
ww.sciencedirect.com

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 6 ( 2 0 2 1 ) 4 8 6e4 9 8
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/he
Remarkable visible-light induced hydrogen
generation with ZnIn2S4 microspheres/CuInS2

quantum dots photocatalytic system
Onur Cavdar a, Anna Malankowska a, Daniel Amgar b, Paweł Mazierski a,
Justyna Łuczak c, Wojciech Lisowski d, Adriana Zaleska-Medynska a,*

a Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
b Department of Physics of Complex Systems, Faculty of Physics, Weizmann Institute of Science, Rehovot, 761000,

Israel
c Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of

Technology, Gdansk, 80-233, Poland
d Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, 01-224, Poland
h i g h l i g h t s
* Corresponding author.
E-mail addresses: adriana.zaleska@ug.ed

https://doi.org/10.1016/j.ijhydene.2020.09.212

0360-3199/© 2020 The Authors. Published by Elsevie

license (http://creativecommons.org/licenses/by-nc
g r a p h i c a l a b s t r a c t
� ZnIn2S4 microspheres/CuInS2
quantum dots photocatalytic sys-

tem was synthesized.

� Photocatalytic system loaded ny Pt

NPs are able to generate H2 under

visible light.

� Visible light activity range reaches

up to a wavelength of 540 nm.

� Light harvesting property of the

system was enhanced by CuInS2

quantum dots.
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a b s t r a c t

A new and active material in the form of ZnIn2S4 microspheres decorated by CuInS2

quantum dots have been obtained by hydrothermal method for the first time. The opti-

mum amount of CuInS2 quantum dots (1.13 wt.%) introduced into rection medium during

ZnIn2S4 microspheres synthesis increased the photocatalytic H2 generation rate by 2.5

times than that of bare ZnIn2S4 photocatalysis under visible light irradiation. This sample

exhibited strong photoactivity in the extended visible range up to 540 nm with 30.6%

apparent quantum efficiency (l ¼ 420 nm).
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Introduction

As many efforts have being devoted to find the most prom-

ising green energy source, H2 is one of the most conspicuous

fuel due to its high specific energy value (33 kWh/kg) and clean

by-products relatively to conventional fossil fuels [1,2]. How-

ever, the current H2 market relies on mostly steam reforming

of natural gas which requires high energy input and releases

greenhouse gas emission while another well-known method,

electrolysis requires an external circuit to split water to O2 and

H2 fuel [3]. After the work by Fujishima and Honda [4], pho-

togenerated H2 evolution (PHE) by splitting water using TiO2

semiconductor photocatalysis via irradiation of semi-

conductors by a light source has been ranked as another green

way to generate H2 fuel. Beyond TiO2, many other semi-

conductors have been studied also such as ZnS [5], ZnO [6],

SrTiO3 [7], Co3O4 [8], LaFeO3 [9], Ba5Ta4O15 [10], BaZrO3 [11] and

CaTiO3 [12]. Nevertheless, one of the limitations of those

materials is wide bandgap which make them active only

under UV light that comprise 4% of solar spectrum on the

earth surface [13]. Therefore, seeking for newmaterials which

are active under visible light spectrum is crucial to produce H2

fuel by PHE in terms of green technology.

One of the types of AB2X4 family, ZnIn2S4, is considered a

promising candidate for PHE under visible light due its suit-

able band gap (2.3 eV) and stability [14]. Several synthesis

method have been proposed that allowed to obtain various

shapes of that semiconductor photocatalyst such as micro-

spheres, nanotubes, nanoribbons,monolayers [15,16]. In order

increase performance of ZnIn2S4 under visible light, it is

pivotal to inhibit the photo-generated hole and electron

recombination that leads to better charge separation on

ZnIn2S4 surface or narrow the band gap of ZnIn2S4. Various

methods have been studied to achieve these goals. For

instance, visible light induced ZnIn2S4 has been reached by Cu

doping [17] whereas combination with different carbon-based

analogs [18] or formation of heterostructures using other

semiconductors BiVO4 [19], MoSe2 [20], g-C3N4 [21], WO3 [22]

have been investigated for better charge separation on

ZnIn2S4 or boosting photogenerated electron transfer to the

catalytically active sites of heterostructures which is required

for better PHE performance. Another alternative for the for-

mation of heterostructures, using quantum dots have also

been studied to decorate larger semiconductor matrix mate-

rials and this approach has been widely studied for ZnO

[23,24], TiO2 [25,26] and g-C3N4 [27,28]. Quantum dots are

basically type of material that exhibits unique properties

which arises with particle size lower than the bulk-exciton

Bohr radius due to changes in the surface-to-volume ratio

and quantum confinement effect [29,30]. Generally saying, a

presence of quantum dots on a larger semiconductor matrix

induces the activity more than of larger size of nanoparticles

due to the relatively higher surface to volume ratio of quan-

tum dots that creates more active site for PHE and high

capability of light-harvesting [31]. Among them, CdS [32],

MoS2 [15,33] and carbon [13,18] dots have been used to deco-

rate ZnIn2S4. Recently, CuInS2 quantum dots have drawn

attention as its suitability for visible light-driven PHE appli-

cations [34]. Although there are several reports on PHE such as
CuInS2/ZnS quantum dots [35,36] and CuInS2 quantum dots

hybridized polymeric carbon nitride, nevertheless, there is no

report on CuInS2 quantum dots decorated ZnIn2S4 semi-

conductor for PHE application. To the best of our knowledge,

only studies regarding ZnIn2S4/CuInS2 system have been re-

ported by Guan et al. and Guo et al. which have been based on

2D-2D structure [37] and core-shell structure [38], respectively.

