
The Journal of Supercomputing
https://doi.org/10.1007/s11227-020-03499-1

Improving Clairvoyant: reduction algorithm resilient to
imbalanced process arrival patterns

Jerzy Proficz1 · Krzysztof M. Ocetkiewicz1

Accepted: 28 October 2020
© The Author(s) 2020

Abstract
The Clairvoyant algorithm proposed in “A novel MPI reduction algorithm resilient
to imbalances in process arrival times” was analyzed, commented and improved.
The comments concern handling certain edge cases in the original pseudocode and
description, i.e., adding another state of a process, improved cache friendliness more
precise complexity estimations and some other issues improving the robustness of the
algorithm implementation. The proposed improvements include skipping of idle loop
rounds, simplifying generation of the ready set and management of the state array and
an about 90-fold reduction in memory usage. Finally an extension enabling process
arrival times (PATs) prediction was added: an additional background thread used to
exchange the data with the PAT estimations. The performed tests, with a dedicated
mini-benchmark executed in an HPC environment, showed correctness and improved
performance of the solution, with comparison to the original or other state-of-the-art
algorithms.

Keywords Reduce · Clairvoyant · Process arrival pattern · MPI

1 Introduction

Current trends in the high performance computing (HPC), stimulated by the rapid
growth of theArtificial Intelligence (AI), Internet of Things (IoT), or BigData analysis
methods and tools, showmassive development of compute cluster architectures, where
most supercomputers consist of independent nodes connected by a fast interconnecting
network, usually InfiniBand or Ethernet. In such environment, a natural approach

B Jerzy Proficz
j.proficz@task.gda.pl

Krzysztof M. Ocetkiewicz
k.ocetkiewicz@task.gda.pl

1 Gdansk University of Technology Centre of Informatics-Tricity Academic Supercomputer and
NetworK (CI TASK), 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03499-1&domain=pdf
http://orcid.org/0000-0003-2975-9339
http://orcid.org/0000-0002-4472-6116

J. Proficz, K. M. Ocetkiewicz

to provide data exchange and synchronization mechanisms is the message passing
paradigm, with the usually used Message Passing Interface (MPI) standard [24], and
its support for both point-to-point and collective operations.

Thus, we can observe a rapid progress in parallelization of currently existing com-
pute methods and applications, especially ones requiring the large compute resources.
We perceive that the improvements of HPC communication algorithms and proto-
cols, including our works, will enable faster optimization of the above crucial areas
(IoT, AI, Big Data), especially in such topics like parallelization of hybrid parallel
FTDTmethods [22], intelligent home systems supported by neural networks [26], Big
Data related programming models and systems [1], and voice evaluation mechanisms
involving such complex mechanisms like bio-inspired algorithms or spiking neural
network [14].

In the aforementioned cluster environment, every compute node, in fact a separate
computer, has its own RAM memory, processor(s), I/O devices and possibly accel-
erators (especially GP GPU cards), data storage etc. Such a device is managed by
an independent operating system, having a specific process/thread scheduler, power
management mechanisms and a number of other system functions usually performed
periodically or randomly. Even for the homogeneous cluster, all these features cause
that the communication and computations are not performed in the same pace for all
of the nodes.

Such desynchronization is especially visible for collective communication, where
each participating process can start the operation in its own arrival time (PAT), which in
many cases can create high time differences, called imbalanced process arrival patterns
(PAP). The comprehensive analysis of a collection of HPC benchmarks showed that
the mentioned imbalances can have a great impact on the application performance [6].
Moreover, the recently observed parallelization of hardware and system components,
e.g. introduction of more compute cores sharing the same memory channels, which
performance behavior in many cases is non-deterministic, can multiply such effects.

The MPI standard defines the operations, but their exact implementation depends
solely on the providers. Usually each collective operation has several possible algo-
rithms realizing its functionality, within MPI standard boundaries. They can be tuned
for different constraints such as data size, number of processes, connection speed or
network architecture. In our case we optimize collective operations by providing some
algorithms (partially) resilient to imbalanced PAP environment, e.g. [15,16].

A novel PAP-aware algorithmwas presented in [9] byMarendic et al. It is dedicated
to the MPI reduce operation, which makes the data vectors initially placed in the
cooperating processes, to be reduced into one value by a defined math operation, e.g.
sum, and placed in a root process. The aforementioned algorithm seemed to be very
promising, the provided experimental results showed a positive impact on the overall
performance; however, during an independent implementation a number of issues
occurred.

In this article we provide a collection of comments and improvements to the above
algorithm, which increase its efficiency and usability, while keeping its ability of the
imbalanced PAPs mitigation. Our contribution is as follows:

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

– Precise specification of algorithm’s behavior in edge cases not handled in the
original algorithm pseudocode and description,

– Introduction of improvements to the algorithm, increasing its performance,
– Extension to the algorithm covering a PAP prediction method, ported from our
other works: [15,16], enhancing its usability,

– Practical verification of the proposed improvements and extension, based on the
experiments performed in a typical HPC environment.

Thus, the above modifications were introduced in two phases: in the first one, we
implemented the updated algorithm with the proposed improvements and performed
the practical verification on one CPU, showing the better performance in comparison
to the base algorithm, see the results in Sect. 5.7. In the second phase, we introduced
the extension, increasing the usability, such the algorithm can be used without a priori
PAP related knowledge, and showed, trough the series of the experiments executed in
an HPC cluster environment (up to 48 compute nodes), that this approach is superior
to the currently sate-of-the-art algorithms (binomial tree, Rabenseifner, Radix-K and
parallel ring), see the results in Sect. 6.

The paper has the following structure: the next section describes the original
algorithm including its pseudocode, Sect. 3 presents the main works related to the
imbalanced PAP subject, Sect. 4 presents analysis of the Clairvoyant algorithm and
necessary modifications we had to apply to perform code implementation. Then, in
Sect. 5, some improvements leading to increased performance and the experimental
results showing their effectiveness are presented. In Sect. 6, an extension, realized by
additional background thread, enabling PAP estimation, to feed the algorithm with the
PAT data, along with a practical verification of the proposed method are described.
Finally, some conclusions and future works are presented.

2 Original algorithm

This paper concerns an article [9], provided by Marendic et al. Its main subject is an
MPI reduction algorithmwhosemain feature is the ability tomitigate an impact caused
by imbalanced PAPs. The algorithm is dedicated for segmentable data and based on
greedy scheduling of the segment transfers between the cooperating processes as soon
as they are available for the reduce operation; the pseudocode is presented in Listing 1.

The algorithm can be summarized as follows. On input P processes p1, . . . , pP are
given. The time process pi arrives is given by ai . The data to be gathered is divided into
N segments. The algorithm produces two queues for every process: input and output.
Both queues hold a list of pairs. For process p, every pair describes a communication
event. A (q, s) pair in the input queue denotes segment s being sent from process q to
process p and combined by p. Analogously, (q, s) pair in the output queue represents
process p sending segment s to be combined by process q. All nodes partaking a reduce
operation execute the algorithm in parallel and perform communication as directed by
the contents of their communication queues.

Every (process, segment) pair has a state, kept in M array. The states belong to one
of the following types: A - the process has not yet sent its part of the segment, E - the

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

process has sent its part of the segment, P - the process holds a partially combined
segment. When process pa sends its part of segment s to process pb, state M(pa, s) is
updated to E while state M(pb, s) is set to P . The algorithmworks in rounds of length
d time units. Processes are kept in a queue Q, ordered by their arrival times. In every
round, a sequence G of processes that arrive no later than d units of time after the first
process in the Q is prepared. These processes participate in the round. Then, a sink
process is designated. When algorithm’s root process is inG, it is selected as the sink.
Otherwise, the first process in G becomes the sink. The sink is moved to the front of
G. This ensures that, in the end, all segments will be gathered in root process. After
the sink is selected, for every process i in G the algorithm tries to find a peer process
z and segment j such that z can transmit j to i . Process z is then marked (S(z) = �)
as it can no longer send segments in this round. After all processes in G have been
considered, these processes that hold unsent segments, i.e. these that have a segment
in state different than E , are returned to the queue Q with arrival time incremented by
d.

The virtual topology depends on the arrival patterns and segment number. Reduction
of every segment will have its own connection topology. In the best case a binomial
tree will be constructed for a segment. However, if there is at least two segments, the
root node will transmit some of it’s segments only to receive it later: the reduction
will follow a tree but in one of steps, the ad-hoc root of the segment’s reduction will
transmit the result to the root node. Therefore, it can be said that the topology for a
single segment is a graph with circuit rank not greater than one and the whole virtual
topology will be a sum of a number of such graphs.

The algorithm was implemented in C++ and the series of experiments in emulated,
imbalanced PAP environment showed its advantage over state-of-the-art algorithms
i.e. binomial tree, parallel ring, butterfly and Radix-K. The algorithm assumes a prori
knowledge about the arrival times of all the cooperating processes, that is why it is
called Clairvoyant (CLV). To allow a real-world implementation the authors proposed
usage of statistical techniques such as Simple Moving Average (SMA), assuming the
repetition of the PATs over the cooperating processes.

