonic shear surface waves, the aim of this paper is to

study propagation of localized shear surface waves considering both the Gurtin–Mindlin surface elasticity as a model of thin 

coating and the geometrical roughness of the surface. Let us note that the considered problem has multiple scale parameters 

related to surface elasticity modulus and to the magnitude of roughness. So both of them, compared to the shear modulus

in the bulk and to the amplitude of an excited localized wave, respectively, can be used as small parameters that naturally

invokes the application of asymptotic techniques. 

The paper is organized as follows. First, following Gurtin and Murdoch (1978) and Eremeyev et al. (2016) we briefly recall

the basic equations of the linear surface elasticity in the case of anti-plane shear deformations in Section 2 . In Section 3 we

transform the problem into dimensionless form for localized waves. The asymptotic technique to the derivation of a solution 

of the problem under consideration is applied in Section 4 . Here we used the technique developed in the dynamic theory

of linear elastic shells by Mikhasev (1996, 1998) and summarized by Mikhasev and Tovstik (2020) . As a result, we obtain a

solution which describes a surface wave localized in the vicinity of a moving front and estimate its decay rate as a function

of roughness magnitude. Section 5 presents few examples of such dependence. 

2. Antiplane deformations in the framework of Gurtin–Murdoch surface elasticity

Let us consider a three-dimensional elastic half-space with rough surface given by y ≤ η(x ) , where x, y, z are Cartesian

coordinates, and i k , k = 1 , 2 , 3 , are the unit base vectors, as shown in Fig. 1 . On the free boundary y = η(x ) we assume the

action of surface stresses described within the model of surface elasticity by Gurtin and Murdoch (1975, 1978) . 

For anti-plane deformations the vector u of displacements takes a simple form, see, e.g. , Achenbach (1973) , 

u (x, y, t) = u (x, y, t) i 3 . (1) 

For (1) we get the formulae 

∇u = 

(
i 1 

∂u 

∂x 
+ i 2 

∂u 

∂y 

)
� i 3 , (2)



Fig. 1. Half-space with rough surface described by equation y = η(x ) . 

 

 

 

 

ε = 

1 

2 

(∇u + (∇u ) T 
)

= ε xz (i 1 � i 3 + i 3 � i 1 ) + ε yz (i 2 � i 3 + i 3 � i 2 ) , 

ε xz = 

1 

2 

∂u 

∂x 
, ε yz = 

1 

2 

∂u 

∂y 
. (3) 

Hereinafter ∇ is the three-dimensional nabla-operator, � stands for the dyadic product, and T denotes the transpose oper- 

ation. 

In the following we consider a homogeneous medium. For an isotropic material using Hooke’s law we introduce the 

stress tensor 

σ = 2 με = σxz (i 1 � i 3 + i 3 � i 1 ) + σyz (i 2 � i 3 + i 3 � i 2 ) , 

σxz = 2 με xz , σyz = 2 με yz , (4) 

where μ is a constant shear modulus. As a result, the equation of motion for x ∈ R , y < η(x ) takes the form of the wave

equation 

μ

(
∂ 2 u 

∂x 2 
+ ∂ 2 u

∂y 2

)
= ρ

∂ 2 u 

∂t 2 
, (5) 

where ρ is a mass density. 

Within the linear Gurtin-Murdoch model we introduce at the free surface y = η(x ) the surface stress tensor τ as a linear

function of surface strains ε. Here we have the following relations for the normal n and tangent e vectors as well as the

surface nabla-operator ∇ s in the case of anti-plane deformations

e = 

1√
1 + η′ 2 

(
i 1 + η′ i 2

)
, (6) 

n = 

1√
1 + η′ 2 

(
−η′ i 1 + i 2

)
, (7) 

∇ s = e 
∂ 

∂s 
, (8) 

where the prime stands for the derivative with respect to x and s is the arc-length parameter. With these formulae we get

the surface strain tensor 

ε = 

1 

2 

∂u 

∂s 
( e � i 3 + i 3 � e ) . (9) 

So the surface stress tensor is given by 

τ = 2 μs ε, (10) 

where μs is a surface shear modulus. 