Herein, ZnIn2S4 microspheres (ZIS) in the presence of

different amount of CuInS2 quantum dots (CIS) were synthe-

sized to obtain CIS decorated ZIS heterostructures (ZIS/CIS) for

PHE under visible light irradiation using simple hydrothermal

method for the first time. Fixed amount of Ptmetal co-catalyst

was deposited on the obtained ZIS/CIS samples with different

CIS amounts using photodeposition method for photo-

catalytic hydrogen evolution experiments under visible light

irradiation. We find that optimum amount pre-prepared CIS

introduced to ZIS hydrothermal reactionmediumenhance the

photocatalytic hydrogen generation activity of ZIS.
Experimental

Materials

Cetyltrimethylamonium bromide (CTAB, 95%) (Aldrich), in-

dium (III) nitrate hydrate (99.99%) (Alfa Aesar), thioacetamide

(J.T. Baker, Avantar performance materials), copper (I) iodide

(99.99%) and indium (III) acetate (99.99%) (Acros Organics),

zinc sulfate heptahydrate (CHEMPUR), chloroplatinic acid

hexahydrate (Sigma-Aldrich). All chemicals were used

without any further purification.

Synthesis of CuInS2 quantum dots

CuInS2 quantum dots (CIS) synthesis method has been adop-

ted from Booth [39]. The solid mixture of indium acetate,

copper iodide, thiourea and mercaptoundecanoic acid (MUA)

with 1:1:2:4 M ratio was added into a 50 ml 3-necked round

bottom flask. The flask was connected to the basic reflux

system with tap water cooling and placed into an oil bath and

the temperature was controlled by the immersing thermo-

couple into the oil bath (the temperature of the oil bath was

about 10 �C higher than the reaction mixture). The solid

mixture was mixed gently by a magnetic stirrer bar and

temperature of the oil bath was increased to 120 �C slowly.

Meanwhile, a yellow-red opaque thick liquid has been

observed between 90 and 100 �C (Fig. S1b). Then, the blocker

on the light neck was replaced with glass nozzle to purge the

reaction mixture with nitrogen gas for 30 min while the

temperature of the oil bath was slowly increased to 150 �C.
After that, the blocker was reset and the oil bath temperature

was heated to 190 �C and the color changingwas observed that

followed in order of yellow/red and dark red (Fig. S1b, c, d) as

indicated by Booth. As reaching the dark red product, the flask

was immediately placed into an ice bath. Following the tem-

perature drop, approximately 40 ml of isopropanol have been

added into the flask with as formed CIS and the flask were

sonicated for 15min. Finally, the CIS-isopropanolmixturewas

centrifuged and washed with isopropanol several times and

dried at 60 �C under atmospheric pressure for 12 h. The

https://doi.org/10.1016/j.ijhydene.2020.09.212
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product was grinded using an agate mortar and the obtained

red powder was kept in a cool and dry place in a glass

container.

Solubility test for CuInS2 quantum dots under alkaline
conditions
Due to the poor solubility of MUA capped CIS in water (pH 7)

and in ZIS microspheres precursor environment (pH 2), the

solubility and PL property of MUA capped CIS quantum dots

was also tested in an alkaline solution with different pH levels

whether their solubility is higher in alkaline conditions. For

that purpose, 20 ml water-CIS quantum dots mixture (1 mg/

ml) was prepared (pH ¼ 7). The mixture was mixed for 30 min

using magnetic stirrer. As expected, CIS aggregated and could

not be dissolved in the water. Later, 25% ammonia water was

added dropwise to adjust pH. At each pH level, a sample was

collected with a Pasteur pipette and PL intensity was

measured swiftly (excitation wavelength: 330 nm). The pH

level was controlled using both pH meter and pH-indicator

paper.

Synthesis of CuInS2 quantum dots decorated ZnIn2S4
microspheres

CIS decorated ZnIn2S4 microspheres (ZIS) were synthesized

using hydrothermal method. ZIS preparation was adopted

from Shen et al. [17]. 6.1 mmol (1.75 g) ZnSO4$7H2O,

12.08 mmol (3.85 g) In(NO3)3$H2O, 4.25 mmol (1.55 g) cetrimo-

nium bromide and 41.26 mmol (3.10 g) thioacetamide were

added to 120 ml deionized water (Mixture A) in a glass beaker

and mixed with a magnetic stirrer bar. The mixture A was left

for stirring while pre-prepared CISewater mixture (Mixture B)

were prepared by adding 50, 100, 150 or 200 mg CIS to 10 ml

water in a beaker and sonicated for 30 min. Later, the mixture

B was added to mixture A and remaining CIS in the beaker

were rinsed 10 ml of water and transferred to mixture A. The

final mixture (140 ml) was stirred for 10 min vigorously and

finally transferred quickly to Teflon-lined stainless-steel

autoclave reactor with 200 ml volume for the hydrothermal

reaction. The weight ratios of CIS to ZIS precursors plus CIS in

the hydrothermal reaction were 0.57 wt%, 1.13 wt%, 1.69 wt%

and 2.24 wt% CIS for 50, 100, 150 or 200 mg CIS addition and

products were abbreviated as ZIS/CIS_50, ZIS/CIS_100, ZIS/

CIS_150 and ZIS/CIS_200, respectively The reaction was car-

ried out at 160 �C for 12 h and the reactor was cooled under

room temperature. The obtained product was washed with

excess amount of ethanol and centrifuged several times for

10min at 6000 rpm. Later, the productwas dried at 60 �C under

atmospheric pressure. ZIS without CIS decoration was syn-

thesized by the as mentioned method above, except without

any CIS in the hydrothermal reaction medium. Finally, the Pt

deposition (0.75 wt%) on ZIS and ZIS/CIS samples were carried

out using photodeposition technique.