3 Related works

Apart of the article: [9] being the subject of this paper, there is a number of other
related works. The first comprehensive study over imbalanced PAPs was performed
by Faraj et al. in [6]. They presented a definition according to which PAP is a tuple
(a0, a1, . . . , aP−1) where ai is the time (PAT) when an i-th process arrive to the
operation and P is a number of all cooperating processes. Similarly, there was defined
a process exit pattern (PET) as a tuple (f0, f1, . . . , fP−1) where fi is the time when
an i-th process finishes the operation. An imbalanced PAP occurrence was defined as
if its imbalance factor: a ratio between the largest difference between the arrival times
of the processes and time of the simple, point-to-point message delivery between each
other, is larger than 1.

There are several PAP-aware algorithms concerning other collective operations. In
[12], Patarasuk et. al. presented two new broadcast algorithms: one designed for block-

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

Listing 1 Original Clairvoyant algorithm pseudocode. Source: [9]
1: Let M be a state matrix of size P · N . Set M(∗, ∗) = A, i.e.. mark all segments as available.
2: Set S : bool be an array of size P
3: For ∀i ∈ {0 . . . P − 1} insert process rank i into a priority queue Q, where priority is given to process

rank i with smaller arrival time ai
4: while size(Q) > 1 do
5: Pop processes Q0 . . . Qk ∈ Q to form a sorted vector G, so that ∀i ∈ G, ai ≤ aQ0 + d
6: for ∀i ∈ G do
7: let S(i) = ⊥ � no ready process in G has yet sent a segment
8: end for
9: if r ∈ G then
10: insert r at first position in G
11: end if
12: for ∀i ∈ G do
13: let j = 0, let z = φ

14: if r ∈ G then
15: let r∗ = r � sink is the root
16: else
17: let r∗ = Q0 � sink is the earliest to arrive process
18: end if
19: while z ∈ φ do
20: if i 	= r∗ then
21: starting from j , find first segment x , such that M(i, x) ∈ {A, P}. Let j = x
22: else
23: starting from j , find first segment x , such that M(i, x) ∈ {A, P, E}. Let j = x
24: end if
25: perform linear search through group G to find the first process z 	= i such that M(z, j) ∈

{A, P} ∧ S(z) = ⊥
26: if z ∈ φ then
27: let j = j + 1
28: end if
29: end while
30: enqueue to I (i) the pair (z, j)
31: enqueue to O(z) the pair (i, j) and let S(z) = �
32: M(z, j) = E
33: M(i, j) = P
34: end for
35: for ∀i ∈ G do
36: if ∃ j ∈ {0 . . . N − 1} : M(i, j) 	= E then
37: ai = ai + d
38: push process i into Q
39: end if
40: end for
41: end while

ing (arrival_b) and the other for nonblocking (arrival_nb) message-passing model. In
[10], Marendic et al. proposed another reduce algorithm preserving atomicity of the
data and being based on the binomial tree. In [18], Qian et al. described three all-gather
and all-to-all related algorithms, which based on the InfiniBand RDMA [20] features
used to check the receiving process arrival time estimation. In [15–17], we provided
a collection of PAP-aware algorithms for all-reduce, scatter and gather collectives,
based on binomial, flat trees and parallel ring approaches.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

Every aforementioned solution requires PAT related information to perform com-
munication activities mitigating the PAP imbalance. In [6], Faraj et al. used their
STAR-MPI [5] tuning platform assuming that a PAP does not change over consecutive
executions of the the same operation (the operations were identified by the their code
location and calling arguments). In papers [10,12,18] the authors included the detec-
tion mechanisms into their algorithms, which required additional communication or
special hardware features. In [15,16] we proposed usage of an additional background
thread to detect, predict and distribute PAT information over all cooperating processes
while the computations are performed. As described above, Clairvoyant did not pro-
vide any out-of-the-box method of PAP estimation [9], which was our motivation to
extend it with the background thread, see Sect. 6.

Recently, apart of the imbalanced PAPs subject [9], the focus of MPI reduce algo-
rithms were mainly scoped on hierarchical optimization, where the processes are
distributed over a compute cluster, and more than one process is assigned to the same
node. In [7], Hasanov et al. proposed an algorithm categorizing the processes into the
local (in the same node) and global (distributed over a compute cluster) communica-
tors, where the reduce can be performed in two phases, increasing the performance
of the operation. In [21], Shan et al. proposed utilization of idle threads on manycore
processors and data compression to boost MPI reduce performance, and in [28], Zhao
et al. showed that usage of k-nomial tree algorithms has the advantage over a typical
binomial solution. These approaches exploit a priori knowledge about the hardware
architecture and, therefore anticipate larger network latencies for the remote processes
(assigned to different nodes); in comparison our solution uses its own mechanisms to
retrieve knowledge about delays during the runtime, using the auxiliary, background
thread.

The other, recent improvements of MPI reduce performance, were based on the
additional hardware support, namely offloading the execution of the operation into
FPGA (Field-Programmable Gate Array) [23,27]. The proposed solution moved the
reduction calculations from the compute node into a network switch, where the FPGA
is deployed, providing significant performance boost (up to 10× speedup). In compar-
ison, our solution does not interfere the hardware layer and is network independent,
however we can perceive that such support can be complementary to our approach
and is taken under consideration in the future works.

4 Analysis and necessary modifications to the algorithm

The authors of [9] did not provide a reference implementation, and shared only a few
implementation details like using pairing heaps to improve the performance. Therefore
we attempted to implement the Clairvoyant algorithm ourselves. However, our imple-
mentation meet several edge cases neither handled by the pseudocode nor discussed
in the article. In this section we present details of how we solved these issues.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

4.1 Available processes and the state array

The referenced paper proposes to use a set of pairing heaps holding process indices,
one for each segment, to optimize the linear search in the innermost loop of the
algorithm. This set is accompanied by an array of handles to every (process, segment)
pair in the heaps. This allows for a fast search for the process with the smallest rank
that satisfies the condition M(z, j) ∈ {A, P} ∧ S(z) = ⊥. Such a setup is efficient
for handling changes in M array, as the changes translate to a single insert or erase
into a pairing heap. After a send operation is scheduled for a process, its state is
updated to �. This means it should not be considered during following searches in
the same round. However, the rank of this process may appear in every pairing heap.
Therefore, it either must be removed from O(N) pairing heaps (as in the worst case the
process may be inserted into every segment’s pairing heap). Alternatively, the search
for a process with the smallest rank must filter out the processes that do not satisfy
the condition S(z) = ⊥. This, however, will require delete-min operation instead of
find-min on pairing heap which requires O(log n) amortized time instead of O(1) in
case of delete-min. Additionally, at the start of the next round, the values in array S
for every ready process are reset to ⊥, which means reinserting the process rank to
O(N) pairing heaps.

Lemma 1 There exist instances that require O(PN 2) inserts and O(PN 2) erases
from the pairing heap during the entire execution of the Clairvoyant algorithm, where
N is the number of segments and P is the number of processes.

Proof There are N pairing heaps used in the algorithm—one per message segment—
containing processes available for choosing. Process p will appear in pairing heap s
if M(p, s) ∈ {A, P} at the start of the round. Every process transmits every of its
segments at least once. Since a process is allowed only one transmission per round,
every process takes part in at least N rounds. The transmission of a segment is followed
by setting S(p) = � for the process p that sends the data and makes the process
unavailable for choosing in this round. If we choose to remove such process from
pairing heaps immediately, then we must remove it from as many paring heaps as the
process has segments in state A or P , which is N for the first transmitted segment,
N − 1 for the second, and so on, for the total of

erasures-per-processimmediately =
N∑

i=1

i = (N + 1)N

2
= O(N 2)

erasures for process p. At the beginning of the next round, the process must be rein-
serted to all heaps for whose it still holds segment in A or P state. There will be one
insertion less than there were deletions in previous round, because the transmission
changes state of one segment. That leads to:

insertions-per-processimmediately =
N∑

i=1

i − 1 = N (N − 1)

2
= O(N 2)

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

insertions per process for a total of O(PN 2) operations.
If we take path of filtering out processes during extraction, consider an instance

with processes arriving one per round, i.e. ai = i for i = 0, . . . , P − 1 and d = 1
and P > N . According to the pseudocode, after O(N) initial rounds there will be
O(P − N) = O(P) rounds with regular communication structure (see Fig. 1). In
every such round, N processes will transmit a segment and every segment will be sent
by some process.

Last process considered in such round will have N − 1 segments in state P or A:
it became available in this round and immediately sent his segment 0 to process 0. At
least N −1 processes were already considered in this round and all of them sent some
segment thus beingmarked with S[p] = �. These processes have N−2, N−3, . . . , 1
segments in state P or A so they were present in respectively N − 2, N − 3, . . . , 1
paring heaps. The last considered process will not find a peer, and to realize this it
will iterate over N − 1 pairing heaps filtering out all of disabled processes from them,
erasing

erasures-per-roundfiltering =
N−1∑

i=1

i − 1 = (N − 1)(N − 2)

2
= O(N 2)

nodes.
At the start of the next round, N − 1 processes transition back to S[p] = ⊥ and

must be added to respectively 1, 2, . . . , N − 1 pairing heaps, according to the number
of segments in P or A state for a process. Additionally, a new process will arrive
that must be added to N pairing heaps. Therefore, at the start of this round O(N 2)

insertions will occur:

insertions-per-roundfiltering = N +
N−1∑

i=1

i = (N + 1)N

2
= O(N 2)

Therewill be O(P−N) rounds following this schema so the total number of insertions
and erasures will be O(PN 2).