The general compatibility condition at a free surface has the form ( Eremeyev et al., 2016 ) 

n · σ = ∇ s · τ − m
∂ 2 u 

2 
at y = η(x ) , (11)
∂t 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where “·” means the scalar product and a surface density m is introduced as in Gurtin and Murdoch (1978) . For anti-plane

deformations, Eq. (11) transforms into the scalar equation 

μ√
1 + η′ 2 

(
−η′ ∂u 

∂x 
+ ∂u

∂y

)
= μs 

∂ 2 u 

∂s 2 
− m

∂ 2 u 

∂t 2 
at y = η(x ) , (12) 

where ∂ 
∂s

relates to ∂ 
∂x

as follows 

∂ 

∂s 
= 

1√
1 + η′ 2 

∂ 

∂x 
.

For localized deformations the boundary condition (12) should be supplemented by the condition at infinity: 

u → 0 at y → −∞ . (13) 

3. Setting the problem

For the flat boundary, i.e. when η = 0 , the solution of the boundary-value problem Eqs. (5) , (12) and (13) is given by

Eremeyev et al. (2016) as follows 

u = u 0 exp [ αy + ik (x − ct)] , i =
√

−1 , (14) 

where u 0 is a amplitude, k is a wave number, c = ω/k is the phase velocity, and ω is the circular frequency with parameters

k, c, α satisfying the following relations, see Eremeyev et al. (2016) for details, 

α2 = k 2 
(

1 − c 2

c 2 
T 

)
, α = 

μs 

μ
k 2 

(
c 2 

c 2 s 

− 1

)
. (15) 

Here, c T = 

√ 

μ/ρ is the shear wave speed in an elastic medium, and c s = 

√ 

μs /m is the shear wave speed in the thin film

associated with the Gurtin–Murdoch model. 

Function (14) specifies the stationary anti-plane wave, which is harmonic with respect to a coordinate x . Such waves

should be treated as an idealized mathematical model describing the response of a half-space to special harmonic emitters 

on the entire surface. Here we consider another class of antiplane waves which can be characterized by a short wavelength

and strong localization near a moving plane front given by x = q (t) , where q (t) is an unknown function. 

Let u 0 = max −∞ <x< ∞ u (x, 0 , 0) be the maximum amplitude of an initial wave excited in the vicinity of the line { x = 0 , y =
0 } . In the what follows, we consider u 0 as the characteristic length-scale parameter. Considering short-length waves, we

introduce a small parameter ε = 1 /k = l/ (2 πu 0 ) , where l be a wave length. We assume also that 

m 

ρu 0 

= εκ1 , 
μs 

μu 0 

= εκ2 , κ1 , κ2 ∼ 1 . (16) 

Estimations (16) are justified by calculations performed for a wide range of variation of u 0 , l and different materials consid-

ered by Gurtin and Murdoch (1975) , Gurtin and Murdoch (1978) , Duan et al. (2008) and Wang et al. (2011) . For instance,

for the free iron surface, m/ρ ≈ 10 −9 m, μs /μ ≈ 3 . 57 × 10 −11 m. It is seen that for iron κ2 < κ1 under holding the condition

κ1 ∼ 1 . However, in the general case, in order to take into account the effect of the surface shear modulus μs , we assume

(16) for both κ1 and κ2 .

Performing scaling along the y -axis, we introduce dimensionless coordinates and the maximum deflection of the rough

surface from the plane as follows 

ζ = 

y

εu 0 

, ˜ x = 

x 

u 0

, ηm 

= max −∞ <x< ∞ η(x ) . (17) 

With the dimensionless coordinates, the rough surface is defined as ζ = (εu 0 ) 
−1 ηm ̃

 η(u 0 ̃  x ) . 