Photodeposition of Pt

Pt was selected as a cocatalyst for ZIS and ZIS/CIS photo-

catalysts. To obtain Pt deposited ZIS/CIS, photodeposition

technique was used. 500 mg ZIS or ZIS/CIS was mixed with

17.5 ml ethanol in a glass beaker and ultrasonicated for
10 min. The mixture was transferred to quartz glass photo-

reactor with 25 ml volume. Then, H2PtCl6$6H2O aqueous so-

lution was added to ethanol-photocatalyst (0.75 wt % of Pt)

mixture. The final mixture was mixed in the dark for 2 h and

the headspace of the reactor degasified with nitrogen for 1 h.

Finally, the reactor was irradiated using Xenon lamp (Oriel,

66,021, 1000 W) at 25 �C for 1 h. The dark yellow product was

washed with excess amount of ethanol and centrifuged at

6000 rpm. Later, the product was dried at 60 �C under atmo-

spheric pressure.

Characterization

The particle size, shape, and morphology of samples have

been analyzed by high-resolution transmission electron mi-

croscopy images and EDS maps were recorded in a double

aberration-corrected Themis Z microscope (Thermo Fisher

Scientific Electron Microscopy Solutions, Hillsboro, USA)

equipped with a high-brightness FEG at an accelerating

voltage of 200 kV. HAADF scanning TEM imageswere recorded

with a Fishione Model 3000 detector (E.A. Fischione In-

struments Inc., Export, PA, USA) with a semi-convergence

angle of 30 mrad, a probe current of 50 pA and scanning

electron microscopy (JEOL JSM-7001F and JEOL JSM-7610F

operating at 15 kV). Transmission electron microscopy (TEM)

was performed using bright-field (BF) to analyze ZIS/CIS_100

and ZIS/CIS_100-Pt samples with a Hitachi H-800 microscope

(Hitachi High-Technologies), operating at 150 kV. The TEM

samples were prepared by dry transfer of powder to carbon on

copper grid (Agar Scientific), and imaged with dose rate not

exceeding 20,000 e�/nm2/s. Dose rate above 40,000 e�/nm2/s

led to the remodeling of the substrate and the coagulation of

Pt species into larger nanocomplexes. X-ray diffractometer

(XRD, Rigaku MiniFlex 600) equipped with Cu Ka irradiation in

the 2q range of 20e80� was used to identify the crystalline

structure. The Pt and Cu content were analyzed by inductively

coupled plasma optical emission spectroscopy (ICP-OES) using

Agilent 5100 spectrometer, according to PN-EN ISO 11885:2009

standard. The mineralization was performed before the

samples’ analysis. The high-resolution (HR) XPS spectra were

recorded by a PHl 5000 VersaProbe - Scanning ESCA Micro-

probe (ULVAC-PHI, Japan/USA) using monochromatic Al-Ka

radiation (hn¼ 1486.6 eV) with the energy step size of 0.1 eV at

the pass energy of 23.5 eV and the X-ray source operating

under the following conditions: 15 kV, 25 W, 100 mm spot. The

analyzed area was 250 mm � 250 mm. The binding energy (BE)

scale was referenced to the C 1s peak with BE ¼ 284.8 eV. The

UVevis spectra of samples were recorded in the scan range

200e800 nm using UVevis spectrophotometer (Evolution 220,

Thermo Scientific) equipped with an integrating sphere and

BaSO4 as the reference (Labsphere certified reflectance stan-

dard). The photoluminescence spectra (PL) were recorded

using a PerkinElmer Luminescence Spectrometer LS-50B

equipped with Xenon discharge lamp as an excitation

source. The samples were excited with 330 nm at room tem-

perature and the emission was scanned between 300 and

800 nm. Fourier-transform infrared spectroscopy (FTIR)

(Bruker, IFS66) was used to identify the surface characteristics

of CIS in the scan range of 500e5000 cm�1 in the diffuse

reflectance mode with a resolution of 0.12 cm�1 at room

https://doi.org/10.1016/j.ijhydene.2020.09.212
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temperature. KBr was used as a reference material. Surface

area and pore volume were analyzed by Gemini V200 Surface

Area Analyzer (Micrometrics) equipped in degassing unit. The

apparatus was checked with Carbon Black reference material

with specific surface area of 30.6 m2/g.

Photogenerated hydrogen evolution and stability

The photocatalytic hydrogen evolution performance (PHE)

test of obtained ZIS/CISePt photocatalysts were carried out

using the procedure as follows. 100 mg photocatalyst powder

was mixed with 80 ml of 0.35 M Na2S/0.25 M Na2SO3 aqueous

solution of sacrificial agent. The mixture was ultrasonicated

for 10 min and transferred to a quartz glass photoreactor

(V ¼ 110 ml) with a cooling jacket. The mixture was then

irradiated using a 1000 W Xenon lamp (Oriel, 66,021) which

emitted both UV and visible irradiation. UV light was removed

by a cut-off filter GG420 (l > 420 nm). The temperature of the

reactor was kept at 10 �C by a thermostat. Before PHE, the

headspace of the reactor was purged with nitrogen gas with

10e12 dm3/h velocity for 30 min under dark while themixture

was mixed with a magnetic stirrer bar. 200 ml of gas sample

were collected within every hour from the headspace of the

photoreactor using an air-tight syringe (Hamilton) and injec-

ted to the gas chromatograph (Thermo Scientific TRACE 1300-

GC), coupled with thermal conductivity detector (TCD). No

hydrogen generated by the irradiation of sacrificial agent so-

lution with the same conditions. Photostability cycle runs

were conducted under same conditions but using cut-off filter

GG455 (l > 455 nm). The calibration experiments for the cal-

culations to detect amount hydrogen evolution was followed

by introducing different volume of pure hydrogen gas to the

quartz glass photoreactor with the same conditions as

mentioned above and plus a digital manometer was con-

nected to the reactor to monitor the pressure change in the

headspace of the photoreactor. Ideal gas equation has been

used to calculate the amount of hydrogen in moles.