Thus we have shown that in either strategy, the number of insertions and erasures
from paring heaps is in the order of O(PN 2). �

These operations are not only time-consuming but also require a significant amount
of memory bandwidth. For example, when N = P = 512 and assuming 56 bytes per
(process, segment) pair (see calculations in the Sect. 4.5), the total sum of memory
transfer would be in the range of tens of gigabytes.

4.2 Additional state P′

Take an instance with P = 4 processes with arrival times of a0 = a1 = a2 = 0, a3 =
1.1, r = p0, N = 4 segments and round time d = 1. In the first round at t = 0,
processes p0 and p1 will exchange messages with p0 sending segment 1 to p1 and p1
sending segment 0 to p0. Notice that p2 will neither send nor receive a segment in this

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 . . .
s0 1 2 3 4 5 6 7 8 9 10 11
s1 1 2 4 6 8 10 11
s2 2 3 4 5 6 7 8 9 10 11
s3 3 3 5 6 7 8 9 10 11
s4 4 4 5 7 8 9 10 11
s5 5 5 6 7 9 10 11

Fig. 1 Example of first 11 rounds of a scenario producing O(PN2) erasures from pairing heaps. N = 6.
Column indexes are process numbers, row indexes are segment numbers. Value r in cell (s, p) signifies that
process p sends segment s in round r . This also means that the cell (s, p) transitions to state E in round r .
Empty cells are in A or P state

round. During the next round, starting at t = 1, p3 finally arrives. The process p0 will
be considered first and will be scheduled to receive segment 0 from p2. Next step will
determine that p1 should receive segment 1 from p3. The next two steps will cause
a difficult situation: p2 will be scheduled to receive segment 1 from p1 and then p3
should receive segment 0 from p0, causing both p0 and p1 to send the same segment
they receive in one round.

This is an issue. If we want the algorithm to remain deterministic, wemust synchro-
nize these two transmissions: either the segment is sent after the receive or is received
after the send. This, however, requires doubling the round time for the entire algorithm
as some transmissions can no longer be be asynchronous.

We propose to solve this issue by introducing an additional state P ′ in the M array.
M(i, j) = P ′ represent the case when a process j already received segment i in this
turn. When a segment is in this state, it must not be sent in the same round this state
was set.

Since any process can receive only one segment in one round, only one cell per
process in the state array can be in P ′ state.Moreover, this state is equivalent to state E ,
except for the case when the algorithm searches for a process that will send a segment
to the sink (i.e. the root or the first ready process in the round). In this case P ′ should
be treated as a distinct state.Wewill be able to properly differentiate states P ′ and E , if
we implement P ′ state by replacing it with state E inM array and storing, in additional
per-process variable, the segment index of P ′ state. Essentially, setting M(s, p) = P ′
is equivalent to setting M(s, p) = E and setting an additional array P ′

states(p) = s. A
test for a segment to be in E state becomes M(s, p) = E ∧ P ′

states(p) 	= s. After the
round is completed, state P ′ becomes state P again, so M(P ′

states(p), p) = P must
be executed for every p for which P ′

states(p) was set.

4.3 Issues with pseudocode

A few cases are not properly handled in the algorithm’s pseudocode. The innermost
loop does not recognize the case where a (process, segment) pair cannot be found.
There will be processes that will not communicate in a round despite being able to,
e.g. see the example in the original paper, or the first round of the example in Sect. 4.2.
Therefore, the loop must terminate not only when a segment has been found but also
when all segments have been considered. This change also has consequences in the

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

following steps. Since such a pair may not be found, modifications of array M and
enqueueing to the result queues must be done only when the search was successful.

Yet another consequence of possibility of not participating in communication is
that the result of the algorithm, i.e. the input and output queues, must include not only
the segment number and the process to communicate with but also the round number.
Otherwise, in presence of rounds without communication, processes may not properly
recognize time to communicate. For example, consider process p0 that should receive
segment s from process p1 in round k + 1 and process p1 that sends segment t to p2
in round k and segment s in round k+1. In round k process p0 sees (p1, s) in its input
queue, while process p1 sees (p2, t), (p1, s) in its output queue. Without knowing the
round number, p0 cannot determine whether to communicate with p1 in round k or
k + 1 and in round k will try to receive a segment that will not be sent until round
k + 1.

4.4 Deterministic priority queue forQ

It should be noted that the priority queue used for Qmust be deterministic. Specifically,
handling of keys of the same value must be identical across all machines, which
rules out such techniques as random priorities or using value-of-pointer for symmetry
breaking.

4.5 Cache friendliness impact on complexity

The authors compute the complexity of their algorithm to be O(RPN), where N is
the number of segments, P is the number of processes and R denotes the number
of rounds, estimated in the article to be log2 P + N + 1 in the balanced PATs case.
Additionally, the authors ignore the N component in the complexity on the basis of
small value and beneficial cache effects, ending up with O(PN + P log2 P) steps.
However, the algorithm is far from being cache-friendly. The suggested implementa-
tion accompanies state matrix M with a number of pairing_heap queues. In the
worst case, every cell of M will have an accompanying node in some pairing heap.
Additionally, a handle to such a node will also be stored for faster erases. Assuming
x86-64 machine this sums up to 56 bytes per single state in the M matrix: 48 bytes for
pairing_heap node with value type of std::size_t and another 8 bytes for
handle (using gcc 7.3.0 with -O3 and boost 1.70.0). This size is close to the typical
size of a cache line (64 bytes) for x86-64 architecture so different nodes will occupy
different cache lines. Moreover, any operation that changes the pairing heap requires
access to at least two nodes of the structure, which puts even more pressure on the
cache memory.

Note that to account for the required additional operations described in the Sect. 4.1,
a O(N 2P log P) component should be added to the above complexity. An additional
component of O(RN log P)must be added to account for the idle loops (see Sect. 5.1)
if the round time is significantly shorter than the PAT differences. Moreover, in the
worst case, the number of idle rounds can grow exponentially with the input size as it
will be at least R ≥ maxi ai

d .

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

Therefore, we believe that the complexity of the Clairvoyant algorithm should be
stated as O(N 2P log P + RN), with N 2P log P being the number of steps required
to manage the pairing heaps (and this number dominates other operations in the algo-
rithm) and RN component accounting for the possible large number of idle rounds.

4.6 The algorithmwith fixes applied

Listing 2 presents a pseudocode for the Clairvoyant algorithm after applying the above
fixes. The original line numbering have been preserved in most cases, but the required
condition to check if the peer has been found has moved line 25 to line 26 lines 30–33
to lines 33–36 and lines 35–41 to lines 39–45.

5 Improvements to the algorithm

The benchmarks presented byMarendic et al. show an impressive speedup achieved by
the Clairvoyant algorithm over other reduce algorithms in an imbalanced PAP environ-
ment. We have implemented two versions of Clairvoyant with our fixes applied. The
base version replicates the pseudocode. The pairing version uses pairing_heaps
from the boost library. Unfortunately, neither implementation was able to match the
performance claimed in the original article. While [9] cites a time of about 0.125s
for generating a schedule for an instance with P = N = 512 and unspecified arrival
times on a Xeon E5-2680@2.7GHz CPU.1 With our implementation we were able
to reach schedule generation time of about 10s for the same sized instances with
randomly generated arrival times. Our tests were run on a different CPU, a Xeon
E5-2670 v3 @2.3GHz, but such a large run time difference cannot be explained by
neither hardware nor compiler or implementation differences alone. We assume that
the main reason for this disparity is the addition of the updates of the pairing heaps
after disabling and enabling processes.

We were also able to identify a few places where the algorithm can be improved.
Therefore, we implemented yet another version of the algorithm that employs the
improvements, i.e. uses a reduced set of segment states, stores the state array in segment
tree, has simplified handling of set of processes that are active during a round and skips
unnecessary computations in roundswith onlyone active process. These improvements
allowed our implementation to reach the run times comparable to the ones presented
in [9]. Moreover, the changes caused the algorithm’s run time to bemuch less sensitive
to process arrival time patterns. The results of computational experiments supporting
these claims are presented in Sect. 5.7.

5.1 Skipping idle rounds

The original Clairvoyant algorithm does not handle well cases where the round time is
significantly smaller than the differences between processes arrival times. An exam-

1 Asmentioned in [9], this is the CPU onwhich the experimental results were obtained, but authors mention
also a system with Xeon X5660@2.8GHz CPU, used as a prototyping and testing environment.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

Listing 2Clairvoyant algorithmwith applied fixes fromSect. 4. In line 19 an additional
termination condition has been added to guarantee the loop terminates, the original
line 25 (now line 26) is guarded by a check if the previous search was successful, the
original lines 30–33 (now lines 33–36) are executed only when a proper segment has
been found, and finally, in line 36 (original line 33) M array indices have been fixed.
The addition of the conditional instruction moved the original lines 35–41 to lines
39–45.
1: Let M be a state matrix of size P · N . Set M(∗, ∗) = A, i.e.. mark all segments as available.
2: Set S : bool be an array of size P
3: For ∀i ∈ {0 . . . P − 1} insert process rank i into a priority queue Q, where priority is given to process

rank i with smaller arrival time ai
4: while size(Q) > 1 do
5: Pop processes Q0 . . . Qk from Q to form a sorted vector G, so that ∀i ∈ G, ai ≤ aQ0 + d
6: for ∀i ∈ G do
7: let S(i) = ⊥
8: end for
9: if r ∈ G then
10: insert r at first position in G
11: end if
12: for ∀i ∈ G do
13: let j = 0, let z = φ