It is obvious that the dynamic characteristics of an excited wave depend on possible relations between parameters 

l, u 0 , ηm 

and on a variability of the function η(x ) . Varying the basic initial length-scale parameters, that are u 0 and l, we

obtain possible variants of the dynamic response of the half-space to the initial wave perturbations on the surface. In par-

ticular, one can consider the following two cases as ε → 0 : 

A) 
ηm 

u 0

∼ ε,
∂η

∂x 
∼ ε, (18) 

B) 
ηm 

u 0 

∼ ε, 
∂η

∂x 
∼ 1 . (19) 

In case A, the amplitude of surface imperfections is small with respect to the amplitude u 0 of an excited wave, but has the

same order as the wavelength l; the variability of the surface roughness in the x -direction is small so that its character-

istic length ( e.g. , a period if η(x ) is a periodic function) has the order ε −1 . In case B, the second estimate means that the

variability of the surface imperfection is of the same order as the wavelength. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here we consider case A and assume that ηm 

/u 0 = εr, where r ∼ 1 . Then we introduce new function for the roughness

f ( ̃  x ) = r ̃  η(u 0 ̃  x ) , and so ∂ f/∂ ̃  x ∼ 1 . 

In the following we consider a traveling surface wave localized near a moving plane ˜ x = q (τ ) , where q (τ ) is an unknown

twice differentiable function of dimensionless time τ and q (0) = 0 . Here we define τ as τ = ω c t, where ω c = c T /u 0 is the

characteristic frequency. We introduce the local coordinate ξ in the neighbourhood of ˜ x = q (τ ) as follows 

˜ x = q (τ ) + ε 1 / 2 ξ , (20) 

After changing coordinate ˜ x → ξ , Eq. (5) takes the following form: 

ε 
∂ 2 u 

∂ξ 2 
+ ∂ 2 u

∂ζ 2 
− ε 2 

∂ 2 u 

∂τ 2 
+ 2 ε 3 / 2 q̇

∂ 2 u 

∂ ξ∂ τ
+ 2 ε 3 / 2 q̈

∂u 

∂ξ
− ε ̇ q 2 

∂ 2 u 

∂ξ 2 
= 0 , (21) 

and the boundary condition (12) reads 

1 √
1 + ε 2 f ′ 2 

(
−ε 3 / 2 f ′ 2 ∂u 

∂ξ
+ ∂u

∂ζ

)
− ε 

κ2√ 

1 + ε 2 f ′ 2 
∂ 

∂ξ

(
1 √

1 + ε 2 f ′ 2 
∂u 

∂ξ

)

+ κ1

(
ε 2 

∂ 2 u 

∂τ 2 
− 2 ε 3 / 2 q̇

∂ 2 u 

∂ ξ∂ τ
− 2 ε 3 / 2 q̈

∂u 

∂ξ
+ ε ̇ q 2 

∂ 2 u 

∂ξ 2 

)
= 0 at ζ = f ( ̃  x ) , (22) 

where the function f ( ̃  x ) is expanded into the series 

f ( ̃  x ) = f [ q (τ )] + ε 1 / 2 f ′ [ q (τ )] ξ + 1 

2 

ε f ′′ [ q (τ )] ξ 2 + . . . (23)

in the neighbourhood of the moving plane ˜ x = q (τ ) . 

Introducing the additional condition 

u (ξ , ζ , τ ; ε) → 0 at ζ → −∞ , (24) 

we arrive to the boundary-value problem (21), (22) and (24) , which describes the propagation of localized anti-plane waves

running in the x -direction and decaying with the depth of the half-space. 