Action spectra analysis for photocatalytic hydrogen
evolution reaction

Action spectra analysis was performed in the presence of

sample with the highest hydrogen evolution rate, namely ZIS/

CIS_100-Pt, using the procedure as follows. 12.5 mg ZIS/

CIS_100-Pt samplewasmixedwith 10ml of 0.35MNa2S/0.25M

Na2SO3 aqueous solution of sacrificial agent and ultra-

sonicated for 5 min and transferred to a Teflon photoreactor

(V ¼ 15 ml) with a quartz window and cooling jacket. The

photoreactorwas connected to ameasuring systemconsisting

of a tunable monochromatic light sources (1000 W Xe lamp e

LSH602 and monochromator e MSW306, LOT-Quantum

Design), GC-BID (BID-2010 Plus, Shimadzu) and FTIR (not

used in this study). Then, the headspace of the photoreactor

was purged with helium gas for 30 min under dark while the

suspension was mixed with a magnetic stirrer bar. The tem-

perature of the reactor was kept at ambient temperature. The

sample was irradiated with the following wavelengths: 420,

440, 460, 480, 500, 540 and 600 nm. Irradiation intensity (W)

was measured for individual wavelengths with optical meter

(ILT2400, International Light technologies). No hydrogen
generated by the irradiation of sacrificial agent solution with

the same conditions. The calibration experiments for the

calculations to detect amount hydrogen evolution was fol-

lowed by introducing different volume of pure hydrogen gas to

the quartz glass photoreactor with the same conditions as

mentioned above and plus a digital manometer was con-

nected to the reactor to monitor the pressure change in the

headspace of the photoreactor. Ideal gas equation has been

used to calculate the amount of hydrogen in moles.

The apparent quantum efficiency as a function of wave-

length was calculated based on the ratio of rate of hydrogen

generation to the flux of incident photons, assuming that two

photons are required according to the reaction stoichiometry,

starting calculations from Eq. (1).

AQEð%Þ ¼ 2� number of evolved H2 molecules
number of incident photos

(1)

Results and discussion

The characteristics of CIS were investigated by their particle

shape, size distribution, PL emission and FTIR spectra HAADF-

STEM image of CIS (Fig. S2a) revealed that the size range of

dots ranged between 1.8 and 2.4 nm. Two peaks around 420

and 660 nm can be seen from PL spectra of CIS. The first broad

peak located around 420 nm can be attributed to nonradiative

transition of excited electrons on conduction band bottom to

sub-bands due to the surface defects or sulfur vacancies on

CIS whereas the second red shifted peak (660 nm) can be

based on the radiative transition of those electrons to the

valence band of CIS [40]. The presence of MUA on the CIS can

be confirmed by comparing the FTIR spectra of CIS and MUA.

The disappearance of small region around 2680 cm�1 which

corresponds to SeH stretching in the spectra of CIS confirms

the bonding between MUA and CIS surface. Moreover, OeH

stretch (broad region around 3000 cm�1) and C]O stretch

(sharp peak around 1720 cm�1) in MUA [41] were cleaved in

CIS. Therefore, it can be suggested that MUA capping ligand

bonded to CIS surface not only by eSH group but also eCOOH

group interacted with CIS surface. Finally, CeH stretch (sharp

peak around 2900 cm�1) due to the alkene chain inMUA can be

seen in both samples. The results have revealed that the in-

crease in pH has led to improved solubility of MUA capped CIS

quantum dots. The PL characteristic peak from radiative

transmission signal was the highest at pH 9 which confirms

the uniformly dispersed MUA capped CIS QDs. However, after

pH 9, the PL signal decreased gradually and finally no char-

acteristic peak was observed at pH 12.5e13 (Fig. S3). This will

be discussed further.

The scanning electron microscopy (SEM) analysis showed

that all obtained ZIS and ZIS/CIS photocatalysts are in

microsphere shape which consists of many petals that results

in microporous or mesoporous structure (Fig. 2aee) as previ-

ously reported which is characteristic morphology for ZIS

microspheres [13,17,32]. The size of all ZIS and ZIS/CIS range

between 3 and 5 mmwhereas thickness of the petals that form

the microspheres are between 20 and 50 nm (Fig. 2a, b). The

presence of CIS can be observed on all ZIS/CIS as aggregated

form (Fig. 2bee) probably due to themercaptododecanoic acid

https://doi.org/10.1016/j.ijhydene.2020.09.212
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Fig. 1 e The synthesis route for ZIS and CIS decorated ZIS

microspheres. Inset: SEM images of ZIS and ZIS/CIS.
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anchored on CIS surface through not only thiol but also acid

group (Fig. S2d) [42]. In addition to that, the acidic of reaction

medium might cause decrease in electrostatic repulsion be-

tween MUA capped CIS which results in aggregation and
Fig. 2 e SEM images of a) ZIS, b) ZIS/CIS_50, c) ZIS/CIS_100, d) Z

aggregated CIS covering the ZIS surface), STEM-HAADF images o

mapping of k), l), m), n) ZIS/CIS_50, p), q), r), s) ZIS/CIS_150, u), v

represent Zn, In, S and Cu elements, respectively). (For interpre

reader is referred to the Web version of this article.)
nonuniformly distribution of CIS on ZIS surface [43]. On the

