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* Correspondence: arkadiusz.kwasigroch@pg.edu.pl (A.K.); michal.grochowski@pg.edu.pl (M.G.)

Received: 29 September 2020; Accepted: 13 November 2020; Published: 17 November 2020 ����������
�������

Abstract: To successfully train a deep neural network, a large amount of human-labeled data is required.
Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways
have been developed to mitigate the problem associated with the shortage of data, the most common
of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy
is insufficient. In this study, we improve deep neural models training and increase the classification
accuracy under a scarcity of data by the use of the self-supervised learning technique. Self-supervised
learning allows an unlabeled dataset to be used for pretraining the network, as opposed to transfer
learning that requires labeled datasets. The pretrained network can be then fine-tuned using the
annotated data. Moreover, we investigated the effect of combining the self-supervised learning approach
with transfer learning. It is shown that this strategy outperforms network training from scratch or with
transfer learning. The tests were conducted on a very important and sensitive application (skin lesion
classification), but the presented approach can be applied to a broader family of applications, especially in
the medical domain where the scarcity of data is a real problem.

Keywords: deep learning; neural networks; self-supervised learning; computer vision; medical screening;
malignant melanoma; skin lesion

1. Introduction

Deep learning algorithms have achieved a tremendous success in various image processing tasks.
Currently, deep learning-based approaches obtain state-of-the-art performance in vision tasks such as
image classification [1], object localization and detection [2–4], as well as object segmentation [5].

It is well-known that any deep learning system requires a lot of annotated data to obtain
satisfying results [6]. In some cases, publicly available datasets can be used to train the network.
However, in many domains collecting data is difficult, since the availability of applicable datasets is
limited. For instance, collecting medical data is difficult due to law restrictions and privacy politics [7].
Moreover, datasets used for supervised training have to be labeled manually. Although in most cases it
might be done by a non-skilled worker, some areas, e.g., medicine, require high-level domain expertise
to annotate the data, which makes the process very expensive and time consuming.

One of the common remedies to this problem is the use of transfer learning [8]. Transfer learning
involves training the network on a huge dataset (e.g., Imagenet) [9] and then treating this network
as a starting point in the target task training. This method can provide a performance improvement.
However, due to differences in the character of the dataset used for the pretraining and that of the
target task, it cannot be fully utilized. Nevertheless, transfer learning is currently one of the most
commonly used practices in many domains. A different approach taken in this paper, which bears
the name of self-supervised learning [10], consists of introducing a pretraining stage in the form of
learning the features from unlabeled datasets.
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In general, self-supervised learning is a family of techniques that pretrain the network to learn
visual features. In contrast to transfer learning, self-supervised pretraining does not require a labeled
dataset. This is very useful in a variety of tasks in which a large part of available datasets is not annotated
(e.g., in medicine) or training dataset is artificially generated without accompanying labels [11]. The use
of the self-supervised learning method involves two steps (Figure 1): pretraining of the network with the
use of unlabeled data (pretext task) and training on the target task with labeled data (downstream task).
Moreover, pretext task training does not require any external human supervision. Hence, the unlabeled
data can be used to increase the performance of the system.

Figure 1. The general pipeline of self-supervised learning. An unlabeled dataset is used to pretrain the
network (Stage 1), that is then used to train the network on labeled dataset (Stage 2).

Pretext task training is performed to learn visual features that can be utilized in downstream task
training. It is performed on an unlabeled dataset, which eliminates the expensive and time-consuming
labeling process. The common pipeline in pretext task training is to apply the transformation to the
image, and then make the network to predict the transformation parameter. For instance, one can
rotate an image and then teach the network to predict the rotation angle [12]. To perform such a task,
the network needs to learn higher-level features.

The type of the pretext task determines the choice of the objective function used during the
training. For example, when the network task is to predict the rotation angle from a predefined set of
possible rotation angles, the task becomes a classification problem that can be trained using standard
cross-entropy loss. Recently, methods relying on contrastive loss have attracted researchers’ attention,
as they allow obtaining decent results [13–15]. The general purpose of contrastive losses is to make
image representations and their modification similar, while making representations of the image and
other images in the dataset different.