4. Asymptotic solution

We shall seek a solution of the boundary-value problem (21), (22) and (24) in the form of the following asymptotic series

( Mikhasev, 1996; 1998 ) 

u (ζ , ξ , τ ; ε) =
∞ ∑ 

j=0

u j (ζ , ξ , τ ) exp
{

iε −1 S(ξ , τ.ε) 
}
,

S(ξ , τ ; ε) = 

∫ τ

0

ω(τ ′ ) dτ ′ + ε 1 / 2 p(τ ) ξ + 1 

2 

εb(τ ) ξ 2 , (25) 

where ω(τ ) , p(τ ) , b(τ ) are twice differentiable functions of τ and u j (ζ , ξ , τ ; ε) are polynomials in ξ with complex-valued

coefficients which are twice differentiable with respect to ξ , ζ and τ, and satisfy the following conditions: 

� b(τ ) > 0 for any τ ≥ 0 , (26) 

{ Y, ∂ Y/∂ ς } = O (1) as ε → 0 . (27) 

Here � b denotes the imaginary part of the complex-valued function b(τ ) , Y is any of functions ω, p, b, u j , and ς is any

of their arguments. All the introduced functions appearing in (25) have the specific mechanical sense. In particular, ω(τ ) is 

the instantaneous frequency, the real wave parameter p(τ ) determines the variability of waves in the x - direction, ε −1 p is a

wave number, and b(τ ) with the positive imaginary part, see (26) , characterizes the decay rate of the wave amplitudes far

away from the moving plane ˜ x = q (τ ) . 

In contrast to (14) , the asymptotic expansion of a solution in the form of (25) allows one to describe the propagation of

localized waves. For the first time, this ansatz has been proposed by Mikhasev (1996) to study localized waves traveling in

the circumferential direction in thin elastic non-circular cylindrical shells with arbitrary edges. In the above paper, a solution 

similar to (25) was called the wave packet (WP) with the centre on the line at which amplitudes reach the maximum (here

it is ˜ x = q (τ ) ). Later this method was successfully applied to predict localized bending, longitudinal and torsional waves

running in the axial direction in infinite cylindrical shells subjected to a dynamic normal pressure by Mikhasev (1998) and

to an axial compression by Avdoshka and Mikhasev (2001) . 

In order to determine introduced functions, we substitute (25) into (21) and boundary conditions (22) and (24) . Equating

coefficients by the same powers of ε 1 / 2 , one arrives at the sequence of differential equations 

j ∑ 

m =0

L m 

u j−m 

= 0 , j = 0 , 1 , 2 , . . . , (28)



 

 

 

 

 

 

where 

L 0 = 

∂ 2

∂ζ 2 
− p 2 + (ω − ˙ q p) 2 ,

L 1 = ( b L p + 

˙ p L ω ) ξ − i L p 
∂ 

∂ξ
,

L 2 = 

1 
2 

(
b 2 L pp + 

˙ p 2 L ωω + 2 

˙ p b L ωp + 

˙ b L ω 
)
ξ 2 

−1

2
L pp 

∂ 2 

∂ξ 2 
− i ( b L pp + 

˙ p L ωp ) ξ
∂ 

∂ξ
− i L ω 

∂ 

∂t 
− i

(
1 

2 

b L pp + 

1 

2 

˙ ω L ωω + 

˙ p L ωp + q̈ p 

)
, . . . ,

(29) 

and the sequence of boundary conditions 

j ∑ 

m =0

G m 

u j−m 

= 0 at ζ = f [ q (t)] , 

u j → 0 as ζ → −∞ , j = 0 , 1 , 2 , . . .

(30) 

with the operators 

G 0 = 

∂

∂ζ
+ p 2 − κ(ω − ˙ q p) 2 ,

G 1 = 

∂ G 0

∂ζ
f ′ (q ) ξ + L 1 ,

G 2 = 

1 

2 

∂ 2 G 0 

∂ζ 2 
f ′′ (q ) ξ 2 + L 2 + f ′ 2 (q ) p, . . . (31) 

Hereinafter indices p, q, ω mean differentiation with respect to the corresponding variables, and the overdot denotes the 

derivative with respect to τ . 

All required functions from ansatz (25) can be found by the consequent consideration of the boundary-value problems 

(28) and (30) . The general asymptotic procedure is described by Mikhasev and Tovstik (2020) in all details. Here we restrict

ourselves to consideration of the principal steps.