other hand it was suggested that the better solubility of MUA

capped CIS in water can be achieved at basic pH level in which

the surface charge on MUA capped CIS increases due to the

dissociation of carboxylic groups (Fig. S3) [44]. The increase in

CIS on ZIS surface can be seen from the SEM images as in ZIS/

CIS_200 (Fig. 2d), CIS covers most of the surface of ZIS while

ZIS/CIS_50 (Fig. 2b) has lesser covered by CIS compared to ZIS/

CIS_200 The scanning transmission electron microscope with

high angle annular dark field (STEM-HAADF) imaging analysis

showed the presence of CIS in ZIS which agrees with SEM

results. Moreover, presence of CIS ranging between 1.8 and

2.4 nm (Fig. S2a, b) in accordance to comparison of STEM-

HAADF images of ZIS/CIS_50 and ZIS/CIS_200. ZIS/CIS_50 has

many gaps inside the between the layers of ZIS microspheres

whereas these gaps diminishes in ZIS/CIS_200 which can be

clearly seen by recognizable color change in the images due to

the more situated CIS between the porous of ZIS/CIS_200

(Fig. 2j, t). In addition to STEM-HAADF, energy dispersive X-ray

spectrometry (EDS) mapping approves the presence of CIS by

measuring Cu element on ZIS/CIS photocatalyst and clearly

reveals that CIS can be found in ZIS/CIS photocatalysts not

only nonuniformly but also uniformly (Fig. 2n, s, x). The TEM

images of the most active sample ZIS/CIS_100-Pt and without
IS/CIS_150, e) ZIS/CIS_200 (dashed red circles show the

f j) ZIS/CIS_50, o) ZIS/CIS_150, t) ZIS/CIS_200 with their EDS

), w), x) ZIS/CIS_200 (blue, green, purple and yellow colors

tation of the references to color in this figure legend, the

https://doi.org/10.1016/j.ijhydene.2020.09.212
https://doi.org/10.1016/j.ijhydene.2020.09.212
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Pt deposition ZIS/CIS_100 was also compared (Fig. 3). The

aggregated CIS with excess amount of MUA can be observed

both in ZIS/CIS_100-Pt and ZIS/CIS_100 (Fig. 3aec,e,f). Besides,

the Pt based nanoparticles in forms of dark dots in the images

with particle range around 13 nm can be observed in ZIS/

CIS_100-Pt (Fig. 3def) sample differently from ZIS/CIS_100

(Fig. 3aec) as expected. The X-ray diffraction (XRD) patterns of

bare ZIS and ZIS/CIS exhibit same profile and any phase

related with CIS were not detected due to the low crystallinity

of CIS comparing to ZIS (Fig. S5a). XRD pattern of all ZIS/CIS,

ZIS and CIS whereas Fig. S5b shows the detailed XRD spectra

of CIS. All diffraction peaks of ZIS 20.65�, 28.1�, 28.5�, 47.4�,
51.8�, 56.3�, 69.2�, 76.5� and 88.4� were indexed to hexagonal

crystal system in a sphalerite phasewhich are agreementwith

the literature [45,46] whereas peaks of CIS 27.5�,46.6�, 54.8�

and 74.4� were indexed to tetragonal crystal system in a

roquesite phase [39]. Moreover, the change in crystallography

of ZIS-Pt and ZIS/CIS_100-Pt samples after four cycle of PHE

performance experiment was also investigated by XRD

(Fig. S6) and the newly formed 23.5�, 32.80�, 34.35�, 35.95�,
48.20�, 59.60� and 59.60� peaks which are indexed to trigonal

structure of Na2SO3 [47] in the XRD spectra of both samples

can be observed.

X-ray photoelectron spectroscopy (XPS) analysis identified

all elements originated from ZIS and CIS (Fig. 4) and ZIS/

CISePt and evaluated the elemental surface composition of

these heterostructures (Table S1). Different amount of CIS

decorating ZIS were well controlled by atomic ratio Cu/Zn

(Table S.1). The chemical nature of elements detected in ZIS/

CISePt (Zn, In, Cu, S and Pt) were determined by analysis of

the high-resolution (HR) XPS spectra of Zn 2p, In 3d, Cu 2p, S 2p

and Pt 4f, respectively (Tables S2 and S3). As a result, the

oxidation states of Zn, In, Cu, and Pt was identified as Zn2þ,
In3þ, Cuþ, and Pt2þ/Pt4þ, respectively (Tables S2 and S3). The

resulted data are presented in Tables S2 and S3 and Fig. 2(aee).

The high-resolution (HR) XPS spectra of Zn 2p (a), In 3d(b), Cu

2p(c) and S 2p (d) agree well with the corresponding spectra
Fig. 3 e TEM images of a, b, c) ZIS/CIS_100 and d, e, f) ZIS/CIS_10

based particles, respectively. (For interpretation of the reference

Web version of this article.)
reported in literature for ZIS/CIS nanocomposites [48e52]. The