14: if r ∈ G then
15: let r∗ = r
16: else
17: let r∗ = Q0
18: end if
19: while z ∈ φ and j < N do
20: if i 	= r∗ then
21: starting from j , find first segment x , such that M(i, x) ∈ {A, P}. Let j = x .
22: else
23: starting from j , find first segment x , such that M(i, x) ∈ {A, P, E}. Let j = x .
24: end if
25: if such segment j has been found then
26: perform linear search through group G to find the first process z 	= i such that M(z, j) ∈

{A, P} ∧ S(z) = ⊥.
27: end if
28: if z ∈ φ then
29: let j = j + 1
30: end if
31: end while
32: if j < N then
33: enqueue to I (i) the tuple (round, z, j)
34: enqueue to O(z) the tuple (round, i, j) and let S(z) = �
35: M(z, j) = E
36: M(i, j) = P
37: end if
38: end for
39: for ∀i ∈ G do
40: if ∃ j ∈ {0 . . . N − 1} : M(i, j) 	= E then
41: ai = ai + d
42: push process i into Q
43: end if
44: end for
45: end while

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

ple of such a case would be a single segment, 1ms round time and arrival times
a0 = 0s, a1 = 1s, a2 = 2s, a3 = 3s. After each process arrival, a few rounds of
computation will be spent to communicate with this newly arrived process. When all
required messages are passed, the algorithm will begin idling with group G of size
1. However, during such idle loops, entire M array will be scanned for a candidate
process. Therefore, a lot of time will be wasted in a search for a process that does not
exist.

We propose to update the algorithm in such a way that when vector G is calculated
and its size is equal to one, instead of the usual loop, the algorithm looks for the next
process P to arrive and jumps ahead to the round number in which process P finally
arrives. The arrival of a new process is the only event that can change the size of G in
this situation, so the jump will not interfere with the flow of the algorithm. Looking at
the above example, at t = 0s process p0 arrives. Instead of doing 1000 of idle loops,
the algorithm notices the case when |G| = 1 and jumps ahead (a1 −a0)/1ms = 1000
rounds. In the next step, G = {p0, p1}. In a single step p1 sends its segment to p0 and
leaves G. In the following step the algorithm can again notice the single element in
vector G and instantaneously skip another 999 rounds.

5.2 Generating vector Gwithout priority queue

Let us say that process p is active when its arrival time has been reached and p has
not yet sent out all its segments. Let the availability time of a process p be the time
the process arrives if the process did not become active yet. After the process became
active, let the availability time denote the time p becomes available for the next round.
During the execution of the algorithm the availability time of p starts with the value
of its arrival time and gets increased by d every round the process is active.

The original algorithm uses a priority queue Q to create a vector of processes
that will be considered during the next turn (the vector G). This queue contains all
processes. Every round a process is active it is removed from the queue and reinserted
into Q, except the last round the process is active, when it will be only removed from
Q. This gives the total cost of O(R� log P), where R� = ∑

p=0,...,P−1 Ri and Rp is
the number of rounds in which process p is active. We propose an alternative solution
that reduces this cost to O(R� + P log P) and does not require any complex data
structures.

The problem of generating the set of active processes can be modeled as follows.
There are given P processes with availability times ap for i = 0, . . . P − 1 and round
time d. A computation is performed in R rounds. During each round of computation
a GET-ACTIVE query is issued. The result of this query must be the list of processes
that have availability time ap ≤ amin + d where amin is the smallest availability time
among not completed processes. The query must return processes ordered by their
availability time. Next, every process on this list will perform a COMMUNICATE
operation, and some of them will also perform COMPLETE:

– COMMUNICATE adds d to its availability time,
– COMPLETE removes the process.

Every process is guaranteed to eventually perform COMPLETE.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

Fig. 2 Example of generating a new vector (G′) from the previous one (G) and the awaiting queue A. The
round time is d = 5. The squares represent processes and values in squares denote the availability time of
every process. The gray background marks a process that became inactive and should be removed from G

We propose the following solution to the problem. Let G be the result of
GET-ACTIVE from the previous round. Let A (awaiting) be a queue of processes
ordered by their arrival time with ties broken by a process rank. Initially, all processes
occupy A queue and G queue is empty.

Next, consider list G—the result of GET-ACTIVE query from the previous round.
Processes in G are ordered by their availability times (again, with ties resolved by
process ranks). Every one of them either should be removed from G (due to call
to COMPLETE) or had their availability time increased by d as a result of calling
COMMUNICATE. Let G ′ be the result of the next GET-ACTIVE query. The relative
order of processes that were in G and will be included in G ′ will not change as all
of them called COMMUNICATE. However, we may need to weave into the G ′ some
processes from the A queue that will become available (see Fig. 2). This can be done
by a simplemerge operation, not unlike the one used in themerge-sort algorithm. First,
assume that looking at the head of G means removing from G’s head any process that
should be removed from G due to calling COMPLETE, until we find a process that is
to stay. This process becomes the observed head. Now all we need to do is select either
the head of G or the head of awaiting queue, depending on the smaller availability
time, as the first element of the G ′. Call this process the head. Now we repeatedly
select the head from the G or A queue based on the earlier availability time, as long
as the selected head’s availability time is no later than ahead + d. This produces G ′
of processes, ordered by their availability time for the next round, i.e. the result of the
following GET-ACTIVE query.

The COMMUNICATE and COMPLETE operations can be easily implemented by
holding the availability time and completion flag of processes in an array indexed by
the process rank.

Lemma 2 The computation with P processes and R rounds, where each round calls
GET-ACTIVE once, a process is active in Rp rounds, calling COMMUNICATE in
every round and calling COMPLETE after Rp rounds takes O(R� + P log P) time,
where R� = ∑

p=0,...,P−1 Ri .

Proof Every process will be added to the awaiting queue exactly once and will be
removed from awaiting queue at most once during entire computation. The initial
setup of awaiting queue requires ordering all processes which takes O(P log P) time.
If queues are implemented as lists the construction of the queue in the given order
consumes O(P) time. The removal of process from queue takes O(1) time as it is
always removed from the head. Both COMMUNICATE and COMPLETE require

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

O(1) time as each of them require one update of an array and there is a total of R�

calls to COMMUNICATE and P calls to COMPLETE. The GET-ACTIVE query
takes constant time per process. One query handles all processes from list G and some
from A queue. As no process is re-inserted to the A queue, GET-ACTIVE will handle
P processes from A queue during the entire computation. Because process p will be
inserted and removed from list G Rp times, GET-ACTIVE will handle a total of R�

processes from L AST − ACT IV E queue.
Therefore, in the presented computation the number of performed steps will be

O(P log P + P + R�) = O(R� + P log P). If R is the total number of rounds of the
algorithm and in every round only P processes can be active, and the total number of
rounds will be R = Ω(log P) we can also state this time as O(RP). �

5.3 Compressing the state array

The Clairvoyant does not differentiate between states A and P . Therefore, only states
P and E must be encoded in the state array. Since, as wasmentioned before, additional
state P ′ can be encoded in an external variable (see Sect. 4.2), state array M requires
only a single bit for every (process, segment) pair.

5.4 Segment trees

In this section, the process index will denote its zero-based number in a sequence
obtained by ordering processes according to certain criteria. We call this number an
index because it is used to index the state array. Additionally, wherever we mention a
specific order of processes, ties in ordering will be broken by process ranks.

In the inner-most loop theClairvoyant algorithm tries to find a peer for every process
in the active set. This peer must be free, i.e. it has not sent a segment in the considered
round. Additionally, both the process and its peer must have a common segment such
that none of them have sent—the state of this segment for both of the processes must
be A or P . When there are multiple processes that can become a peer, the one that
provides a segment with the smallest index is chosen. When tied, the peer with the
earlier availability time is selected. There is an exception for the head of G, as it
accepts any segment except the one in P ′ state. Its peer, however, must still have the
segment in A or P state.

The authors of the original paper propose to solve peer finding by a linear search (in
the pseudocode) or by using pairing heaps. Our computational experiments suggest
that this route is inefficient, especially for larger instances. Our tests show that the
implementation using pairing heaps requires more time to complete than the naive
implementation with linear search. We propose another approach to this problem that
employs segment trees [25].

A segment tree is a binary tree where leaf nodes store data and internal nodes hold
the aggregate information from all its children. For example, when the aggregation
function is the minimum, each internal node contains the minimum of its two children.
Since these children contain minima of their children and so on, every internal node
knows the minimum of the whole subtree rooted at the node. In consequence, the root

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

stores the minimum of the entire range of data, its left (right) child stores the minimum
of the left (right) half of the data and so on.

Many operations on a segment tree, such as finding an aggregate information over
a continuous subset of data or updating a single value, can be done in the number of
steps proportional to the height of the tree, i.e. in O(log n) time.

Although the segment tree is a tree, it can be efficiently stored in memory without
using pointers. Details of such implementation can be found in e.g. [4]. We place the
nodes of the tree in an array, starting with the root at index 1. Next we place its left and
right child, then the children of the root’s left child, the children of the root’s right child,
then the children of the previous nodes, from left to right, and so on. Such an order
allows us to calculate the position of the parent of the node at index i as parent = i/2
while the left and right children of i are given by left-child = 2i , right-child = 2i +1.
The root is always at the index 1. If a tree has n leaf nodes, let m = 2k ≥ n for the
smallest integer k. If leaves are numbered from 0, a leaf number can be translated to
a node number as follows: leaf-node(number) = m + number .

