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Abstract—The paper proposes a modified formulation of antenna 
parameter tuning problem. The main ingredient of the presented approach is 
a frequency-based regularization. It allows for smoothening the functional 
landscape of the assumed cost function, defined to encode the prescribed 
design specifications. The regularization is implemented as a special penalty 
term complementing the primary objective and enforcing the alignment of 
the antenna responses with the target operating frequency (or frequencies for 
multi-band antennas). The result is an improved reliability and reduced cost 
of the optimization process, both highly desirable from the point of view of 
the efficacy of EM-driven design procedures. Furthermore, regularization 
makes the use of local routines sufficient even in situations where global 
search is otherwise imperative (e.g., due to poor initial design). Our 
methodology is demonstrated using three microstrip antennas. The superior 
performance of the approach, both in terms of design reliability and in terms 
of the computational cost of the optimization process, is corroborated by 
comparisons with a conventional formulation. 

Index Terms— Antenna optimization, gradient-based search, frequency-
based regularization, EM analysis, EM-driven design. 

I. INTRODUCTION

Ever-increasing performance requirements, the emergence of new 
application areas (5G [1], internet of things [2], medical imaging 
[3]), the need for implementing various functionalities (circular 
polarization [4], MIMO operation [5], pattern diversity [6]), as well 
as the constraints on physical dimensions, are among those factors 
that make the design of modern antennas a challenging endeavor. To 
conform to the industry and consumer demands, contemporary 
antenna structures become more and more complex [7], described by 
multiple parameters [8], and—for reliability reasons—have to be 
evaluated using full-wave electromagnetic (EM) simulation tools [9], 
[10]. The latter may become a serious bottleneck whenever massive 
evaluations are required. A representative example of such an 
expensive procedure is numerical optimization [11], [12], which is 
otherwise imperative to boost the antenna performance beyond what 
is possible using parameter sweeping or theoretical models. Other 
tasks, e.g., uncertainty quantification [13], [14], or global 
optimization [15]-[17], entail even higher expenses. 

Manuscript submitted on July ??, 2020. This work was supported in part by 
the Icelandic Centre for Research (RANNIS) Grant 206606051, by the 
National Science Centre of Poland Grant 2018/31/B/ST7/02369, and by the 
Abu-Dhabi Department of Education and Knowledge (ADEK) Award for 
Research Excellence 2019 under Grant AARE19-245. 

S. Koziel is with Engineering Optimization and Modeling Center of 
Reykjavik University, Reykjavik, Iceland (e-mail: koziel@ru.is); A. 
Pietrenko-Dabrowska and also S. Koziel are with Faculty of Electronics, 
Telecommunications and Informatics, Gdansk University of Technology, 80-
233 Gdansk, Poland. M. Al-Hasan is with the Networks and Communication 
Engineering Department, Al Ain University, Abu Dhabi, United Arab 
Emirates. 

Expediting EM-driven optimization has been an important 
research topic, leading to numerous techniques that include adjoint 
sensitivities [18], [19], gradient-based procedures with sparse 
sensitivity updates [20], [21], surrogate-assisted algorithms 
employing both the approximation [22]-[24] and physics-based 
models [25]-[27] with a notable example of space mapping [28]. 
Data-driven metamodels and machine learning methods [29] are 
popular solutions for globalized search (e.g., efficient global 
optimization [30]). Yet another possibility is utilization of variable-
fidelity EM simulations [31] along with the appropriate correction 
techniques (e.g., [32]). All of these methods have certain advantages 
but also drawbacks. In particular, surrogate-based procedures are 
very much limited by the problem dimensionality (data-driven 
models) [33], or are difficult to automate and require dedicated low-
fidelity representations (physics-based models) [34]. 

Regardless of a particular optimization task, whether it is design 
closure [35], dimension scaling for a different operating frequency or 
substrate [36], or global search conducted to find a better parameter 
set of a topologically complex antenna, one of the most important 
issues is an appropriate allocation of the operating band(s) of the 
structure. From numerical optimization perspective, frequency-wise 
manipulation of the antenna characteristics is considerably more 
difficult than the level adjustment, especially for narrow- and multi-
band antennas. This difficulty renders the application of local 
routines (e.g., gradient-based [37]) unreliable and computationally 
inefficient in many real-world cases. 