The majority of works introducing novel self-supervised algorithms are evaluated on well-known
benchmark datasets that usually contain millions of labeled images. Although testing on benchmark
datasets is essential in the development of new methods and allows the field to progress, there is also
a need to test algorithms in real-world applications. Unlike benchmark datasets, many practical tasks
involve training on small and poorly balanced datasets [16,17].

This paper proposes to incorporate transfer learning into self-supervised learning-based
pretraining in the scarce dataset scenario. This strategy leads to superior results that outperform those
obtained using transfer learning or self-supervised learning alone. The performance of the method is
investigated on the dataset provided with the ISIC2017 challenge; the skin lesion classification problem [18].
The deployment of a skin lesion classification model is a challenging task [19], due to the limited size of
the dataset that contains only 2000 training images. It is shown that the system trained on such a small
dataset can still benefit from deploying a self-supervised strategy. Self-supervised learning is compared
with standard approaches i.e., training from scratch and training with the use of transfer learning.

The presented findings are believed to bring advantages in a variety of domains, especially in
those where the researchers have to cope with a small amount of data.
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The remaining part of the paper is organized as follows: Section 2 outlines related works, while in
Section 3, a general approach to the method is presented. The used dataset is described in Section 4,
and selected details of the method are presented in Section 5. Section 6 gives the description of the
experiments, and Section 7 concludes the paper.

2. Related Work

Self-supervised learning has recently emerged as a solution to utilize unlabeled samples during
neural networks training. The advantage of self-supervised methods is the ability to learn useful
representation without a need for manually labeled examples. It enables incorporating unlabeled
examples to perform network pretraining.

A variety of methods have been proposed that differ in the kinds of used pretext tasks and
objective functions.

Generation-based methods involve learning representations by networks that learn to generate
some content. The authors of [20] propose an architecture that restores the content of the randomly
chosen patch removed from the image. In turn, Larsson et al. [21] proposes image colorization as a
form of the pretext task. Images in the dataset are converted to grayscale, then the task of the network
is to restore full information about the color. Context-based pretext tasks rely on the semantic and
spatial information within the image. The authors of one of the first methods of this kind proposed a
pretext task which involves the prediction of relative positions of two patches within the image [22].
The image is divided into nine square tiles arranged in a 3 × 3 grid. The network task is to predict
the position of a randomly chosen tile relatively to the central patch. Thus, this pretext task comes
down to a multi-class classification problem. The authors of [23] built upon that work and proposed to
shuffle patches and make the network predict the shuffle pattern.

In [12] Gitaris et al. propose a network called RotNet. The dataset used during pretext task
training is created by performing random rotations to images. The network task is to predict the
rotation angle. Although it can be easily implemented, the method provides a significant improvement.

DeepCluster proposed in [24] uses a clustering algorithm to group representations into clusters.
Next, those groups are utilized during supervised training. Thus, the training involves alternating
between clustering the representations into a group and training the network to predict which group
the image belongs to.

Approaches based on contrastive losses have recently shown great potential. This family of
methods involves applying modification to the image. The network is trained in such a way as to
make representations of two different views of the image similar, while making those views dissimilar
to other examples in the dataset. This approach makes the representations to become invariant under
transformation applied to the images. It was shown that the quality of the learned representations
benefits from such a form of pretraining.

Numerous methods based on contrastive loss were proposed, including: [14,15,25]. The PIRL
(Pretext-Invariant Representation Learning) method [13], upon which this paper is built, makes use of
contrastive loss to obtain invariance property. To reduce the amount of computation performed by the
algorithm, the authors of the method introduced the memory bank that stores representations of all
images in the dataset.

Numerous studies have reported successful applications of deep neural networks to the task of
skin lesion classification. The authors of [26] reached dermatologist-level classification performance
using the network based on Inception architecture [27] trained on huge dataset of skin lesion images
(about 100 k). The author of [28] evaluated different network ensembling methods, showing that an
ensemble significantly increases classification performance. Barata et al. [29] developed a complex
skin lesion classification system composed of attention modules and LSTM cells that allows for
hierarchical classification and decision interpretation in the form of heatmaps. The authors of [30]
proposed an attention residual learning convolutional neural network that can adaptively focus on the
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discriminative parts of the skin lesion picture. The influence of different deep learning methods on
skin lesion classification was evaluated in [31].