In the leading approximation, i.e. at j = 0 , one has the homogeneous boundary-value problem (28) and (30) . It has the

non-trivial solution 

u 0 = P 0 (ξ , τ ) z 0 (ζ , q ) , z 0 = e α(p) { ζ− f [ q (τ )] } , (32) 

where 

α(p) = 

√
1 + 4 κ1 (κ1 − κ2 ) p 2 − 1 

2 κ1 

, (33) 

if 

ω = 

˙ q p ∓ H(p) , (34) 

where H(p) is the Hamilton function defined as 

H = 

√
p 2 − α2 (p) . (35) 

In (32) , P 0 (ξ , τ ) is a polynomial in ξ with complex-valued coefficients dependent of τ, in general. Related to ± sign the

non-uniqueness in the formula for ω is associated with the presence of two branches of a solution corresponding to waves

propagating in two opposite directions. 

It is seen that the function z 0 (ζ , τ ) decays if κ1 > κ2 , that is justified by above calculations for iron as well as for other

materials. This inequality is equivalent to the condition by Eremeyev et al. (2016) and is given by c s < c T . 

In the first-order approximation ( j = 1 ), we arrive at the inhomogeneous boundary-value problem (28) and (30) . The

compatibility condition of this problem reads ∫ f (q )

−∞ 

( L 0 u 1 + L 1 u 0 ) z 0 dζ = 0 . (36) 

Taking into account relations (32) and (34) , this condition can be rewritten as the differential equation 

i ( ̇ q − H p ) 
∂P 0 
∂ξ

+ ˙ p ξP 0 − b( ̇ q − H p ) ξP 0 = 0 . (37) 

with respect to P 0 (ξ ) . Note that by our assumptions, � b(τ ) > 0 for any τ ≥ 0 . Hence, Eq. (37) has a solution in the form of

polynomials if and only if the unknown functions satisfy the equations 

˙ q = ±H p , ˙ p = 0 . (38) 



Fig. 2. Parameter b i = � b vs . dimensional time τ for fixed p = 1 . 0 , κ2 = 0 and different values of a parameter κ1 : 1 - κ1 = 0 . 6 ; 2 - κ1 = 0 . 8 ; 3 - κ1 = 1 . 0 ; 4 

- κ1 = 1 . 2 .

 

 

 

 

 

 

 

 

 

 

 

 

Then q (τ ) = H p τ is the linear function of time, and the wave parameter p = p ◦ is a constant. As a consequence, the instan-

taneous circular frequency 

ω = | ± p ◦H p (p ◦) ∓ H(p ◦) | (39) 

has also a constant value. Relation (39) coincides with the dispersion equation followed from (15) for a plane sur-

face ( Eremeyev et al., 2016 ). 

Thus, under the aforementioned assumptions with respect to the wavelength and all parameters of the problem, a 

smooth imperfection of the surface, characterized by the function η(x ) , does not effect such dynamic parameters of lo-

calized anti-plane waves as the wave number p, the group velocity v g = H p and the circular frequency ω. On the other

hand, it influences the function 

z 0 (ζ , τ ) = e α(p) { ζ− f [ H p (p) τ ] } , (40) 

which determines the depth of waves penetration in a half-space along the moving plane x = u 0 [ ω c H p (p) t + ε 1 / 2 ξ ] . 

Accounting for Eqs. (38) , the solution of the boundary-value problem (28) and (30) for j = 1 can be written as u 1 =
P 1 (ξ , τ ) z 0 (ζ , q ) , where P 1 is a polynomial in ξ which together with P 0 remains undefined at this step. 