5.4.1 Finding peers with bitwise operations

Let M(s, p) be state array, where p is the process index and s is the segment index.
As we mentioned earlier, only one bit for every state in M array is needed, therefore
M is an array of single bits. Let the value of 1 represent state P and 0 denote state E .

The problem of finding a peer for the considered process p can be expressed as
finding the leftmost bit set to 1 in the row s with the smallest index in M for which
M(s, p) = 1. More formally, the problem to be solved is as follows. There is a
two-dimensional array with bit variables M(s, p) ∈ {0, 1} for p = 0, . . . , P − 1,
s = 0, . . . , N − 1. Our goal is to answer two types of queries:

– FIND-PEER(M, q) = minM(s,p)=1,p 	=q,M(s,q)=1(s, p) i.e. find a lexicographi-
cally smallest pair (s, p) such that M(s, p) and M(s, q) are set and p 	= q,

– FIND-PEER-ROOT(M, q) = minM(s,p)=1,p 	=q(s, p) i.e. find a lexicographically
smallest pair (s, q) such that M(s, p) is set and p 	= q.

Between queries the array M can be updated in a following way:

– CLEAR(M, p) sets M(s, p) = 0 for s = 0, . . . , P − 1 (corresponds to disabling
process with S(p) = �),

– SET(M, p, V) sets M(s, p) = V (s) for s = 0, . . . , P − 1 (corresponds to re-
enabling process with S(p) = ⊥ where V represents previous state of segments),

– CLEAR(M, p, s) setsM(s, p) = 0 (corresponds to changing single segment state
to E or P ′),

– SET(M, p, s) sets M(s, p) = 1 (corresponds to restoring segment to state P from
state P ′),

Let us split FIND-PEER query into two steps. We will find an appropriate row
(segment) first, then we will find the required process, see Fig. 3.

Segment s (or a row s of M) is eligible for selection when there is a process p′
different from p that has M(s, p′) = 1 and M(s, p) = 1. We can check the existence
of such a process p′ by calculating a logical sum over all elements of the row s, except

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

Fig. 3 Order of iteration over the state array during a search for a peer for a process p4. 0 encodes E state
while 1 represent state P . Rows (segments) for which p4 has state E set are skipped

the element at index p, i.e.
∨

i=1,...,P,i 	=p M(s, i). Let us calculate these sums for
every row and perform an element-wise logical product of the result with the column
p of M , i.e.

S = M(∗, p) ∧
∨

i=1,...,P,i 	=p

M(∗, i).

This gives us a bit vector S of eligible rows where element S(s) decides whether
segment s can be selected. Now find the smallest index i such that S(i) = 1. This
index corresponds to the segment that should be selected.

5.4.2 Finding a peer in a segment tree

The naive implementation of computing logical sums would be no more efficient than
the linear search. However, here we can take advantage of instruction level parallelism
of bitwise instructions in modern processors. Using SIMD instructions we can calcu-
late up to 256 or 512 logical sums of single bits in one CPU instruction (depending on
the instruction set). Moreover, using segment trees, we are able to reduce the number
of operations required to compute the sums by a factor of P/ log P .

We do this by building a segment tree over the columns of the matrix M . Columns
of M are leaf nodes of such a tree. Internal nodes hold an element-wise logical sum
of both of its children. An example of such tree can be seen on Fig. 4. Having such
a tree constructed, the logical sum of all columns except one can be computed using
O(log P) element-wise logical sums of columns. We start in the leaf we want to omit,
with the result initialized to a neutral value (all zeros in our case). Now, we climb up
to the root, in each step combining (performing element-wise logical sum) the current
result with the value in the sibling node (see Listing 3).

all-except-one performs O(N
SIMD log P) steps. log P comes from the fact that the

outer loop iterates over the height of our segment tree (which is O(log P)). In every
iteration we perform an bitwise-OR of two vectors of length N , which can be done in

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

Fig. 4 Segment tree built over a
state matrix. There are 8
processes and 2 segments. Every
internal node holds a bitwise OR
of its children

Listing 3 all-except-one(T , node, ini tial) function. Given segment tree T , selected
leaf node and ini tial value calculate the bitwise-OR of ini tial value and all nodes
except the node.
1: value = ini tial
2: while node 	= root do
3: sibling = sibling(T , node)
4: if sibling is the right-hand child of its parent then
5: value = bitwiseOR(value, T [sibling])
6: else
7: value = bitwiseOR(T [sibling], value)
8: end if
9: end while
10: return value

N
SIMD instructions where SIMD denotes the width of a single bitwise operation on a
chosen CPU.

Finally, we perform the element-wise logical product of the result with the col-
umn of process p and find the smallest index of a non-zero element in the result.
The last step requires a linear number of steps but can be sped up with specialized
hardware instructions that count leading or trailing zeros (e.g. BSF or TZCNT on x86
architecture).

FIND-PEER-SEGMENT(M, p)

= index-of-first-bit-set(bitwiseAND(all-except-one(TM , p, [0, . . . , 0]), M(∗, p)))

where TM is the segment tree build for array M .
As we want to employ instruction-level parallelism during these computations, we

must ensure that columns occupy consecutive bits in memory. This can be achieved
by simply storing the M array in process-major order i.e. storing all segments for a
given process in N consecutive bits and enforcing data alignment required by used
SIMD instruction set.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

The FIND-PEER-ROOT query can be handled in a similar way. When we are
looking for the peer for the G’s head, we must consider processes in P or E states,
not only in P state. Fortunately, it is enough not to perform the final bitwise AND to
not exclude the segments in E state. However, we must check if the root process has a
segment in P ′ state and exclude this segment, as such segment cannot be transmitted.

FIND-PEER-ROOT-SEGMENT(M, p)

= index-of-first-bit-set(bitwiseAND(all-except-one(TM , p, [0, . . . , 0]),MASKq))

where

MASKq(i) =
{
0 if i = P ′

states(q)

1 for i = 0, . . . N − 1, i 	= P ′
states(q)

When the proper segment (or row) is selected, we must find the process with the
smallest index that will become the peer. This means we must scan the row from left
to right looking for the first bit that is set. Since we organized the table in a column-
row order, this search is more complicated than the previous one and cannot be sped
up by hardware instructions. However, we can use the already built segment tree to
perform the search in O(log P) steps. The algorithm takes advantage of the fact that
the internal nodes hold the logical sum of its children. Consider a single index i in a
bit vector. If there is one on i-th position in an internal node then there exists a leaf in
the subtree rooted at this node that has one at i-th index.

Start at root. The root must have 1 on s-th position, where s is the selected segment.
By applying the above reasoning, if the left child has one on s-th position then the
leftmost leaf in the segment tree with 1 on s-th position must be in the left subtree,
otherwise it will be in the right subtree. Repeat the process until a leaf is reached (see
Listing 4).

Listing 4 find-leftmost(T , root , posi tion) algorithm. Given segment tree T , node
root and bit index posi tion within the node value, find the leftmost (i.e. the one with
the smallest index) leaf node that has the bit at index posi tion set.
1: if not root .bit[posi tion] then
2: return φ

3: end if
4: node = root
5: while node is not leaf do
6: if left-child(T , node).bit[posi tion] = 1 then
7: node = left-child(T , node)
8: else
9: node = right-child(T , node)
10: end if
11: end while
12: return node

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

Wewill also need a modification of the Listing 4 that finds the leftmost leaf equal to
1, starting from (and excluding) a given leaf. This can be easily solved by backtracking
from the leaf to the root and performing find-leftmost on the right sibling of the
considered node if the sibling equals to 1.

Listing 5 find-leftmost-from(T , f rom, posi tion) function. Given segment tree T ,
leaf node f rom and bit index posi tion within the node value, find the leftmost (i.e.
the one with the smallest index) leaf node that has the bit at index posi tion set and
its node number is greater than f rom.
1: node = f rom
2: while node is not root do
3: if is-left-child(node) and right-sibling(T , node).value[posi tion] then
4: return find-leftmost(T , right-sibling(T , node), posi tion)

5: end if
6: node = parent(T , node)
7: end while
8: return φ

The algorithm presented in Listing 5 will become useful in cases when an appli-
cation of Listing 4 will find the same process we are finding a peer for. In this case
we must perform another search, looking for the process that is to the right from the
process found in the previous search.

Finally, we obtain:

FIND-PEER(M, q) =
{
leftmost if q 	= leftmost

find-leftmost-from(TM , q, segment) if q = leftmost

where

segment = FIND-PEER-SEGMENT(M, q)

and

leftmost = find-leftmost(TM , 0, segment))

5.4.3 Proper order of processes

There are still two problems to solve. The first one is to properly order the processes.
The algorithm requires that the leftmost process will be the one with the earliest ready
time. The second problem is updating the tree. Processes lose their ready state after
sending a message and become unavailable for selection as a peer. Moreover, we have
introduced P ′ states that are represented by 0 in M array, but revert to state P (1 in
M) after the round ends. Both of these cases require updates in the segment tree.