3. Approach

This section outlines the PIRL algorithm adopted to solve the problem of skin lesion analysis.
The algorithm is described in full detail in [13]. The main aim of the method is to pretrain the network
in such a way as to make semantic representations produced by the network to be invariant under
different image transformations (Figure 2). In other words, the representations of different views of
the image should be similar. It was shown that such representations increase the network performance
on the downstream task [32]. The objective function from the family of contrastive losses [33] enables
these requirements to be satisfied.

Figure 2. The idea of contrastive learning. Contrastive learning leads to representations that are invariant
to transformations and retain semantic information.

3.1. Loss Function

The objective function aims to maximize the similarity of representations of the image and its
transformation (positive examples). The similarity is represented by a cosine distance. Moreover,
in order to avoid trivial solutions, the loss function encourages the network to produce different
representations of the given image and other images in the dataset (negative examples). The contrastive
loss function that satisfies those requirements has the following form:

LNCE = − log

 exp(
s(vI ,vIt )

τ )

exp(
s(vI ,vIt )

τ ) + ∑I′∈DN
exp(

s(vIt ,vI′ )
τ )

 (1)

where:

vI, vIt —representations of the image and its transformation,
s(·)—cosine similarity,
τ—temperature coefficient,
I′—set of negative examples drawn uniformly from the dataset,
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vI′—representation of the negative example,
DN—dataset.

To facilitate the interpretation of the loss function, one can consider the term inside the log function
as a softmax function. Minimization of LNCE function leads to the maximization of similarity between
the original and transformed images (nominator), and minimization of similarities between the
transformed image and other images from the dataset (denominator). As a result, the trained network
maps the original image and the modified one to neighboring representations, while mapping different
images to non-neighboring representations.

Prior works on contrastive self-supervised learning have shown that the number of negative
examples in I’ set has significant impact on the quality of trained representations [25,34]. Studies have
reported performance improvement with the increased number of negative examples representations
used in loss calculation. A naive approach is to produce representations of negative samples each
time the batch is provided to the network. However, this approach is time consuming due to many
forward propagations of the algorithms to produce representations of negative examples. To mitigate
this problem, in [13] the authors of the PIRL method proposed utilization of a memory bank that
stores the representation of each image in the dataset. This significantly reduced the computation
effort needed for running the algorithm by limiting the number of required forward propagations.
The representations stored in the memory are the exponential running averages of original images
produced in preceding epochs.

The introduction of the memory bank enables the introduction of the loss function that consists of
linear combination of two terms:

L(I, It) = λLNCE(mI, vIt) + (1− λ)LNCE(mI, vI) (2)

where:

I, It—image and its transformation,
vI, vIt —representations of the image and its transformation,
mI—representation stored in the memory,
λ—loss weight coefficient.

The first term relates to the similarity of the representation stored in the memory bank with
that of the modified image produced by the network. Moreover, it measures the similarity of the
representation of the transformed image to other images. This form is equivalent to the original loss,
except for the fact that representations of the original image and other images are taken from the
memory bank. The second term compares the representation of the original image stored in the bank
with that produced by the network in the current epoch – this term stabilizes the training process by
avoiding rapid weight changes. Moreover, it compares the representations of the unmodified image
with other images and tries to make them dissimilar during the optimization process.

4. Dataset

The performance of the self-supervised pretraining was assessed on the task of skin lesion
classification. This task involves classifying the dermoscopic images of lesions into two classes:
benign and malignant.

The dataset used in the experiments was provided in the ISIC2017 challenge [18]. This dataset
contains images of lesions collected from clinical centers using a variety of devices. The dataset contains
2000 training, 150 validation, and 600 testing images. Each set is divided into two classes—malignant and
benign and has the same class ratio (benign—80 percent of images, malignant 20 percent of images).

The classes in the dataset are not well-balanced, there are far more images of benign than malignant
lesions. This is a common difficulty when analyzing medical datasets, as the number of people with a
particular disease is much smaller than that of healthy patients, or patients with other diseases (other
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classes). Moreover, the images from different classes can be very similar to each other. These properties
of the datasets make correct diagnosis a challenging task, even for a highly-skilled specialist [35].
In addition, different specialists often provide a different diagnosis for the same case.

