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A B S T R A C T   

Non-invasive measurement methods offer great benefits in the field of medical diagnostics with molecular- 
specific techniques such as Raman spectroscopy which is increasingly being used for quantitative measure
ments of tissue biochemistry in vivo. However, some important challenges still remain for label-free optical 
spectroscopy to be incorporated into the clinical laboratory for routine testing. In particular, non-analyte-specific 
variations in tissue properties introduce significant variability of the spectra, thereby preventing reliable cali
bration. For measurements of blood analytes such as glucose, we propose to decrease the interference from 
individual tissue characteristics by exploiting the known dynamics of the blood-tissue matrix. We reason that by 
leveraging the natural blood pulse rhythm, the signals from the blood analytes can be enhanced while those from 
the static components can be effectively suppressed. Here, time-resolved measurements with subsequent pulse 
frequency estimation and phase-sensitive detection are proposed to recover the Raman spectra correlated with 
the dynamic changes at blood-pulse frequency. Pilot in vivo study results are presented to establish the benefits as 
well as outline the challenges of the proposed method in terms of instrumentation and signal processing.   

1. Introduction 

Non-invasive methods for medical diagnostics are greatly sought 
after as they offer a painless and convenient route with reduced risk of 
infections and the possibility for continuous monitoring, particularly if 
developed in a miniaturized and/or wearable format (Zhou et al., 2020). 
In this context, one of the key themes in biophotonics research has been 
the development of a reliable non-invasive blood glucose sensor. 
Numerous innovative designs to replace conventional fingerstick testing 
for glucose measurements have been proposed and tested with varying 
degrees of success (Aggidis et al., 2015). Label-free optical methods have 
attracted considerable attention due to the potential of nonperturbative 
measurements and simultaneous analysis of other blood constituents 
with minimal change in the employed method (Tuchin, 2008; Wang 
et al., 2018). Combining the penetration depth of near-infrared (NIR) 
light and molecular fingerprinting capability, vibrational Raman spec
troscopy has offered promising results (Pandey et al., 2017). Many 
laboratories, including our own, have focused on harnessing and 

advancing Raman spectroscopy through studies in samples of progres
sively higher complexity (Wróbel 2016; Spegazzini et al., 2014; Schol
tes-Timmerman et al., 2014). However, despite many successful 
proof-of-concept studies (Pandey et al., 2017), key challenges persist 
with various adverse impacts on the calibration of such systems (Lipson 
et al., 2009). While a single-patient calibration has been successfully 
shown (Singh et al., 2018; Barman et al., 2012), there remain significant 
calibration challenges due to individual (non-analyte specific) vari
ability of physical (optical properties, dimensions of skin layers, vessels 
and capillaries, subcutaneous fat, etc.) and chemical (specific chemical 
composition of skin and blood) properties of the tissues. 

Such individual variability introduces spectral perturbations, which 
may not be easily detected and separated by existing noise removal 
methods (Kang et al., 2020; Smulko et al., 2014). The method for 
isolating and reducing the influence of the optical properties (reduced 
scattering coefficient μs’, and absorption coefficient μa) of skin on the 
spectra, termed turbidity-correction, has been previously proposed 
(Barman et al., 2011). It was based on the simultaneous detection of 
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diffuse light scattering and the Raman scattering signals and using the 
former for the correction of the spectral shape of the latter. The method 
is effective in a limited range of μa and μs’. Other investigators have 
proposed a tissue modulation approach (Chaiken et al., 2001), where a 
spatiotemporally localized mechanical stimulus is employed to manip
ulate the mobile components of tissue relative to the static components, 
and difference spectroscopy is subsequently used to isolate the spectra of 
the two. This modulation provides spectra that are primarily represen
tative of the blood constituents, which are used to correct the bulk tissue 
spectral measurements and improve the Raman calibration for glucose 
detection (Chaiken et al., 2005). Another NIR measurements-based 
glucose detection scheme utilizes pulse-induced blood volume 
changes, which is conceptually the closest to our idea, to establish the 
attenuation baseline, which is used for spectral correction (Yamakoshi 
and Yamakoshi, 2006). 

By leveraging established concepts in signal processing and Raman 
spectroscopy, we propose a novel method for identifying the component 
of the Raman spectrum generated mainly by the blood cells and plasma 
constituents. A combination of concepts from these disparate fields of 
knowledge allows us to develop a method with prospects for greater 
specificity for the detection of blood constituents based on acquired 
Raman spectra. 