Zn 2p3/2 and In 3d5/2 peaks (BE of 1022.1 and 445.1 eV,

respectively, Table S2) confirm the oxidation states of Zn2þ

and In3þ in ZIS and CIS decorated ZIS heterostructures. The Cu

2p spectra features of MUA-capped CIS (c) identify Cu as Cu2þ

state (Cu 2p3/2 signal at 932.7 eV accompanied by shakeup

satellites at BE higher than 945.4 eV [53]). However, the Cu 2p

spectra of all ZIS/CIS nanomaterials (Fig. 4c) exhibit the Cu

2p3/2 signals at 932.3 eV, what indicates the oxidation states

of Cu to be closer to Cuþ [53]. The S 2p spectra of ZIS (d) are not

affected by different amount of doped CIS (the main S2p3/2

signals at BE of 161.9 eV). Moreover, for all ZIS/CIS specimens

we found a similar atomic ratio S/In close to 2 (2.16 ± 0.19,

Table S1). The surface area of Pt deposited ZIS/CIS photo-

catalyst is also well characterized by the same set of Zn 2p, In

3d, Cu 2p and S 2p spectra (Fig. S7aec, e). Additionally, the

successful doping of Pt was confirmed by the Pt 4f spectrum

(Fig. S7d). Unfortunately, the Pt 4f spectrum is overlappedwith

the Cu 3p and In 4p signals. Thus, deconvolution of this

spectrum was necessary to separate the Pt signals and eval-

uate the Pt contents (Table S1). As a result, two Pt states,

represented by Pt 4f7/2 signals at 72.7 eV and 74.9.9 eV, were

distinguished. First, can be assigned to Pt2þ surface species

(PtS, Pt-Ox) and second one to Pt4þ compounds (PtS2, PtO2) [54].

Also, the amount of the Pt in all photocatalysts were

confirmed by ICP-OES that proves all the ZIS/CISePt have

about 1.26 wt% Pt (Table S.4).

Optical properties of ZIS/CIS, ZIS, CIS and ZIS/CISePt were

determined by UVeVis diffusive reflectance spectroscopy

(DRS) (Fig. S4a, b). The direct band gap value of ZIS [55] and

CIS [26] were calculated by Kubelka-Munk method (Fig. S9)).

CIS (1.87 eV) is more visible light responsive compare to all

obtained ZIS (2.5 eV) and ZIS/CIS photocatalysts which has

photoabsorption with the edge around more than 800 nm

whereas ZIS, ZIS/CIS_50, ZIS/CIS_150 and ZIS/CIS_100, ZIS/

CIS_200 are active with the edge about 630 nm and 660 nm,

respectively (Fig. S4a). The color change in ZIS powder from
0-Pt. Red and blue dashed lines represents CIS QDs and Pt

s to color in this figure legend, the reader is referred to the

https://doi.org/10.1016/j.ijhydene.2020.09.212
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Fig. 4 e XPS spectra of a) Zn 2p, b) In 3d, c) Cu 2p, d) S 2p for ZIS/CIS and CIS with MUA samples.
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yellow to reddish-yellow ZIS/CIS powders also confirms the

slight increase of visible light absorption between 400 and

600 nm of ZIS/CIS compare to ZIS (Fig. S4a). After the Pt

photodeposition on ZIS and ZIS/CIS surface, the significant

increase in the absorption edge can be easily identified in all

obtained photocatalysts which is much higher than of all

ZIS/CIS (Fig. S4b). This enhancement can be explained by the

increase in localized energy levels and surface plasmon

resonance effect created by Pt nanoparticles on ZIS and ZIS-

CIS surface [13,56,57]. Among ZIS/CISePt photocatalysts, ZIS/

CIS_100-Pt has the highest absorption while the lowest ab-

sorption can be observed in ZIS/CIS_50-Pt and ZIS/CIS_200-
Pt. In order to investigate the recombination of photo-

generated electron-hole on the surface of ZIS, ZIS/CIS and

ZIS/CISePt, photoluminescence (PL) spectra were studied by

fluorescence spectrometry (FS) [32,58]. The lowest PL in-

tensity detected in ZIS/CIS_100-Pt in comparison to all pho-

tocatalysts with and without Pt deposition which proves the

lowest electron-hole recombination takes place in that pho-

tocatalyst. Meanwhile, ZIS/CIS_200 and ZIS/CIS_200-Pt

exhibit highest PL (Fig. S4c, d) which reveals that ZIS/

CIS_200-Pt (2.24 wt%) increases the recombination of hole-

electrons. This increase might be explained due to the

excessive amount of CIS on the ZIS surface leading to

https://doi.org/10.1016/j.ijhydene.2020.09.212
https://doi.org/10.1016/j.ijhydene.2020.09.212
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Fig. 5 e a) Amount and b) rate of hydrogen evolution under visible light irradiation (l > 420) nm in the presence of ZIS-Pt and

ZIS/CISePt samples, c) cycling hydrogen evolution on ZIS-Pt and ZIS/CIS_100-Pt under visible light irradiation (l > 455 nm)

and d) comparison of rate of hydrogen evolution of ZIS-Pt and ZIS/CIS_100-Pt in the presence of GG420 (l > 420 nm) and

GG455 (l > 455 nm) cut-off filters.
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 formation of recombination centers in connection with the

narrow energy gap of CIS [59].

The amount of H2 generated under visible light irradiation

(l> 420nm) fromNa2S/Na2SO3 sacrifical agent solutionbyeach

ZIS/CISePt after 4 h can be seen in Fig. 3a. All the ZIS/CISePt

photocatalysts have higher rate of H2 than ZIS-Pt (Fig. 5b). The

highest H2 evolution rate of 1041 mmol h�1 g�1 is exhibited by

ZIS/CIS_100-Ptwhich is about 2.5 timeshigher than that of ZIS-

Pt (411.17 mmol h�1 g�1). Thus, for the best PHE performance by

ZIS/CIS can be reached with the ratio of 1.13 wt% of CIS. This

hydrogen evolution rate is around 3.4 times lower compare to

the 2D ZIS/CIS system with higher optimum amount of CIS

(5 wt%) and Pt deposition (2 wt%) but also around 1.3 times

higher than Cu doped ZIS with lower amount of Cu doping

(0.5wt%) andhigher Pt deposition (1wt%) (Table S5).Moreover,

among ZIS/CISePt, ZIS/CIS_50-Pt exhibits the lowest H2 gen-

eration rate of 559.88 mmolh�1 g�1. Above 1.13wt%CIS, the PHE

rate graduallydecreasesas is seen fromtheH2 evolution rate of

995.27 and 902.07 mmol h�1 g�1 by ZIS/CIS_150-Pt (1.6 wt%) and

ZIS/CIS_200-Pt (2.24 wt%), respectively (Fig. 5b). On the other

hand, the photostability of ZIS/CIS_100-Pt and ZIS-Pt were

investigated (Fig. 5c) under visible light irradiation (l> 455nm).