Like other medical problems, the problem of skin lesion diagnosis significantly differs from
classification based on standard benchmark datasets, where the number of images is high, and classes
are well-balanced and can be easily distinguished by a human with nearly perfect accuracy.

5. Implementation Details

While Section II outlined a general approach to the method, this section provides implementation
details of the employed application. The performed experiments made use of two transformation
strategies: Rotation transformation [12], and Jigsaw transformation [23], during pretext task training.
Each pretext task involved preparation of the image I and its transformation It to produce their
representations. The way that I and It were produced depended on the given pretext task.

In order to validate the presented approach, we decided to take advantage of the ResNet50 [36]
architecture as a feature extraction backbone, as it is commonly accepted architecture to evaluate
self-supervised algorithms. Moreover, ResNet50 is a network with proven effectiveness in numerous
studies, including medical applications considered in this paper. Specifically, we used ResNet50
implementation provided in the Pytorch [37] library that produces a 2048-dimensional feature vector
as the output of the last average pooling layer. This vector was further reduced to the lower dimension
of 128 that was then provided to the loss function. The reduction methods differed depending on the
pretext task used.

5.1. Initial Preprocessing

The images in the dataset vary in size and aspect ratio. Moreover, the areas of lesion take up a
different size on the images. To adapt images to the fixed input size of the network, the following
initial image preprocessing is performed.

First, lesions from the images are segmented using segmentation masks provided by the organizer
of the challenge. The shape of the lesion is an indicator of malignancy; thus, it is essential to keep
original proportions of the lesion in the image. Therefore, square image patches are cropped with the
lesion inside, and then those images are resized to the fixed size of 400× 400 pixels. This image is
further modified depending on the pretext task.

5.2. Jigsaw Pretext Task

Jigsaw pretext task involves comparing the original image representation I with the representation
It produced by a combination of representations of 9 tiles extracted from the original image (Figure 3).

These 9 tiles are produced in the following way. The preprocessed image of size 400 × 400 is
resized to 255 × 255 and split into a 3 × 3 grid consisting of nine 85 × 85-pixel tiles. Then, a 64 × 64
segment is cropped randomly from each 85 × 85 tile. Data augmentation is independently applied to
each tile, including color jittering, and random vertical and horizontal flips. The term “independently”
means that a different set of data augmentation parameters is drawn for each tile to introduce more
diversity in the dataset. Finally, each tile is normalized to have zero mean and unit variance.

The original image is produced in the following way. The preprocessed image is resized to the size
of 224× 224. Then, standard data augmentation methods including color jittering, random horizontal
and vertical flips are applied. Finally, the image is normalized to have zero mean and unit variance.
In order to produce the representation of image I, a linear fully-connected layer is placed after the
average pooling layer with the 128-dimensional output size. The original image is passed through the
network to obtain its representation.

To produce the representation of the modified image It, nine patches are passed through the
network to produce nine 128-dimensional vectors corresponding to each tile. Next, the vectors are
concatenated in random order to produce the 1152-dimensional vector. This vector is then provided to
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the next linear fully-connected layer to produce a 128- dimensional vector. Finally, this vector is used
in the loss function as the representation of the modified image It.

Figure 3. Jigsaw pretext task scheme.

Rotation Pretext Task

The preparation of the original image I and its transformation It is much simpler than in the Jigsaw
pretext task (Figure 4). The first steps are the same for both I and It. The preprocessed image is resized to
300 × 300, next two images of size 224 × 224 are randomly cropped to form both I and It. Random color
jittering and normalization are applied to both images independently. Finally, the modified image It is
rotated by an angle randomly selected from the set of (0, 90, 180, 270) degrees.

In order to obtain the 128-dimensional representation, a fully connected linear layer is placed
after the average pooling layer. Finally, both images are passed through the network to produce
representations of the modified and original images, both of 128 size.