Our proposed solution to this problem is based on the utilization of 
the naturally occurring blood pulse and the difference in optical pa
rameters between red blood cells and other tissue components. The 
heart rhythm provides pulsation to the blood cells flowing through the 
vessels, which scatter the excitation of laser light. This gives rise to a 
modulated signal, where the modulation depends on the blood flow 
parameters and is largely unaffected by the parameters of the sur
rounding tissue matrix. We reason that the blood signal will contribute 
to the dynamic component of the spectrum, while the tissue matrix 
components (skin, muscle, vessel walls, fat, etc.) will provide the static 
component of the Raman spectrum. Our analysis is focused on the 
detection of the pulse frequency and the filtering of the periodical signal 
with a digital phase-detection algorithm, resulting in the estimation of 
the pulse-correlated Raman signal. This method should, in principle, be 
more independent from patient-specific variations because optical pa
rameters and chemical composition of blood are much more consistent 
over the human population of different races and ages than that of the 
surrounding solid tissue. Our approach has numerous advantages over 
the method utilizing mechanical tissue modulation. It is worth empha
sizing that the measurements utilizing natural blood pulse can be 
recorded for a longer time to assure better averaging and noise reduc
tion. Besides, mechanical modulation is dependent on the tissue stiffness 
and viscoelasticity and hence likely to be more influenced by biological 
variability; furthermore, such modulation may disturb the natural blood 
flow in unpredictable ways. 

Here, we present experimental results of in vivo Raman spectroscopic 
measurements from human subjects, and methods to estimate the blood 
spectral signatures from the pulse-modulated signal over time. We have 
used a Raman spectrometer with an 830 nm excitation wavelength and a 
fiber-optical probe designed for contact measurements. We have 
measured the signal with a high sampling frequency (10 Hz sampling 
rate) to satisfy the Nyquist criterion for probing the blood pulse signal 
(that should be contained in about 0.75–1.5 Hz bandwidth) continu
ously for 10 min. We have subsequently applied signal-processing 
methods to the recorded spectra to determine the regions in the 
Raman spectrum that are strongly correlated to the changes in blood 
volume over time. We have identified the dominant blood pulse fre
quency and recovered the Raman signal correlated with the pulse dy
namics. These results have broader implications for clinical translation 
of Raman spectroscopy-based blood analyte monitoring and for other 
biological applications where sample-to-sample variability in tissue 
composition could undermine the predictive ability of developed che
mometric models. Additionally, our approach may offer further insights 
into the dynamics of recorded pulse changes, their potential correlation 

to specific analyte concentrations and disease states, and the ability of 
optical spectroscopy to diagnose such complications. 

2. Materials and methods 

2.1. Detection scheme 

Here we present the proposed detection scheme (Fig. 1), based on the 
synchronous detection (or phase-sensitive) algorithm, similar to the 
generally known one from the lock-in amplifier principle. However, a 
key difference is that the reference signal R(t) is not generated but is 
detected from the blood pulsation. The Raman spectrum S(n, t) is 
registered continuously at selected times t and for Raman shifts n with 
high speed and over substantial observation time, to record multiple 
samples of a time-varying signal, with multiple periods of the blood 
pulse. First, the dominant blood pulse frequency f is detected. We 
determine this frequency by estimating the power spectral density (PSD) 
of the Raman spectra time series, which was averaged over Raman shifts, 
to reduce its random error. The frequency responding to a local 
maximum in about 0.75–1.5 Hz bandwidth determines blood pulse 
frequency. 

Then, this frequency f is used to create in-phase (P) and quadrature 
(Q) components of the reference harmonic signal R(t), which are used in 
the algorithm (Fig. 1). This procedure is performed separately for each 
of the discrete Raman shifts n (corresponding to each pixel column of the 
CCD camera), recorded by the Raman spectrometer. Fig. 1c presents the 
blocks of data processing in an algorithm of a lock-in amplifier to esti
mate the intensity of the harmonic carrier signal of frequency f in the 
analyzed Raman spectra. Data processing requires averaging, repre
sented by an operator E[⋅], of the products of Raman spectrum and P or 
Q components: E[S(n, t)⋅P] and E[S(n, t)⋅Q]. The averaged product E[S(n, 
t)⋅ S(n, t)] is a variance of the recorded Raman spectra at selected Raman 
shift n, and is used for data scaling in the lock-in algorithm (Kotarski and 
Smulko, 2009). The output of the applied lock-in algorithm is an 
amplitude of the component (carrier signal) extracted from the recorded 
Raman spectra of the frequency f and related to blood pulse. We can 
estimate a phase shift between the reference signal R(t) and the carrier 
signal component in the Raman spectrum, but this value has not been 
used for our analysis. 

The blood pulse can be represented by a sum of at least a few har
monic components. Moreover, the frequency f at the local maximum in 
the PSD of the recorded Raman spectra is identified with a limited ac
curacy due to the frequency resolution of the estimated PSD and spec
trum leakage effect. We propose to reduce these effects by repeating the 
algorithm of the lock-in amplifier multiple times with slightly changed 
center frequency within the width of this band of increased intensity. 
This procedure takes into account the experimentally recorded pulse 
rate within the identified frequency range. The results recover many 
instances of the pulse-correlated Raman spectrum, which are then 
averaged to reduce the noise caused by the overall low signal levels. The 
optimal number of instances to be averaged to reduce noise requires in- 
depth analysis and depends on the measurement setup (e.g., the inte
gration time of recorded Raman spectra, sampling frequency, number of 
the recorded spectra) and experimental data (e.g., the stability of blood 
pulse and mechanical stability of the Raman probe irradiating skin tis
sue). Because of various factors, we chose to repeat the implementation 
of the lock-in amplifier algorithm to maximize signal-to-noise ratio – 
SNR. Thus, we arrive at a final Raman spectrum, which contains more 
information related to the signal of the periodically changing blood 
levels, and less related to the static background of the tissues. The last 
operation on the resulting Raman spectra is Savitzky-Golay filtering 
using a polynomial of the 5th order with 20 points window for averaging 
to reduce noise. 