For the first problem, recall that processes are already ordered by their ready times
in vector G. Moreover, their relative order will not change in time because the ready

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

(a)

(b)

Fig. 5 Order of processes in vector G depends on the head of G. Squares represent processes and numbers
within squares denote their availability times. Arrival times are given by a0 = 0.2, a1 = 1.1, a2 = 2.3 and
round time d = 1. In case a, p0 stays active during all three rounds. In case b, p0 becomes inactive after
round 1 and leaves vector G. Consequently, while p1 follows p2 in case a, in case b p2 follows p1. Notice
that in every case the order of processes is the same as some circular shift of the order of their fractional
times, i.e. p1(0.1), p0(0.2), p2(0.3)

times are advanced in steps of an equal size. However, processes may change their
position in vectorG. Take 3 processes with arrival times a0 = 0.2, a1 = 1.1, a2 = 2.3
and round time d = 1. In the first round vectorG contains p0, p1 in that order. Assume
that after round 1 process p0 leaves group G. In the next round G contains p1, p2,
but if p0 had stayed in G, p1 would be placed after p2 (see Fig. 5). This means that
process placement in G depends on the head of G.

To resolve this issue, order the processes with respect to their “fractional” arrival
times, that is by fi such that ai = d ∗ k + fi where ai is the process arrival time,
d is the round time, k is a non-negative integer and 0 ≤ fi < d. Essentially, fi is
the remainder of dividing ai by d. Now every process is assigned two indexes: i and
i + P , where i is the position in the above order. When a ready process in group G
has a smaller index i than the head of G, we use index i + P for that process instead
of i . This operation doubles the size of the segment tree, but it adds just one step to
the cost of operations, since the cost depends on the height of the tree.

The Fig. 6 shows the final shape of the segment tree, along with a sample search
for a peer.

5.4.4 Updates to the segment tree

All CLEAR and SET operations modify the content of the M array and require updat-
ing the segment tree. Is updated as follows. When process p becomes unavailable, i.e.
after sending a message when CLEAR(M, p) is issued, the contents of its column is
saved in a separate location and the column in the segment tree is zeroed. This requires
updating nodes of the segment tree on path from the updated leaf to the root, which
takes O(log P) element-wise logical sums on columns. When the process becomes
ready again (SET(M, p, V), where V is the saved column), the content of its column
is restored and the tree is updated again, following the same path. Bear in mind that all
processes become ready at the same point in the algorithm so we can rebuild the entire
segment tree at once instead of updating after every change, achieving O(P N

SIMD)

steps for the entire batch of SET operations, instead of O(P N
SIMD log P). Replacing

state P ′ with P also leads to the tree update but since only one bit is changed we
need only O(log P) logical operations on single bits per every update, for a total of
O(P log P) steps as no more than P processes can have a segment in P ′ state.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

Fig. 6 Example segment tree T for processes p0, p1, p2, p3 with 4 segments. In this example, process
p1 has the lowest activation time so p0 uses alternative position (denoted by p′

0) in the segment tree. All
internal nodes store bitwise OR of its children. In the example, we look for a peer for p3. Nodes with
gray background are the nodes that will be OR-ed while calculating all-except(T , p3) resulting in a vector
[1, 1, 0, 1]. This vector will be masked by p3’s vector ([0, 0, 1, 1]) resulting in [0, 0, 0, 1] which tells us
that segment 3 will be selected. To find the peer process for p3 start at root and in each step descend left
if the left child has the last bit set (this is the bit corresponding to segment 3). This will lead us to the left,
right and finally left to process p2. Therefore, the peer for p3 will be p2 with segment 3

5.5 Complexity

Lemma 3 The total complexity of the algorithm can be given by O(RP N
SIMD log P),

where R is the number of rounds and SIMD is the available width of bitwise vector
instructions (e.g. 256 in case of AVX2 instructions or 64 when using 64-bit registers).

Proof Let R be the number of rounds performed by the algorithm. In every round a
loop considers every active process once. Since there are P processes, the loop will
iterate at most P times.

Before the loop, active processes are re-enabled. As this can be performed by a
simple copy operation on a set of bits and there are at most P active processes, it will
take O(P N

SIMD) steps. Another action before the loop is replacing P ′ states with state
P . Again, only up to P processes will require this action and it will take O(log P) time
per process as it is a simple update of a segment tree. To sum up, the loop preparation
takes O(P N

SIMD + P log P) steps.
In every iteration (for every process) O(N

SIMD log P) steps are required to execute
operation Find-peer-and-segment and another O(N

SIMD log P) to update the segment
tree after disabling the process. The preparation of the set of active processes will take

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

O(RP) steps over entire run of the algorithm (Lemma 2). Therefore, the complexity of
the algorithm is O(R(P N

SIMD +P log P+P N
SIMD log P)+RP) or O(RP N

SIMD log P)

after removing dominated terms. �

Replicating the estimation from [9] where R = O(log P + N) in the case of

balanced PATs leads to the complexity of O(N
SIMDN P log P)which is the same as the

complexity of the Clairvoyant version employing the pairing heaps. However, in this
implementation, we are able to reduce the required time by a factor of 1

SIMD by using
instruction-level parallelism.

The main component of the memory complexity is M array which has PN cells.
Taking into account alternative indices (that double the number of cells), the segment
treewhich, again, doubles thememory usage and the save-space for enabling/disabling
processes, we end up with a total of 5 bits per cell of M . Compared to the original
implementation, where every cell used 56 bytes (or 448 bits), we achieved an almost
90-fold reduction in memory usage.

5.6 Final algorithm

Here we present a pseudocode for the improved version of the algorithm. First, we
extract the round initialization to a separate function. Function merge-and-clean
creates vectorG for the next roundbasedonG from theprevious round and the awaiting
queue A. The function also removes from G all processes that have completed their
part in the algorithm (hence the -clean suffix).

Listing 6Merge-and-clean(G, A) algorithm. Given vector G from the previous round
and the awaiting queue A, calculate vector G ′ of processes that will take part in the
next round.
1: let next candidate be the head of G when aGhead < aQhead and head of A otherwise
2: let G′ = empty list
3: while G is not empty or head of A has aQhead < aGhead + d do
4: extract next candidate c from its queue
5: if c has all segments in state E then
6: continue � do the cleanup: do not append to G′
7: end if
8: if (ac mod d) < (aG′

head
mod d) then

9: let index = c + P
10: else
11: let index = c
12: end if
13: append c at the end of G′ using index as c’s index in M
14: end while
15: return G′

Function find-peer-and-segment is used to find an appropriate candidate
process for communication and a segment to transmit.

Listing 8 presents the final algorithm. The pseudo-r process requires an explanation.
Since we order processes according to their fractional arrival times, the process r (i.e.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

Listing 7 Find-peer-and-segment(T , G, p) function. Given segment tree T over the
M set, and vector G, find a peer for the process with index p to communicate with
and a segment index that will be transmitted.
1: let column = all-except-one(T , leaf-node(p), [0, . . . , 0])
2: if p is not at the head of G then
3: column = bitwiseAND(column, M(p, ∗))

4: else
5: if ∃ j(p, j) ∈ P ′ then
6: set column[j] = E
7: end if
8: end if
9: segment = index-of-first-bit-set(column)

10: if segment was not found then
11: return φ

12: end if
13: peer = find-leftmost(T , 1, segment)
14: if peer = p then
15: peer = find-leftmost-from(T , leaf-node(p), segment)
16: end if
17: return peer , segment

the root of reduce operation) may not be at the beginning of the G group, as the
Clairvoyant requires. We solve this by inserting another process: the pseudo root. If
the root process is active and is not the first process in G, then pseudo-r is inserted
at the beginning of G. pseudo-r is handled as if it was the r process. Moreover, if
pseudo-r was inserted to G, then the real root, r , is ignored when extracted from G.
Since it is a single process, we do not need to include it in any data structures and we
can handle it as a special case.

5.7 Performance tests

Here we compare our implementations of the Clairvoyant algorithms. Clairvoy-
ant(linear) is the the pseudocode version with the fixes applied. Clairvoyant(pairing
heaps) employ pairing heaps from the boost library but also include pairing-heap spe-
cific fixes: changing process state in S array removes or inserts the process into the
appropriate pairing heap (based on our internal small-scale tests this solution was
more performant than filtering during extraction). Finally, the Clairvoyant(segment
tree) algorithm is based on segment trees and uses our improvements.

The goal of these tests was to compare these implementations. All implementations
produce the same communication schedule and the time spent on communication
should be exactly the same. Therefore, they were run on a single node to generate
only a communication schedule and do not perform actual communication. As conse-
quence, the results represent the computational overhead for every node as during the
reduce operation all nodes run the algorithm in parallel and act according the produced
communication schedule.