ZIS/CIS_100-Pt and ZIS-Pt exhibit considerable H2 evolution

performance even at longer wavelength in the 1st run, 1025.26
and 2745.32 mmol g�1. In the 2nd run, both samples show an

increase in H2 evolution, more particularly ZIS-Pt produced

around1.7 timeshigherH2 (1760mmolg�1) than in 1st run.After

the 2nd run, both samples show a gradual decrease in the

amount of H2 evolution. However, it is worth to mention that

the amount of hydrogen evolution by ZIS-Pt after 4th run

(1415.66 mmol g�1) is still higher than that of its evolution

amount in the endof 1st runwhile around 25%decrease can be

observed from ZIS/CIS_100-Pt (1765.46 mmol g�1) (Fig. 5c).

Moreover, around 35% decrease in the rate of hydrogen evo-

lution can be seen in the both ZIS-Pt and ZIS/CIS_100-Pt as the

cut-off filter is changed from GG420 (l > 420) nm to GG455

(l > 455 nm) (Fig. 5d).

The mechanism of PHE of ZIS/CISePt under visible light

can be estimated firstly by approximating band structure of

ZIS and CIS in accordance to valence band (VB) XPS spectra

and calculated bandgap values from DRS. Based on this, the

conduction band potential (ECB) of CIS and ZIS can be deter-

mined [33,60,61]. Based on this, the valence band maximum

values of ZIS and CIS are 1.5 eV and 0.6 eV (V vs NHE) (Fig. S8),

whereas the direct bad gap (Eg) of ZIS and CIS were estimated

by Kubelka-Munk function [62e65] using Eq. (2):

FðRÞ:hv ¼ k ðhv� EgÞ1=n (2)

https://doi.org/10.1016/j.ijhydene.2020.09.212
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Fig. 6 e a) Charge transfer mechanism and band alignment in the ZIS/CISePt (V vs NHE) b) action spectra analysis of

photogenerated hydrogen evolution over ZIS/CIS_100-Pt sample c) schematic representation of photogenerated hydrogen

evolution.
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where F(R) is Kubelka-Munk function, R is the reflectance

(Fig. S9) and n is the exponent depending the on type of

transitionwhich is n¼ 2 for both ZIS and CIS. By using the plot

of (F(R). hv)2 vs. hv., Eg of CIS and ZIS are about Eg ¼ 1.87 and

2.49 eV, respectively. Finally, by considering the Eg and EVB,

the conduction band (CB) of ZIS and CISwas estimated around

�0.99 and �1.27 eV (V vs NHE), respectively. Thus, the CB

potentials of both ZIS and CIS are thermodynamically suitable

for PHE by considering the Hþ/H2 reduction potential 0 eV (V vs

NHE) [32]. During the visible light irradiation, ZIS and CIS are

photoexcited and produces photogenerated electron (e�) and
holes (hþ). The photogenerated electrons on the CIS surface

move to lower CB potential of ZIS and are captured by active

sites of ZIS/CISePt where Pt nanoparticles acting as an elec-

tron sink for H2 generation by capturing the photogenerated

electrons and prevent the recombination [66,67]. Meanwhile,

photogenerated holes in ZIS are captured by the VB of CIS that

results in inhibition of recombination of holes and electrons

on ZIS and the holes on CIS surface are scavenged by SO3
2� and

S2� ions to form SO4
2� and S2

2�, respectively. So that the charge

separation over ZIS/CISePt surface is facilitated [68,69]

(Fig. 6a, c). Moreover, it is worth tomention that the rise in PHE

rate of ZIS/CIS_100-Ptmight be associated with the adsorption

mechanism on the photocatalysis surface [70]. In more detail,

the photogenerated electrons and holes-initiated reactions
are given below on the photocatalysis surface in the case of

Na2S/Na2SO3 sacrificial agent solution [71].

2H2O þ 2e� / H2 þ 2OH� (I)

SO2�
3 þ 2H2Oþ 2hþ/ SO2�

4 þ 2Hþ (II)

2S2� þ2hþ /S2�
2 (III)

S2�
2 þ SO2�

3 / S2O
2�
3 þ S2� (IV)

SO2�
3 þ S2� þ 2hþ

/ S2O
2�
3 (V)

After charge carrier generation, photogenerated holes-

initiated reactions occur and SO3
2� and S2� ions form SO4

2�

and S2
2� ions, respectively. However, initial condition for these

surface reactions is competitive adsorption of Na2SO3 and

Na2S on photocatalysis surface which follows Langmuir-

Hinshelwood model [72]. Therefore, the higher surface area

in ZIS/CIS_100-Pt (32.5 m2/g) comparing to ZIS-Pt (24 m2/g)

might lead to more Na2SO3 consumption on its surface thus

higher PHE rate. Consequently, the optimum amount of CIS

(1.13 wt%) in ZIS/CIS photocatalyst increases the charge sep-

aration efficiently by forming a heterojunction that leads to

enhancement of the PHE rate comparing to bare ZIS. To gain

https://doi.org/10.1016/j.ijhydene.2020.09.212
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insight into the mechanism of photocatalytic hydrogen evo-