Let us now consider the second-order approximation. It generates again the inhomogeneous boundary-value problem 

(28) and (30) for j = 2 . Omitting for brevity awkward transformations, we come to in the following differential equation

with respect to P 0 , see Mikhasev and Tovstik (2020) ) for more details 

h 

(
∂ 2 P 0 
∂ξ 2 

− 2 ibξ
∂P 0 
∂ξ

)
−

[
hb 2 + H(1 + 2 κ1 α) ̇ b 

]
ξ 2 P 0 

+ 2 iH(1 + 2 κ1 α)
∂P 0 
∂τ

+ i
[
hb + 2 αp f ′ 2 (q ) 

]
P 0 = 0 , (41) 

where 

h = h (p) = 1 + 2 κ2 α(p) − [1 + 2 κ1 α(p)] H 

2 
p (p) . (42) 

Eq. (41) has a solution in the polynomial form with respect to ξ if and only if 

˙ b + F (p) b 2 = 0 , F (p) = 

h (p) 

[1 + 2 κ1 α(p)] H(p) 
. (43) 

Hence, one obtains 

b(τ ) = 

b ◦

1 + b ◦F (p) τ
, (44) 

where b ◦ = b(0) is the initial value of the complex-valued function b(τ ) . 

One can prove that if κ1 > κ2 , then F (p) > 0 for any wave parameter p. Then � b(τ ) > 0 and � ̇

 b (τ ) < 0 for any finite

time interval. These inequalities mean that an excited localized anti-plane surface wave spreads during time, at that the 

rate of spreading depends strongly on the wave parameter p and parameters κ1 , κ2 as well. It can be readily proved that

the width of an excited wave packet is a monotonically decreasing function of a wave parameter p. In Fig. 2 , the function

b i = � b(τ ) is depicted for the fixed p = 1 . 0 , κ2 = 0 and different values of a parameter κ1 = 0 . 6 , 0 . 8 , 1 . 0 , 1 . 2 . It is seen

that the wave packet width increases with time and is a weakly increasing function of κ1 . Fig. 3 shows the same function

b i = � b(τ ) versus time under fixed values p = 1 , κ1 = 1 and different values κ2 = 0 , 0 . 2 , 0 . 4 , 0 . 6 . One can see an interesting

effect: function � b(τ ) increases together with parameter κ2 = μs / (u 0 μ) . In other words, an increase in the surface shear

modulus decelerates the process of “crawling” the packet of anti-plane waves away over the surface. 



Fig. 3. Parameter b i = � b vs . dimensional time τ for fixed p = 1 . 0 , κ1 = 1 . 0 and different values of a parameter κ2 : 1 - κ2 = 0 ; 2 - κ2 = 0 . 2 ; 3 - κ2 = 0 . 4 ; 4 

- κ2 = 0 . 6 .

 

 

 

 

 

 

 

 

 

Let us come back to Eq. (41) . Taking relation (44) into account, we arrive at the amplitude equation with respect to

P 0 (ξ , τ ) : 

a 2 
∂ 2 P 0 
∂ξ 2 

+ a 1 ξ
∂P 0 
∂ξ

+ ∂P 0
∂τ

+ a 0 P 0 = 0 , (45) 

where 

a 0 = 

1 

2 

b(τ ) F + 

αp f ′ 2 (H p τ )

(1 + 2 κ1 α) H 

, a 1 = b F , a 2 = − i

2 

F . (46) 

A solution of Eq. (45) can be expressed in terms of Hermite polynomials with coefficients depending on time, 

see Mikhasev (2002) . Here we give the simplest representation of a required solution as in Mikhasev and Tovstik (2020) , 

P 0 = 

N ∑ 

n =0

A n (τ ) ξ n . (47) 

with A n (τ ) defined from the following recurrence relations: 

A N = c N �N (τ ) , A N−1 = c N−1 �N−1 (τ ) , 

A N−r = �N−r (τ ) 

[
c N−r − (N − r + 2)(N − r + 1) 

∫ τ

0

a 2 (τ ) A N−r+2 (τ ) 

�N−r (τ )
dτ

]
,

�n (τ ) = exp

{
−

∫ τ

0

[ na 1 (τ ) + a 0 (τ )] dτ

}
,

(48) 

where c n are arbitrary complex constants to be determined from the initial conditions, and r = 2 , 3 , N; n = 0 , 1 , . . . , N. 