The tests were performed for two cases: (i) uniform: where all processes have
random arrival times, and (ii) skewed: when only one process was delayed.We assume
the former considers the situation usually occurring in the real-world compute clusters

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

Listing 8Clairvoyant algorithmbased on segment treewith all fixes and improvements
included. P states are encoded as 1 and E states are represented by 0 in the M matrix.
1: Let M be a state matrix of size 2P · N . Set M(∗, ∗) = P, i.e. mark all segments as available.
2: Let T be a segment tree over all 2P columns of M
3: Create awaiting queue A by sorting processes by their arrival times
4: let G = empty list
5: P ′ = empty set
6: while all processes but one have all segments in E state and none in P ′ do
7: for (i, j) ∈ P ′ do
8: set M(i, j) = P � revert states P ′ to P
9: end for
10: call merge-and-clean(G, A)
11: restore all saved copies of columns of M
12: rebuild T
13: if size(G) ≤ 1 then
14: skip rounds until another process becomes available
15: continue
16: end if
17: P ′ = empty set
18: if r ∈ G and r is not at the head of G then
19: insert pseudo-r at the head of G
20: end if
21: for ∀p ∈ G do
22: if p = r and pseudo-r has been processed this round then
23: continue
24: end if
25: peer , seg = find-peer-and-segment(T , G, p)
26: if peer 	= φ then
27: enqueue to I (i) the tuple (round, peer , seg)
28: enqueue to O(peer) the tuple (round, p, seg)
29: M(peer , seg) = E
30: M(p, seg) = E
31: update T up for segment seg starting from leaf peer
32: update T up for segment seg starting from leaf p
33: save a copy of M(peer , ∗), and reset M(peer , ∗) = E
34: update T up starting from leaf peer
35: append (p, s) to P ′
36: end if
37: end for
38: for ∀i ∈ G do
39: ai = ai + d
40: end for
41: end while

[6], and the latter reflects the conditions undertaken in the paper [9], where the original
Clairvoyant algorithm comes from.

Input instances were randomly generated. In uniform instances arrival times were
chosen from the range [0, P + 0.1] with uniform distribution. A random process was
selected as the root. In skewed instances, all processes but one arrived on time 0,
while the process P − 1 arrived at time aP−1 = N . In skewed instances process 0
was designated as the root. In both cases, the round time was chosen from the range
[0.001, 1] with uniform distribution. The results are averaged over 250 executions.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

Table 1 Benchmark results
showing comparison between
different implementations of
Clairvoyant algorithm

Uniform Skewed

P = N linear
segment

pairing heaps
segment

linear
segment

pairing heaps
segment

4 0.49 1.84 0.45 2.45

8 0.62 3.07 0.61 5.68

16 0.73 3.53 0.61 5.34

32 0.97 5.72 0.67 8.60

64 1.26 8.17 0.64 14.37

128 2.00 12.46 0.61 21.04

256 4.05 15.58 0.64 22.77

512 19.33 43.64 1.36 82.98

Results are averaged over 250 runs. Values in table show the average
speedup of segment-tree implementation over the linear and pairing-
heaps, defined as a ratio of execution time of respectively linear and
pairing heap to the execution time of segment tree implementation

The obtained results are presented in Figures 7 and 8 and Table 1. In the case of
uniformly distributed arrival times our improvements reduce the run time by almost
two orders of magnitude. When only one process is delayed, we achieve a similar
speedup over the pairing heaps version.

The ratios in Table 1 describe the relation of average run times of compared
algorithms with confidence level of 99.9% for all cases except the uniform, linear,
N = P = 32, where the confidence level is 98% (according to the Welsh’s t-test).
The analysis of the speedup values in Table 1 reveal causes of such differences.

The skewed case may be considered as a best or almost-best case scenario, where
all processes except one partake in reduction since the first round. In such case the
segment tree version takes about 67% more time than the linear version for up to 256
processes. Since this difference is independent of the problem size, we attribute it
to the increased code complexity of the segment tree version. For 512 processes the
gains from employing instruction level parallelism become apparent. The greater code
complexity and much larger memory usage of the pairing heap implementation are
apparent since the smallest instance size. The step-like changes in the speedup values
suggest that the worse utilization of cache memory is the major culprit of execution
time differences.

In the uniform case, not all processes are ready since the beginning of the reduce
operation and may require much more work from the algorithm (see e.g. Lemma 1).
The step-like speedup changes for the pairing heap algorithm are not as apparent but
still are visible confirming the thesis that the memory utilization is the weak point of
this implementation. In this case the sublinear time required to find a peer gives the
segment tree implementation an increasing advantage over the linear one.

The error bars on the graphs depict the standard deviation. Such large deviation for
linear and pairing heaps is a consequence of the “busy waiting” performed by these
algorithms when the round time is relatively small. Such a bad case rarely occurred
in test instances, therefore not all data points expose this large deviation, but when
it occurs, the algorithm’s performance drops significantly (from an average of about

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

Fig. 7 Benchmark results showing comparisonbetweendifferent implementations ofClairvoyant algorithm.
Results are averaged over 250 runs, uniform distribution of process arrival times

15 s per run to 65–90s with very short round times for the pairing heaps version in
the N = P = 512 case). This demonstrates that, without skipping idle rounds, the
algorithm ismuchmore sensitive to the distribution of process arrival times, where one
severely delayed process can slow down the reduce operation not only by its lateness
but also by causing unnecessary computations in all nodes.

As a consequence of these results, we have chosen the segment tree implementation
as the best one for comparison with other reduce algorithms. While it is somewhat
slower in the skewed case than the linear version, it performs better in medium and
large instances with uniform arrival times distribution.

The results of all three implementations were cross-checked to ensure that the
resulting schedules are the same. The tests were performed on a single Xeon E5-
2670 v3 @2.3GHz CPU under CentOS v.6.10, with kernel v. 2.6. The code was
compiled in 64 bit mode with gcc 7.3.0 and boost 1.70.0, using the following options
for optimization: -O3 -mavx -flto. The completions of these tests took about 12 hours.

6 PAP prediction

The proposed algorithm assumed a priori knowledge of the PATs by every process in
the moment of collective operation call—that is why it was named Clairvoyant. We
propose an extension to provide this information using our solution, presented in [15],
introducing an additional thread, monitoring computations and possibly additional
actions.

The approach is dedicated to the iterative processing model, where the computation
and communication phases are repeated consecutively for the whole application exe-
cution. During the computation phase, the background thread can use the unloaded
network for exchanging the progress information between collaborating processes,

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

Fig. 8 Benchmark results showing comparisonbetweendifferent implementations ofClairvoyant algorithm.
Results are averaged over 250 runs, skewed distribution of process arrival times

Fig. 9 Iterative processing model (solid lines), extended by the introduced progress monitoring mechanism
(dashed lines)

providing PAP details before starting the communication phase, when the collective
operation is called, see Fig. 9.

The proposed extension was tested using a specially developed mini-benchmark
emulating the imbalanced-PAPs for MPI parallel programs employing an iterative
processing model. This approach is similar to the one presented in [15,16], where it
was used for all-reduce, scatter and gather operations. In each iteration, the bench-

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

mark performs the following steps: (i) random data generation, (ii) double barrier
to synchronize all the processes, (iii) emulation of the computation (by usleep()
function) with randomly generated additional time (unified distribution with a given
maximum value), (iv) measurement and storing of the communication times, and (v)
validation of the operation results.

Similarly to the commented paper [9], we used a collection of typical reduce algo-
rithms for the comparison purposes:

– Default OpenMPI [11] implementation (MPI), it uses different types of structures
(binomial tree or pipeline) with or without the segmentation depending on the data
size and the process number,

– A typical binomial tree without segmentation (BNOM),
– An algorithm proposed by Rabenseifner in [19] (RAB),
– Radix-K with group sizes generated by trying to divide processes into groups of
one of predefined sizes (RXK) [13],

– Parallel ring, also known as a bucket/cycling algorithm presented in [2] (RING).

Each of the above algorithms was executed using the mini-benchmark in the exactly
same way as Clairvoyant (CLV).

There are several measures used for PAP-aware algorithms’ evaluation. In the com-
mented paper [9], there was proposed an absorption time reflecting the ability of the
algorithm to mitigate the impact of the imbalanced PAP, as well as the (relative) run
time which denotes the time required for completing the operation since the first pro-
cess arrival to the finish of the last one. In this paper we decided to use the latter,
however with the exact absolute values, instead of the relative ones normalized to
CLV results.

The experiments were performed using supercomputer Tryton [8], placed in Centre
of Informatics - Tricity Academic Supercomputer & networK (CI TASK) at Gdansk
University of Technology in Poland. It consists of over 1600 compute nodes, intercon-
nected by 56Gb/s InfiniBand and 1Gb/s Ethernet networks, with the total compute
power about 1.5PFLOPS. Each node contains 2×Xeon E5-2670 v3@2.3GHzCPUs,
128GB of RAM, network interfaces and works under CentOS v.6.10, with kernel
v. 2.6. For the experiment purposes, to keep the network and CPU noise on a lowest
possible level, one rack case was separated, with 48 nodes interconnected by Ethernet.

Themini-benchmarkwas executedmultiple times, with different configurations. To
avoid the non-unified data transfer times, each node hosted exactly one MPI process,
and for the testing purposes we used between 4 and 48 nodes (processes). The data
size was consecutively increased from 128K to 1M of float numbers (MPI_FLOAT),
and the PATs were randomly generated for a maximum delay being in 0 to 0.5 s range.
Thus, the mini-benchmark was executed 12 × 5 × 9 = 540 times, with 128/256
iterations (measurements) per each repetition. The code was compiled in 64 bit mode
with gcc 7.3.0 and boost 1.70.0, using -O3 optimization option.