This paper proposes a simple frequency-based regularization 
technique that allows us to mitigate the aforementioned problems 
and to improve the efficiency of the optimization process in a 
significant manner. The regularization is implemented through a 
reformulation of the cost function pertinent to the design task at hand 
by adding a penalty term that enforces the alignment of antenna 
characteristics with the target operating frequency (or frequencies). 
This does not only smoothen the functional landscape to be handled 
by the optimization algorithm and may reduce the cost of the 
parameter adjustment process, but also makes the use of local 
routines sufficient in cases where handling the task according to the 
original formulation would call for global search. The operation and 
performance of our methodology is illustrated using three examples 
of planar antennas. Benchmarking against conventional optimization 
is provided as well to demonstrate the advantages of the presented 
approach. 

The novelty and the technical contributions of the work include: 
(i) the development of a frequency-based regularization scheme that 
enables efficient alignment of the antenna operating frequency (or
frequencies) with their target values, (ii) reformulation of the 
objective function and the design optimization task that incorporates
regularization and improves of the efficacy of the antenna parameter
tuning process over conventional formulation (to the extent of
addressing the issue of objective function multi-modality), (iii) the
development of the versatile optimization framework demonstrated
for various design scenarios (matching improvement, gain
maximization, footprint reduction). To the best knowledge of the
authors, none of these have been shown so far in the literature.
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II.  OPTIMIZATION BY FREQUENCY-BASED REGULARIZATION

This section outlines the proposed frequency-based regularization 
technique and places it in the context of antenna design closure using 
local optimization, here, trust-region gradient search. The latter is 
used to illustrate the regularization scheme, and can be replaced by 
other algorithms of choice in practical setups.  

A. Optimization Problem Formulation

The following notation will be used throughout the paper. We 
denote by R(x) the response of the EM-simulated antenna model, 
where x is a vector of independent adjustable parameters (typically, 
antenna dimensions). To quantify the antenna performance, we use a 
scalar merit function U(R(x)), which is defined so that a better 
design corresponds to a lower value of U. The design problem is a 
nonlinear minimization task of the form 

* arg min ( ( ))U
x

x R x  (1) 

where x* is the optimum design to be found. The analytical form of 
the merit function depends on the problem and the assumed 
treatment of the design constraints [25].  

An example follows. Consider a multi-band antenna to be 
matched at the target operating frequencies f0.K, k = 1, …, N. The 
minimax merit function is then defined as 

  11 0.1 11 0.( ( )) max | ( , ) |,..., | ( , ) |NU S f S fR x x x   (2) 

where S11(x,f0.k) is antenna reflection at the design x and frequency f. 
As another example, consider an antenna that is to operate within the 
frequency range defined by its center frequency f0 and the fractional 
bandwidth B, so that |S11|  –10 dB and the realized gain is to be 
maximized within at f0. A possible formulation of the objective 
function (with implicit constraint handling) is 

2
0( ( )) ( , ) ( )U G f c  R x x x   (3) 

Here, G(x,f) is the realized gain at the frequency f, whereas c(x) is a 
penalty term (with  being a penalty coefficient) introduced to 
enforce |S11|  –10 dB over the bandwidth B. The penalty function 
may be defined to quantify a relative violation of the matching 
condition, e.g., c(x) = max{max{f0(1 – B/2)  f  f0(1 + B/2) : 
|S11(x,f)| + 10},0}. 

B. Frequency-Based Regularization

As mentioned in the introduction, moving the antenna resonances 
to the intended frequencies is one of the challenging aspects of 
numerical optimization. This is illustrated in Fig. 1, showing the 
reflection and realized gain characteristics of a quasi-Yagi antenna 
considered in Section II. Re-designing the antenna for the target 
operating frequency of 5 GHz, and starting from the exemplary 
initial design shown in the picture, requires global search. This is 
because the initial design and the optimum are separated by a local 
maximum. Although the picture is a simplified representation of the 
problem (the initial and the optimum design are connected through a 
line segment), it gives a flavor of the practical challenges one may 
face when trying to apply numerical optimization.  

To address this issue, we define a regularization function fr(x), 
which accounts for the discrepancies between the actual operating 
frequency (or frequencies) of the antenna and the target ones. The 
frequency-regularized objective function is then defined as  

2

.max

.max

( )
( ( )) ( ( )) max ,0r r

r r
r

f f
U U

f

  

    
  

x
R x R x   (4) 

where fr.max is the maximum acceptable discrepancy between the 

actual and target operating frequency (or frequencies). The 
regularized objective function is defined to increase the original 
objective by the amount proportional (with the user-defined 
proportionality factor r) to the discrepancy quantified by fr. 
However, the said contribution is zero if the discrepancy is 
sufficiently small (i.e., smaller than fr.max, also user-defined). This is 
to ensure that the original objective function is not distorted when 
the design approaches the optimum, and that the location of the 
optimum is the same w.r.t. to both U and Ur, assuming of course that 
the design for which fr(x)  fr.max is attainable. Furthermore, the 
regularization factor is smooth (continuously differentiable) with 
respect to fr, which makes it appropriate to work with gradient-based 
optimization routines. 