In particular, for N = 0 we obtain, 

P 0 (τ ) = 

c 0 √
1 + b ◦F (p) τ

exp 

{
− α(p) p

[1 + 2 κ1 α(p)] H(p) 

∫ τ

0

f ′ 2 [ H p (p) τ ] dτ

}
. (49) 

It is clear that if f is a constant, then the maximum amplitude of the localized anti-plane waves is a monotonically de-

creasing function of time. If not, it reveals a complicated behaviour versus time, which is affected by the form of surface

imperfection. However, regardless of the function f ( ̃  x ) , one can conclude that lim 

τ→∞ P 0 (τ ) = 0 , i.e. , these waves spread over

the surface and decay during time. 

5. Example and discussion

Let the surface imperfection be given by the periodic function f ( ̃  x ) = f 0 sin δ ˜ x , where f 0 ∼ 1 , δ ∼ 1 . Fig. 4 displays the

maximum amplitude A m 

= � P 0 (τ ) of waves at the rough surface versus dimensionless time τ for c 0 = 1 , p = p ◦ = 1 , δ = 1 ,

b ◦ = i, κ1 = 1 , κ2 = 0 at different values of a parameter f 0 = 0 , 0 . 5 , 1 . 0 , 1 . 5 . Here � denotes the real part of a complex-valued

function. One can see that for a plane surface ( f 0 = 0 ) the maximum amplitude is a smoothly decreasing function of time,

and the presence of roughness distorts the function A m 

= � P 0 (τ ) , and this distortion being the stronger, the greater the

amplitude of the surface roughness. Also, an increase in the roughness height leads to a faster decay of the amplitude of

localized anti-plane waves. 



Fig. 4. The maximum amplitude A m = � P 0 (τ ) vs . dimensional time τ for different values of a parameter f 0 : 1 - f 0 = 0 ; 2 - f 0 = 0 . 5 ; 3 - f 0 = 1 . 0 ; 4 - 

f 0 = 1 . 5 . 

Fig. 5. The maximum amplitude A m = � P 0 (τ ) vs . dimensional time τ for different values of a wave parameter p: 1 - p = 0 . 6 ; 2 - p = 0 . 8 ; 3 - p = 1 . 0 ; 4 - 

p = 1 . 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculations of A m 

= � P 0 (τ ) for the fixed f 0 = 1 and different wave parameters p with the remaining parameters being

as in the previous example revealed unexpected effect (see Fig. 5 ): an increase in the wave parameter ( i.e. , a decrease in

the wavelength) entails a more rapid decrease in the amplitude of anti-plane localized waves. We note that the Hamilton 

function H(p) can be treated as “an energy” of the initial wave packet, which is the monotonically increasing function of p. 

The study of wave packets in thin shells of medium length has showed the fairly expected result: the WP amplitude decays

the slower, the higher its “initial energy”, see Mikhasev and Tovstik (2020) . In our case, the opposite effect can be explained

by an increase of the function α(p) together with the wave parameter p, see Eq. (33) . We remind that the function α(p)

determines the depth of wave penetration with distance from the surface ζ = f ( ̃  x ) . Growing the parameter p results in

increasing that part of energy which is dissipated at the depth of the half-space and far from the moving plane ˜ x = q (τ ) .

The corresponding relation for an estimation of the maximum amplitude A d of waves at a depth d > 0 from any point of

the rough surface reads 

A d = A m 

(τ ) e −α(p) d . (50) 

From this relation and Figs. 4 and 5 it can be seen that for any fixed time instant, the wave amplitude decaying exponentially

with the depth. Eq. (33) shows that α(p;κ1 , κ2 ) is a monotonically increasing function of parameters p, κ1 and a decreasing

function of κ2 . Hence, one can conclude that the rate of waves attenuation with a distance from the surface grows together

with the wave parameter p and the surface density m for fixed other parameters ( ρ, μ, μs , u 0 ), and contrary, it drops when

μs / (u 0 μ) increases. 