5.3. Pretext Task Training

Pretext task training is performed with the use of contrastive loss (1) described in previous sections.
Stochastic Gradient Descent (SGD) with momentum algorithm is used as an optimizer, with the
learning rate set to 0.001, momentum coefficient set to 0.9, and the batch size set to 32. Weight decay
was disabled during the pretraining. For each image in the batch, 1000 negative examples are sampled
from the memory bank. The temperature coefficient in the loss function is set to 0.07, which is the value
commonly used in other applications. The coefficient between two loss terms is set to 0.5. The training
lasts 1000 epochs.

The representations stored in the memory bank are the moving exponential averages with the
update coefficient set to 0.5. This makes the features from last epochs to have the strongest influence on
the value of features stored in the memory bank. Before training, all images are passed to the network
to initialize the memory bank with the initial set of representations.
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Figure 4. Rotation pretext task scheme.

5.4. Downstream Task Training

Once the pretext task training is completed, the obtained weights can be utilized during the
downstream task training. The layers used to produce 128-dimensional representations are dropped,
leaving average pooling as the last layer. A sigmoid neuron is placed at the top of the network,
because the task of lesion classification is a two-class classification problem. The network is trained
with binary cross-entropy as the loss function. Stochastic Gradient Descent (SGD) with momentum
algorithm is used as an optimizer, with the learning rate set to 0.001, momentum coefficient set to 0.9,
and the batch size set to 32. The early stopping procedure was applied to prevent overfitting.

6. Experiments

A series of experiments were performed to evaluate the proposed methods. Six different ways
of neural network training were tested, including standard training from scratch and training using
transfer learning. The parameters of the training were the same as described in the pretext task training
section, the approaches differed only in weight initialization. Transfer learning and training from
scratch are the baseline approaches, which were used for comparison with self-supervised learning
approaches. The performance of the network pretrained on Jigsaw and Rotation pretext tasks using
contrastive loss was checked. Finally, the influence of the incorporation of transfer learning into
self-supervised pretraining was evaluated. Specifically, the network that performs pretext task was not
initialized from scratch, instead it was initialized using transfer learning from ImageNet. Pretext task
pretraining was performed on the whole training set without labels. Then the whole dataset was
used to perform downstream tasks, transfer learning, and training from scratch. Each experiment
was repeated five times and the average was taken to obtain more reliable results. The area under
Receiver Operating Characteristic curve (ROC AUC) was taken as the main performance measure,
as it is widely used in medical applications. Moreover, accuracy (ACC) and area under precision-recall
curve (PR AUC) are reported. The results are collated in Table 1.
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Table 1. Results of using self-supervised learning.

Method ROC AUC PR AUC ACC

Random initialization 0.598 0.257 79.67
Transfer learning (TF) 0.791 0.525 83.03

TF + Jigsaw 0.830 0.595 84.47
Jigsaw 0.664 0.321 79.80

TF + Rotation 0.826 0.591 84.00
Rotation 0.732 0.370 80.30

We can observe that transfer learning achieves superior results over random initialization. This is
the expected outcome, as transfer learning is a commonly known method to increase network
performance. We can also see that incorporating self-supervised methods without transfer learning
allows to increase the results over random initialization. However, these results are worse than those
obtained using transfer learning. The best results have been achieved by combining transfer learning
with self-supervised learning. Transfer learning with the Jigsaw pretext task allows obtaining ROC
AUC of 0.830, which shows significant improvement over transfer learning alone (0.791). These results
illustrate the benefits of the use of both methods in image recognition system deployment.

To directly evaluate the quality of extracted image features we decided to apply an approach
similar to linear evaluation protocol, reported in numerous papers. According to this protocol,
first, we freezed pretrained CNN weights, next we generated 2048 dimensional features vectors that
we provided to the selected classifier. We analyzed the effectiveness using the Support Vector Machine
(SVM) algorithm with a radial basis function as a kernel, k-nearest neighbors (k-NN) algorithm with
4 neighbors, random forest classifier with the maximum number of trees set to 50, and finally a sigmoid
neuron (Table 2).

Table 2. The evaluation of the quality of extracted image features.