The effect of regularization is shown in Fig. 1(b): the functional 
landscape of the objective function is dramatically changed, and the 
reformulated problem becomes unimodal with the initial design 
being in the region of attraction of the optimum. Further, the 
optimum design according to the original objective function 
coincides with that of the regularized objective. 
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Fig. 1. Conceptual illustration of frequency-based regularization: (a) 
exemplary initial design for a quasi-Yagi antenna of Section III (thick dashed 
line), design optimized for the target frequency 5.0 GHz (thick solid line), 
and the family of antenna characteristics (reflection – top, realized gain – 
bottom) along the line segment connecting these two designs parameterized 
by 0  t  1 (grey lines); (b) conventional objective function (3) (- - -) and 
frequency-regularized objective function (4) with the regularization function 
(5) (—) versus parameter t. It can be observed that the regularized objective 
function is monotonic, and the optimum design is attainable from the given 
initial point using local search routine, which is not the case for the 
conventional formulation. 

Initial point Optimum point 
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A specific definition of a regularization function depends on a 
considered antenna structure and the type of response. For the quasi-
Yagi antenna considered in Fig. 1, and optimized using the objective 
function (3), the regularization function can be defined as  

.1 .0 .2
0( )

3
L L L

r

f f f
f f

 
 x  (5) 

where fL.j, j = 1, 2, are the frequencies corresponding to –10 dB 
levels of |S11|, and fL.0 is the frequency of the antenna resonance. If, at 
a particular design x, the resonance level is above –10 dB, we assign 
fL.j = fL.0. In other words, the function fr measures the distance 
between the target operating frequency and the approximate 
allocation of the antenna bandwidth (the average of the three 
frequencies mentioned above). 

For the multi-band antenna optimized according to the minimax 
objective function (2), the regularization function can be defined as 

   0.1 0. 1( ) ... ( ) ... ( )
T T

r N Nf f f f f x x x  (6) 

where fk, k = 1, …, N, are the actual resonant frequencies at the 
design x, extracted from the EM simulation results. 

C. Optimization Algorithm 
The problem (1) can be solved using any available routine. Here, 

we use a trust-region gradient search [37]. The optimum x* is 
approached through a series x(i), i = 0, 1, …, produced as  

( ) ( ) ( )

( 1) ( )

;
arg min ( ( ))

i i i

i iU

   


x d x x d
x L x   (7) 

in which L(i)(x) = R(x(i)) + JR
(i)(x – x(i)). The Jacobian JR is 

estimated using finite differentiation. The size vector d(i) of the trust 
region is adjusted after each iteration using the standard rules [37]. 
Accelerated versions of (7), e.g., using sparse sensitivity updates are 
available [20], [21]; however, in this work, we focus on 
demonstrating the benefits of frequency-based regularization with 
little emphasis on reducing the cost of the optimization process by 
the algorithmic means. 

III. VERIFICATION CASE STUDIES 

This section demonstrates the operation of the frequency-based 
regularization using three examples of planar antennas, each 
exhibiting different characteristics. We compare the efficacy of the 
optimization process involving the conventional formulation of the 
objective function and the regularized one in terms of the ability to 
find the satisfactory design but also the computational cost of the 
algorithm. 

A. Quasi-Yagi Planar Antenna

The first example is a quasi-Yagi antenna with a parabolic 
reflector shown in Fig. 2 [38], implemented on FR4 substrate (r = 
4.4, h = 1.5 mm). The design variables are x = [W L Lm Lp Sd Sr W2 
Wa Wd g]T (all dimensions in mm). The computational model is 
implemented in CST Microwave Studio.  

The design task is to optimize the antenna for a given center 
frequency f0 while ensuring at least 8-percent impedance bandwidth 
(symmetric w.r.t. f0). Furthermore, the realized gain is to be maximized 
at f0. The conventional formulation of the optimization problem uses 
the objective function (3). The frequency-based regularization employs 
the regularization function (5) with fr.max = 0.15 GHz. The antenna was 
optimized for f0 = 2.5 GHz, f0 = 4.5 GHz, and f0 = 5.0 GHz, in all cases 
starting from the initial design that corresponds to the antenna 
operating at the frequency around 3.5 GHz. Figure 3 shows the initial 
and the optimized designs obtained using the standard and regularized 
formulations. It can be observed that the algorithm using the standard 

formulation was unable to find high-quality designs in neither of the 
considered cases, whereas applying regularization ensures reaching 
satisfactory design for all scenarios. The performance comparison has 
been provided in Table I. Thus, regularization allows for consistently 
yielding satisfactory design but also, the average optimization cost is 
lower than for the standard formulation (assuming the same 
termination criteria, which was 10–2 for the convergence in argument 
and 10–2 for for the trust region size). 
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  (a)     (b) 
Fig. 2. Quasi-Yagi antenna with a parabolic reflector [38]: (a) top layer, (b) 
bottom layer. 