lution, the action spectra analysis was performed with ZIS/

CIS_100-Pt and apparent quantum efficiency (AQE) was

calculated as a function of the irradiation light (420, 440, 460,

480, 500, 540 and 600 nm). Indeed, the ZIS/CIS_100-Pt sample

had high ability to generate H2 in the visible light range up to a

wavelength of 540 nm, which correlates well with its photo-

absorption properties e less light absorption capacity led to

less H2 evolution and lower AQE values (Fig. 6b). For the longer

wavelength than 540 nm (600 nm), AQE reached the values of

0%. In addition, two regions can be distinguished, namely with

extremely high (up to 480 nm) and moderate (from 480 to

540 nm) power to evaluate H2. The highest AQE was observed

at 420 nm (30.6%). To the best of our knowledge this value is

second the highest results among the ZnIn2S4ebased photo-

catalysts in the literature (Table S5) and the widest region with

observable H2 evolution photoactivity. Thus, photocatalytic H2

evolution was mainly dependent on the photoabsorption

properties of the ZIS/CIS photocatalyst. As very low activity

was exhibited by both ZIS and CIS without Pt deposition

(Fig. S10), the effect of the Pt species on photogenerated

hydrogen evolution rate can be expected. In consideration of Pt

oxides, Pt-Ox and PtO2, it was suggested that maximization of

Pt4þ sites are more efficient than that of Pt2þ species in elec-

trochemical hydrogen evolution [73]. However, in the case of Pt

sulfides, PtS and PtS2, this might be different. During photo-

deposition process, excessive amount of sulfur in ZnIn2S4
promotes more likely the formation of PtS semiconductor on

ZnIn2S4 due to the adsorption of Pt2þ on ZnIn2S4 [74]. The same

phenomena might occur in ZIS/CIS_100-Pt and ZIS/CISePt

samples as is seen from previouslymentioned XPS results that

Pt2þ state can be detected in ZIS/CIS_100-Pt and ZIS/CISePt

surface. However, Pt4þ was also detected which corresponds

according to PtO2 or PtS2 species in ZIS/CIS_100-Pt and ZIS/

CISePt samples according to the XPS results. The increased

Pt(II) component contribution by reduction of PtS2 resulted in

induced the hydrogen evolution rate in PtS2 [75]. Moreover it

was also reported that PtSx worked more efficiently than the

metallic Pt particles in case of Z-scheme employing metal

sulfide photocatalysis [76]. As a result, one can suggest that

different species of Pt have different activity: in case of Pt ox-

ides, PtO2 > Pt-Ox whereas for Pt sulfides PtS > PtS2 among Pt

sulfides. However detailed studies are crucial to reveal which

form of those species exist dominantly in ZIS/CIS_100-Pt and

ZIS/CISePt samples. On the other hand, the decrease in H2

generation rate above the optimum amount of CIS can be also

highlighted. Above the optimumvalue of CIS, as clearly seen in

Fig. 1e, the ZIS surface is covered by CIS in which the photons

required for photoexcitation of ZIS might be blocked. There-

fore, photoexcitation of ZIS diminishes due to the insufficient

number of photons reaching ZIS surface. Thereby, induced the

number of photoexcited electrons and holes results in a drop of

PHE rate. Also, in higher amounts, CIS may locate the active

sites in ZIS for H2 generation [77] and creates recombination

centers competing with the active sites for H2 evolution and

increases the recombination rate (Fig. S4d). Moreover, over CIS

decoration than the optimum might narrow the space charge

region in ZIS/CIS heterojunction system, and the penetration

depth of ZIS surpasses the space charge layer in which pho-

togenerated holes and electrons recombine easier [78]. In
addition, the rapid decline in photocatalytic activity in both

ZIS-Pt and ZIS/CIS_100-Pt samples after the 2nd run can be

linked to the self-oxidation of S2� in ZIS by photo-generated

holes in the valence band of ZIS [52]. That is supported by

XPS results of both ZIS-Pt and ZIS/CIS_100-Pt samples before

and after cycling experiments in which remarkable drop can

be seen in fraction of S2� state (Table S3). Furthermore, that

decline can be also correlated to the notable decrease in Zn and

In contents in ZIS-Pt and ZIS/CIS_100-Pt samples (Fig. S7 and

Table S1 and S3). However, the XPS peak related with Cu 3p

orbital decreased also in ZIS/CIS_100-Pt sample after photo-

stability cycle runs, but this decrease is not significant as in Zn

and In contents (Fig. S7).
Conclusions

ZnIn2S4 microspheres decorated with pre-prepared CuInS2
quantum dots were prepared successfully by simple hydro-

thermal reaction and modified by Pt photodeposition for the

first time. Introducing optimum amount of 1.13 wt% CuInS2
quantum dots to the hydrothermal reaction medium for

ZnIn2S4 microspheres increased rate of bare ZIS about 2.5

times under visible light irradiation. This enhancement is

related with the improved light harvesting ability of ZnIn2S4
microspheres/CuInS2 quantum dots system in consequence of

the formed heterojunction between CuInS2 quantum dots and

ZnIn2S4 matrix. The broad visible range photoactivity up to

540 nm was observed with remarkable AQE at 420 nm (30.6%).

Further investigations are required to understand the fate of

the quantum dots during hydrothermal reaction, the effect of

the different reaction conditions on configuration of quantum

dots on ZnIn2S4 matrixes and impact on photocatalytic activ-

ity.Moreover, the optimumamount of Pt deposition onZnIn2S4
microspheres/CuInS2 quantum dots heterojunction system

must be investigated for the further studies. We suggest that

using CuInS2 quantum dots as a reactant in a hydrothermal

synthesis can be an alternative approach to obtain hetero-

junction to improve the photocatalytic activity of ZnIn2S4 for

photogenerated hydrogen evolution applications.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.ijhydene.2020.09.212.
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