The outcomes of computations of the amplitude A m 

= � P 0 (τ ) at the rough surface for κ1 = 1 and different values of the

shear parameter κ2 = 0 ; 0 . 2 ; 0 . 4 ; 0 . 6 are shown in Fig. 6 . Other parameters are as in the first example. It is seen that the rate

of decay of the amplitude of localized anti-plane waves during time is strongly affected by the surface shear modulus μs ; it

grows as a parameter κ2 decreases. For instance, for the free iron surface with very small ratio μs /μ ≈ 3 . 57 × 10 −11 m, we

can assume κ2 ≈ 0 , if the initial amplitude u 0 is such that the asymptotic estimate κ1 ∼ 1 holds. However, if we consider a

free surface with a thin near-surface layer for which μs = μns h ns , where μns is the shear modulus of material of the near-

surface layer of the thickness h ns , see Mishuris et al. (2006) and Eremeyev et al. (2020) , then by varying the thickness h ns ,

one can obtain a non-zero ratio κ < κ . Obviously, in the first case (for a free surface of iron film) the localized anti-plane
2 1 



Fig. 6. The maximum amplitude A m = � P 0 (τ ) vs . dimensional time τ for different values of a shear parameter κ2 : 1 - κ2 = 0 ; 2 - κ2 = 0 . 2 ; 3 - κ2 = 0 . 4 ; 4 

- κ2 = 0 . 6 .

 

 

 

 

 

 

 

 

 

 

waves decay faster than in the second one (for a free surface with a thin near-surface layer of finite thickness). It is worth

to emphasized once more that a decrease in the surface shear modulus μs in comparison with u 0 μ, where μ is the shear

modulus in a bulk and u 0 is the initial amplitude of localized waves, leads to an increase in the decay rate of localized

waves on the corrugated surface and to a decrease of this rate at the depth of the half-plane far from the surface. 

We note that the performed analysis of localized shear surface waves is related to case A corresponding to a small

variation of the surface roughness in the x -direction. It may be considered as a benchmark solution for subsequent detailed

investigations of other possible relations between the main parameters of the problem ( l, u 0 , ηm 

) including case B. 

6. Conclusions

We discussed the propagation of localized surface waves in an elastic half-space with a thin coating modeled through

the linear Gurtin–Murdoch surface elasticity. The main aim of the paper was to analyze a roughness influence on the wave

localization. We modeled roughness as a geometric deviation from the flat surface. Let us note that from engineering point 

of view roughness is an almost unavoidable property of any surface and should be taken into account for the analysis of

surface waves. The latter are widely used in modern engineering, for example, as carriers of an information on surface 

defects and other material properties in a vicinity of a surface. In this paper we applied the asymptotic approach developed

earlier for elastic shells ( Mikhasev, 1996; 1998; Mikhasev & Tovstik, 2020 ). The obtained solution and performed calculations

allow us to conclude that: 

• the effect of surface roughness on the localized wave characteristics essentially depends on the following parameters:

the initial wave amplitude/wavelength ratio, the correlations between the surface density and material density in the

bulk, the surface shear modulus and shear modulus of the near-surface layer, the amplitude of surface imperfection and

the initial wave amplitude, and the roughness characteristic length as well;

• the smooth roughness of small amplitude does not affect the wave number, instantaneous frequency, group velocity, and

width of an excited localized wave, but strongly affects its amplitude, distorting the latter over time;

• the decay rate of anti-plane localized waves at the rough surface grows when the wave number increases and/or the

surface shear modulus decreases;

• the decay rate of anti-plane localized waves in depth direction increases together with the wave number and the surface

density and decreases when the surface shear modulus increases.

The presented results complement previous ones for ideal plane boundary or for surface inhomogeneity presented by

Eremeyev et al. (2016) and by Sharma and Eremeyev (2019) , respectively. This property could be used for evaluation of

surface properties using ultrasound waves techniques, as, for example, for evaluation of the stability of dental implants 

( Hériveaux, Nguyen, Biwa, & Haïat, 2020; Scala et al., 2018 ). 
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