(a) 

(b) 

(c) 
Fig. 3. Quasi-Yagi antenna optimization using standard formulation (cf. (3)), 
and frequency-based regularization (cf. (4), (5)). Shown are: initial design 
(), optimum found using standard formulation (- - -), optimum found with 
regularization (—). Target frequencies: (a) 2.5 GHz, (b) 4.5 GHz, (c) 5.0 
GHz. Vertical lines mark the intended operating bandwidth of the antenna. 
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Fig. 4. Geometry of the triple-band dipole antenna. 
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B. Triple-Band Dipole Antenna

The second example is a triple-band uniplanar dipole antenna 
shown in Fig. 4 [39], implemented on RO4350 substrate. The 
adjustable parameters are x = [l1 l2 l3 l4 l5 w1 w2 w3 w4 w5]T; other 
parameters are fixed: l0 = 30, w0 = 3, s0 = 0.15 and o = 5 (all 
dimensions in mm). As before, the computational model is 
implemented in CST. The task is to improve antenna matching at the 
operating frequencies f0.1 = 2.45 GHz, f0.2 = 3.6 GHz, and f0.3 = 5.3 
GHz. The standard (minimax) formulation employs the objective 
function (2). The frequency-based regularization uses the 
regularization function (6) with fr.max = 0.15 GHz.  

The antenna was optimized using three different starting points. 
The reflection responses at the designs found using both approaches 
are shown in Fig. 5. The optimization procedure using the minimax 
formulation was only able to find a (more or less) satisfactory design 
for one of the initial designs, whereas the formulation incorporating 
regularization was successful in all cases. The performance 
differences between formulations are consistent with the previous 
example (cf. Table II): the design quality is significantly better, 
whereas the computational cost is lower when using regularization. 

C. Compact Ultra-wideband Monopole Antenna

The last example is the ultra-wideband monopole [40], 
implemented on RF-35 substrate (εr = 3.5, h = 0.762 mm), shown in 
Fig. 6. The adjustable parameters are x = [L0 dR R rrel dL dw Lg L1 R1 
dr crel]T. The EM model is implemented in CST, and incorporates the 
SMA connector. The operating frequency range of the antenna is 3.1 
GHz to 10.6 GHz. The design objective is to minimize the antenna 
footprint A(x) while ensuring that |S11(x,f)|  –10 dB within the 
operating band. 

The objective function is defined as 
2( ( )) ( ) ( )U A c R x x x   (8) 

where the penalty function takes the form c(x) = max{max{3.1 GHz 
 f  10.6 GHz : |S11(x,f)| + 10},0}. The regularization function is 
defined as 

.1( )r L rf f f x  (9) 

where fL = 3.1 GHz and fr.1 is the lowest frequency corresponding to 
–10 dB level of reflection (or the frequency of the first antenna 
resonance if the resonance level is above –10 dB). The reason for
this setup is that the minimum-size design is normally such that the
matching condition is barely met (or slightly violated when using
implicit constraint handling as in (8) [41]), with the first antenna
resonance close to the lower edge of the operating band (here, 3.1
GHz). By enforcing this resonance to be close to that frequency, the
problem of reducing the antenna size becomes numerically more 
tractable.

For the sake of demonstration, we optimize the antenna using 
three different starting points, as illustrated in Fig. 7. Regularization 
(4), (9) leads to considerably better results than the standard 
formulation (8), cf. Table III. In all cases, the condition |S11(x,f)|  –
10 dB is satisfied in a satisfactory manner, but the obtained footprint 
area is smaller for the algorithm using regularization. It should be 
emphasized that optimization-based size reduction is a challenging 
problem from the numerical perspective because the reflection 
constraint is active at the optimum. Locating it requires traversing 
the boundary of the feasible region, and the results are typically 
dependent on the starting point, partially due to numerical noise 
issues.  
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Fig. 5. Triple-band antenna optimization using standard formulation (cf. (2)), 
and frequency-based regularization (cf. (4), (6)). Shown are: initial design 
(), optimum found using standard formulation (- - -), optimum found with 
regularization (—) for three different initial designs. Target frequencies are 
2.45 GHz, 3.6 GHz, and 5.3 GHz. 
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Fig. 6. Geometry of the ultra-wideband monopole antenna [40]. The ground 
plane marked using the light gray shade. 