From the statistical point of view the obtained results seem to be stable. The standard
deviation is mostly below 10% of the measurement values, and depends on the data
size, with larger values for smaller messages, what is usually observed in a typical
network traffic. The graphical representation of the error ranges (±σ or 68% of the
certainty for the normal distribution) is provided as error bars in Figs. 10 and 11.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Max. delay [s]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
ve

ra
ge

 ru
n

tim
e

[s
]

MPI
BNOM
RAB
CLV
RXK
RING

Fig. 10 Benchmark results showing influence of the increasing maximum delay on average run times of the
tested algorithms. The experiments were performed on 48 nodes for 1Gbps Ethernet network, and message
size: 512K of float numbers (MPI_FLOAT). The error bars are set to ±σ (68% of the measurements for
the normal distribution)

0 5 10 15 20 25 30 35 40 45 50
Process/node number

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
ve

ra
ge

 ru
n

tim
e

[s
]

MPI
BNOM
RAB
CLV
RXK
RING

Fig. 11 Benchmark scalability results for 1GB Ethernet network, processes randomly delayed up to 50ms,
128K of float numbers (MPI_FLOAT) data size. The error bars are set to ±σ (68% of the measurements
for the normal distribution)

Figure 10 presents the results of the experiments, showing the influence of the
increasing maximum delay time on the tested algorithms’ behavior. We can notice
that the Clairvoyant has the shortest run times, slightly outperforming Parallel Ring
and native OpenMPI [11] algorithms. The others have much worse results for the
proposed configuration.

Figure 11 presents the scalability of the tested algorithms, showing the influence
of increasing number of cooperating processes on the run times. We observe that
the Clairvoyant is better for a larger cooperating group having advantage over other
algorithms, and the overall decrease of its performance is sublinear.

In the provided imbalanced PAP environment the reduce operations based on Clair-
voyant algorithm show expected results—for some configurations, especially with the
higher number of nodes involved, it outperforms its regular counterparts. Similarly to

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

[15,16], the background thread seems to provide the proper support for PAP detection,
which is successfully used to provide necessary PAT information to the collaborating
processes.

7 Final remarks

The paper presented our comments on the Clairvoyant algorithm [9]. They covered a
wide range of the changes beginning from the corrections of the pseudocode, necessary
for the implementation, through the improvements providing performance increase,
such as skipping of idle rounds or use of segment trees instead of the linear search,
and finalizing on an extension introducing a possible PAP prediction method to make
the algorithm feasible for a real deployment.

We consider the following possible future works related to the imbalanced PAP
subject:

– Generalization of the Clairvoyant algorithm for the all-reduce case,
– Designing of new or improved PAP-aware algorithms for other collective opera-
tions, e.g. all-gather,

– Introduction of hardware specific network support, e.g. multicast in InfniBand, for
PAP-aware algorithm improvements,

– Simulation of the PAP imbalances for exascale (and beyond) supercomputers,
including GP GPU support, e.g. with usage of MERPSYS simulator [3].

We believe that the ubiquity of the PAP imbalances in current and most probably
future HPC environments [6] will motivate scientists to perform new researches in the
field, including improvement of the existing PAP-aware algorithms and design of the
new ones as well as their introduction to the modern supercomputing solutions.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Belcastro L, Marozzo F, Talia D (2019) Programming models and systems for big data analysis. Int J
Parallel Emerg Distrib Syst 34(6):632–652

2. ChanE,HeimlichM,PurkayasthaA, van deGeijnR (2007)Collective communication: theory, practice,
and experience. Concurr Comput Pract Exp 19(13):1749–1783

3. Czarnul P, Kuchta J, Matuszek M, Proficz J, Rościszewski P, Wójcik M, Szymański J (2017) MERP-
SYS: an environment for simulation of parallel application execution on large scale HPC systems.
Simul Model Pract Theory 77:124–140

4. EdelkampS,ElmasryA,Katajainen J (2017)Optimizing binary heaps. TheoryComput Syst 61(2):606–
636

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://creativecommons.org/licenses/by/4.0/
http://mostwiedzy.pl

J. Proficz, K. M. Ocetkiewicz

5. Faraj A, Yuan X, Lowenthal D (2006) STAR-MPI: self tuned adaptive routines for MPI collective
operations. In: Proceedings of the 20th Annual International Conference on Supercomputing, pp 199–
208

6. Faraj A, Patarasuk P, Yuan X (2008) A study of process arrival patterns for MPI collective operations.
Int J Parallel Progr 36(6):543–570

7. Hasanov K, Lastovetsky A (2017) Hierarchical redesign of classic MPI reduction algorithms. J Super-
comput 73(2):713–725

8. Krawczyk H, Nykiel M, Proficz J (2015) Tryton supercomputer capabilities for analysis of massive
data streams. Pol Marit Res 22(3):99–104

9. Marendic P, Lemeire J, Vucinic D, Schelkens P (2016) A novel MPI reduction algorithm resilient to
imbalances in process arrival times. J Supercomput 72:1973–2013

10. Marendić P, Lemeire J, Haber T, Vučinić D, Schelkens P (2012) An investigation into the performance
of reduction algorithms under load imbalance. LectureNotes inComputer Science (Including Subseries
LectureNotes inArtificial Intelligence andLectureNotes inBioinformatics). vol 7484LNCS. Springer,
Berlin, pp 439–450

11. Open MPI: Open Source High Performance Computing. https://www.open-mpi.org. Accessed 23 Oct
2020

12. Patarasuk P, Yuan X (2008) Efficient MPI bcast across different process arrival patterns. In: 2008 IEEE
International Symposium on Parallel and Distributed Processing, pp 1–11. IEEE, Apr

13. Peterka T, Goodell D, Ross R, Shen HW, Thakur R (2009) A configurable algorithm for parallel
image-compositing applications. In: Proceedings of the Conference on High Performance Comput-
ing Networking, Storage and Analysis, SC ’09, New York, NY, USA, Association for Computing
Machinery

14. Połap D, Woźniak M, Damaševičius R, Maskeliūnas R (2019) Bio-inspired voice evaluation mecha-
nism. Appl Soft Comput 80:342–357

15. Proficz J (2018) Improving all-reduce collective operations for imbalanced process arrival patterns. J
Supercomput 74(7):3071–3092

16. Proficz J (2020) Process arrival pattern aware algorithms for acceleration of scatter and gather opera-
tions. Cluster Comput

17. Proficz J, Sumionka P, Skomiał J, SemeniukM, Niedzielewski K,WalczakM (2020) Investigation into
MPI all-reduce performance in a distributed cluster with consideration of imbalanced process arrival
patterns. In: Barolli L, Amato F, Moscato F, Enokido T, Takizawa M (eds) Advanced information
networking and applications. AINA 2020. advances in intelligent systems and computing, vol 1151.
Springer, Cham, pp 817–829

18. Qian Y, Afsahi A (2011) Process arrival pattern aware alltoall and allgather on infiniband clusters. Int
J Parallel Progr 39(4):473–493

19. Rabenseifner R (2004) Optimization of collective reduction operations. In: Bubak M, van Albada GD,
Sloot PMA, Dongarra J (eds) Computational science-ICCS 2004. Springer, Berlin, pp 1–9

20. RDMA Consortium. http://www.rdmaconsortium.org. Accessed 23 Oct 2020
21. ShanH,Williams S, JohnsonCW(2018) ImprovingMPI reduction performance formanycore architec-

tureswithOpenMPand data compression. In: 2018 IEEE/ACMPerformanceModeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS), pp 1–11. IEEE, Nov

22. Shi Q, Zou B, Zhang L, Liu D (2019) Hybrid parallel FDTD calculation method based on MPI for
electrically large objects. Wirel Commun Mob Comput 2019:1–9

23. Stern J, Xiong Q, Skjellu J, Skjellum A, Herbordt M (2017) Accelerating MPI_Reduce with FPGAs
in the network extended abstract. In: Proceedings of the Workshop on Exascale MPI

24. The Standarization Forum for Messsage Passing Interface (MPI). https://www.mpi-forum.org
Accessed 23 Oct 2020

25. Wang L, Wang X (2019) A simple and space efficient segment tree implementation. MethodsX 6:500–
512

26. Wozniak M, Polap D (2020) Intelligent home systems for ubiquitous user support by using neural
networks and rule-based approach. IEEE Trans Ind Inform 16(4):2651–2658

27. Xiong Q, Yang C, Haghi P, Skjellum A, Herbordt M (2020) Accelerating MPI collectives with FPGAs
in the network and novel communicator support. In: 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), p 215. IEEE, May

28. Zhao T,WangY,WangX (2020)Optimized reduce communication performancewith the tree topology.
In: Proceedings of the 2020 4th High Performance Computing and Cluster Technologies Conference

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://www.open-mpi.org
http://www.rdmaconsortium.org
https://www.mpi-forum.org
http://mostwiedzy.pl

Improving Clairvoyant: reduction algorithm resilient to…

and 2020 3rd International Conference on Big Data and Artificial Intelligence, pp 165–171, NewYork,
NY, USA, Jul ACM

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	Improving Clairvoyant: reduction algorithm resilient to imbalanced process arrival patterns
	Abstract
	1 Introduction
	2 Original algorithm
	3 Related works
	4 Analysis and necessary modifications to the algorithm
	4.1 Available processes and the state array
	4.2 Additional state P'
	4.3 Issues with pseudocode
	4.4 Deterministic priority queue for Q
	4.5 Cache friendliness impact on complexity
	4.6 The algorithm with fixes applied

	5 Improvements to the algorithm
	5.1 Skipping idle rounds
	5.2 Generating vector G without priority queue
	5.3 Compressing the state array
	5.4 Segment trees
	5.4.1 Finding peers with bitwise operations
	5.4.2 Finding a peer in a segment tree
	5.4.3 Proper order of processes
	5.4.4 Updates to the segment tree

	5.5 Complexity
	5.6 Final algorithm
	5.7 Performance tests

	6 PAP prediction
	7 Final remarks
	References