Method Classifier ROC AUC PR AUC ACC

Random initialization

k-NN 0.582 0.244 0.785
Sigmoid Neuron 0.597 0.247 0.778
Random forest 0.572 0.243 0.801

SVM 0.599 0.260 0.805

Transfer learning (TF)

k-NN 0.700 0.388 0.778
Sigmoid Neuron 0.748 0.434 0.793
Random forest 0.727 0.368 0.803

SVM 0.796 0.461 0.815

TF + Jigsaw

k-NN 0.680 0.420 0.808
Sigmoid Neuron 0.758 0.446 0.800
Random forest 0.708 0.390 0.812

SVM 0.776 0.489 0.829

Jigsaw

k-NN 0.600 0.243 0.752
Sigmoid Neuron 0.678 0.318 0.765
Random forest 0.682 0.320 0.789

SVM 0.675 0.313 0.801

TF + Rotation

k-NN 0.761 0.482 0.815
Sigmoid Neuron 0.797 0.552 0.820
Random forest 0.748 0.451 0.815

SVM 0.814 0.581 0.851

Rotation

k-NN 0.676 0.314 0.768
Sigmoid Neuron 0.704 0.359 0.792
Random forest 0.680 0.331 0.803

SVM 0.740 0.391 0.800
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The performed experiments have shown that a combination of self-supervised learning and
transfer learning leads to superior results over transfer learning alone for all the examined classifiers
(Table 2). Please note that due to this approach, the classification results are worse than they could
have been without freezing the weights of pretrained backbone. Typically, in practical applications
weights of the backbone are fine-tuned during the optimization process, leading to higher results.

To simulate the situation where the available dataset is even more scarce, the performance of
the algorithms was evaluated using only a fraction of the training set. Specifically, self-supervised
pretraining was performed on the whole training set, then the network was trained on the fraction
of the training set. In particular, 1% (20 images) and 10% (200 images) were randomly drawn from
the training set to pretrain the network. The batch size was set to 4 when the network was trained on
20 images. The sizes of the validation and test sets remained the same as in the previous experiments.
The results are reported in Tables 3 and 4.

The ROC AUC scores in Table 3 show that the use of transfer learning on such a small training
set (20 images) causes the network to barely learn anything. However, the combination of transfer
learning and self-supervised learning allows for obtaining satisfying performance of of 0.755 ROC
AUC. The results are quite impressive, taking into account the very small number of training examples.

Table 3. Training on 20 images (1% of the training set).

Method ROC AUC PR AUC ACC

Random initialization 0.555 0.230 79.30
Transfer learning (TF) 0.519 0.201 80.70

TF + Jigsaw 0.666 0.327 80.53
Jigsaw 0.599 0.252 79.33

TF + Rotation 0.755 0.395 81.50
Rotation 0.658 0.310 79.53

The training on 200 labeled images was also performed, which is a relatively common dataset
size in many domains (Table 4).

Table 4. Training on 200 images (10% of the training set).

Method ROC AUC PR AUC ACC

Random initialization 0.493 0.201 79.30
Transfer learning (TF) 0.734 0.405 80.70

TF + Jigsaw 0.753 0.416 80.53
Jigsaw 0.638 0.265 79.33

TF + Rotation 0.780 0.458 81.50
Rotation 0.698 0.361 79.53

The results are similar to the previous experiments, where transfer learning with Rotation pretext
task provided the best performance. Importantly, training on 10% of the training set with transfer
learning and rotation pretext task leads to similar results as when the transfer learning is used with the
100% of the training set. This results shows that the less training data we have, the greater benefits of
applying the proposed approach.

The reported results were obtained with downstream training performed without the application
of data augmentation. Therefore, we decided to add data augmentation during downstream task
training. Data augmentation included random crops, flips rotations, and color jittering. The results are
presented in Table 5. Confusion matrices are presented in Tables 6–8.
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Table 5. Training on 2000 images (whole dataset) with data augmentation.

Method ROC AUC PR AUC ACC

Transfer learning (TF) 0.825 0.587 84.10
TF + Jigsaw 0.835 0.607 83.33

TF + Rotation 0.842 0.613 85.17

Table 6. Confusion matrix—TF (transfer learning) with data augmentation.

Predicted Label

Benign Malignant

True label Benign 446 37

Malignant 59 59

Table 7. Confusion matrix—TF + Jigsaw with data augmentation.