TABLE I  QUASI-YAGI ANTENNA: OPTIMIZATION PERFORMANCE  

Problem 
formulation 

Target 
frequency 

Results 

Individual Case Average 

Cost# U(R(x))$ Cost# U(R(x)) $ 

Standard 
(cf. (3)) 

2.5 GHz 165 –5.7 dB 

171 –4.6 dB 4.5 GHz 123 –3.7 dB 

5.0 GHz 224 –4.4 dB 

Regularization 
(this work, 
cf. (4), (5)) 

2.5 GHz 147 –7.2 dB 

131 –7.1 dB 4.5 GHz 135 –7.5 dB 

5.0 GHz 110 –6.7 dB 
# Cost expressed in the number of EM simulations of the antenna. 
$ Objective function value according to the function (3). 
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TABLE II  TRIPLE-BAND ANTENNA: OPTIMIZATION PERFORMANCE 

Problem 
formulation 

Initial 
Design 

Results 

Individual Case Average 

Cost# U(R(x))$ Cost# U(R(x)) $ 

Standard 
(cf. (3)) 

1 247 –9.4 dB 

157 –7.4 dB 2 108 –11.1 dB 

3 115 –1.5 dB 

Regularization 
(this work, 
cf. (4), (5)) 

1 183 –18.2 dB 

144 –18.6 dB 2 113 –17.7 dB 

3 135 –20.5 dB 
# Cost expressed in the number of EM simulations of the antenna. 
$ Objective function value according to the function (2). 

TABLE III  UWB ANTENNA: OPTIMIZATION PERFORMANCE 

Problem 
formulation 

Initial 
Design 

Results 

Individual Case Average 

Cost# Area$ Cost# Area$ 

Standard 
(cf. (8)) 

1 93 261 mm2 

113 293 mm2 2 101 401 mm2 

3 146 216 mm2 

Regularization 
(this work, 
cf. (4), (9)) 

1 125 238 mm2 

138 219 mm2 2 151 201 mm2 

3 138 219 mm2 
# Cost expressed in the number of EM simulations of the antenna. 
$ Footprint area of the optimized antenna. 
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Fig. 7. Ultra-wideband monopole antenna optimization using standard 
formulation (cf. (8)), and frequency-based regularization (cf. (4), (9)). Shown 
are: initial design (), optimum found using standard formulation (- - -), 
optimum found with regularization (—) for three different initial designs. Target 
operating band 3.1 GHz to 10.6 GHz is marked using the horizontal line. 

Notwithstanding, regularization noticeably improves repeatability 
of the results compared to the standard formulation because it allows 
for quick adjustment of the lower edge of the operating bandwidth, 
which yields a better position before further tuning. At the same 
time, the optimization cost with regularization is slightly higher as 
the algorithm using the standard formulation often converges 
prematurely.  

IV. CONCLUSION

This communication proposed a frequency-based regularization 
approach for reliable parameter tuning of antennas. It is incorporated 
into the objective function through a penalty term that quantifies the 
discrepancy between the target and the actual operating conditions of 
the antenna in terms of the relevant frequencies (e.g., allocation of 
the antenna resonances). The regularization function is formulated to 
be smooth (i.e., continuously differentiable) and only contributes to 
the primary objective if the aforementioned discrepancies are beyond 
the acceptance limit decided by the user. It has an effect of 
smoothing out the functional landscape to be optimized, and 
mitigates the multi-modality issues, but it does not modify the 
original objective when close to the optimum.  

Our methodology has been validated using three planar structures, 
optimized under different scenarios (matching improvement, gain 
maximization, size reduction). A significant improvement of the 
search process efficacy has been demonstrated over the conventional 
design closure task formulations. This includes reducing the 
sensitivity of the optimization outcome to the initial design, a 
possibility of re-designing antenna structures for the operating 
frequencies significantly different from those at the starting point, as 
well as improving repeatability of solutions. An additional benefit 
resulting from regularization-based problem reformulation is that 
local methods may be sufficient in the cases that otherwise require 
global search. In other words, regularization may alleviate the 
difficulties pertinent to a possible presence of multiple local minima 
of the standard objective functions. Overall, the presented approach 
can be a useful algorithmic tool for handling problems where the 
standard setup (e.g., a minimax objective function) is prone to a 
failure. It may also alleviate the difficulties originating from poor 
initial designs. 
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