Predicted Label

Benign Malignant

True label Benign 439 45

Malignant 55 62

Table 8. Confusion matrix—TF + Rotation with data augmentation.

Predicted Label

Benign Malignant

True label Benign 453 30

Malignant 59 58

The utilization of richer data augmentation leads to much better performance. Once again,
self-supervised pretraining in combination with transfer learning leads to superior performance.
However, the gap between transfer learning and transfer learning with self-supervised methods is
smaller in this case. The ROC curves for evaluated settings are shown in Figure 5.

The use of self-supervised learning and transfer learning allowed to achieve nearly top-level
AUC score in the ISIC2017 challenge. The results obtained by the three top solutions are 0.868, 0.856,
and 0.874, while ROC AUC achieved in the present study is 0.852. The comparison with other works is
presented in Table 9.

Table 9. Comparison with other works on the ISIC 2017 dataset.

Network ROC AUC

VGG16 [28] 0.766
VGG16 [29] 0.800

ResNet50 [28] 0.757
ResNet50 [29] 0.775
ResNet50 [38] 0.868
ResNet50 [39] 0.870

DenseNet161 [40] 0.818
DenseNet161 [29] 0.800

ResNet50—TF + Jigsaw—ours 0.835
ResNet50—TF + Rotation—ours 0.842

ResNet50— Ensemble—ours 0.856
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Figure 5. ROC (Receiver Operating Characteristic) curves of evaluated methods.

Despite the fact that the presented result is not the best, it was obtained by single ResNet50
architecture without additional modules (e.g., custom heads), modifications (e.g., polar pooling),
or ensemble of many networks. Our pipeline involves only simple data augmentation, without complex
data preprocessing or methods, such as test time augmentation, to increase the final performance.
Moreover, we did not use any external data to train the networks, as other participants did [18].
The reported work highlights the algorithmic efficacy of the proposed solution.

During the training process, training of each method was repeated five times to obtain more
reliable results. Those networks can be used in a cheap way to increase the performance by model
ensembling [31,41]. The output of all networks trained with full data augmentation was averaged,
which led to the improvement in both accuracy and ROC AUC to 86.16% and 0.856, respectively.

7. Conclusions

In this paper, performance of the self-supervised learning technique under small and unbalanced
dataset conditions, was studied and reported. The proposed approach, being the combination of
transfer learning with self-supervised learning, has led to significant increase of the accuracy and ROC
AUC scores. It was shown that the PIRL algorithm tested previously on huge benchmark datasets can
be successfully applied in practical tasks where only a small number of labeled images is provided.
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Our research results show that self-supervised pretraining can be beneficial even in cases when the full
dataset is labeled.

The network performance was tested using different ways of weight initialization:
random initialization, transfer learning, self-supervised learning, and combination of transfer learning
with self-supervised learning. Two pretext tasks: Jigsaw and Rotation were evaluated. The proposed
solution, which is the combination of self-supervised learning with transfer learning, gave the best
results in all considered scenarios. The trainings with very small datasets with only 20 and 200 images
have shown data efficiency of the proposed method. The research clearly showed that the less training
data we have, the greater benefits of applying the proposed approach. The network pretrained on
2000 unlabeled images, then trained on 200 labeled images reached almost the same performance as
the network trained on 2000 labeled images using transfer learning. Moreover, it has been shown
that the proposed approach allows to obtain classification results by a single network, similar to those
obtained by complex deep learning systems. This shows high effectiveness of the method.

The conducted experiments have shown high efficiency of proposed method, that achieve superior
results over transfer learning applied alone. The research clearly showed that the less training data we
have, the greater benefits of applying the proposed approach.

The conducted research allowed to state that the proposed method might be a remedy to the
small training set problem. Self-supervised learning can be beneficial in many areas where only small
amount of data is available, or annotation of dataset is expensive. Self-supervised learning enables to
incorporate an unlabeled dataset in training.

Our future work in this field will focus on development of pretext tasks that include labels during
pretraining. Additionally, we would like to test self-supervised learning approach using more complex
architectures (e.g., ResNeXt, SE-ResNet), different data augmentation pipelines (e.g., coarse dropout),
and ensemble methods.
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