The noise component in the recorded Raman spectra is very intense, 
and therefore, we proposed to consider their masking to reduce its in
fluence before applying the PSD algorithm. Masking should expose more 
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efficiently the component related to blood pulse and attenuate noise 
components in the parts of Raman spectra related to tissue or repre
senting noise generated mainly by the applied CCD sensor. We propose 
to consider [0 to 1] mask of Raman spectra at selected Raman shifts. The 
promising candidates are the most prominent bands for hemoglobin or 
the Raman band above 800 cm− 1 (based on the a priori information of 
observation of a pulse signal in Raman measurements (Chaiken et al., 
2009)). 

Thus, we have three approaches to Raman spectra masking:  

1. Original spectrum integration. PSD estimates were calculated for each 
pixel of the recorded Raman spectrum in the range 400–1800 cm− 1 

of Raman shifts and integrated to obtain final PSD.  
2. Spectrum masking. We have constructed a [0 to 1] intensity mask – 

Fig. 3a, with the spectral characteristics resembling the most prom
inent hemoglobin bands. The signal (Raman spectrum) was multi
plied by the mask, and Welch’s method was applied to obtain the 
PSD like in the previous case. The underlying rationale is that the 
volume of whole blood in a capillary should change significantly 
between systole and diastole phases of the heart rhythm.  

3. Inelastic spectrum integration. Based on the a priori information of 
observation of a pulse signal in Raman measurements (Chaiken et al., 
2009), we have applied the integration of the inelastic light scat
tering at the Raman band above 800 cm− 1 prior to PSD estimation. 

2.2. Measurement setup 

The measurements were performed on a portable Raman spectrom
eter setup (Fig. 1), consisting of a spectrograph (Holospec f/1.8i), a TE- 
cooled CCD camera (PIXIS 400BR, Princeton Instruments), 830 nm laser, 
and fiber optic contact probe (EmVision, LLC.). The probe consists of one 
low-OH 300 μm, 0.22 NA, with a band-pass filter for excitation and 
seven such fibers for collection of the signal with a ring-shaped low-pass 
filter. The spot size is 500 μm in diameter at the contact point of the 
probe. 

2.3. Measurement procedure 

In vivo measurements on the fingertips of five healthy human vol
unteers were conducted to assess the performance of the measurement 

Fig. 1. The scheme of the detection method and measurement setup. (a) the Raman spectrometer setup. (b) The fiber optic probe and fingertip positioning. (c) The 
scheme of the detection method. The laser irradiated tissue emits Raman scattered light which is recorded by the CCD detector as the Raman spectra S(n,t). Raman 
spectra S(n, t) are recorded in the time t domain at each Raman shift n. The heart acts as a reference generator of harmonic signal (red line) representing blood pulse. 
The frequency f of blood pulse is derived from power spectral density (PSD) of S(n, t) and is used to generate R(t) for synchronous detection algorithm. The reference 
signal R(t) is decomposed into two parts: in-phase P (P = R(t)) and its quadrature version Q shifted by 90◦; both components are utilized in further processing to make 
the algorithm independent from the phase shift introduced by the tissue. The end result is the part of a Raman spectrum S(n, t), which is correlated with the original 
blood pulse frequency f. Operator E[⋅] means averaging. Lines and arrows represent the direction of data processing. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. Experimental in vivo Raman spectrum, (a) a time-resolved set of spectra; (b) example of a pixel corresponding to about 1000 cm− 1 Raman shift of time- 
resolved in vivo signal. 
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setup and the signal processing performance for evaluation of the pro
posed method. These measurements were undertaken in pursuance of 
feasibility demonstration of the pulse-based non-invasive detection of 
blood analyte signals. 

The in vivo experiment was performed in the following way. First, the 
hand of the patient was placed on a support to provide comfort and 
reduce possible muscle twitch and tremor, causing vibrations. The probe 
was placed on the fingertip, with a gentle yet steady contact, without 
any tissue compression. This provided a vibration-free measurement at 
the exact same spot over the fingertip for a prolonged amount of time. 
The laser power was set to about 50 mW at the end of the probe, which 
translates to the density of 50 W/cm2 on the skin, approximately six 
times lower than in previously reported experiments (Dingari et al., 
2011). The volunteers did not experience any pain nor reported any 
heating. The study was conducted in accordance with the protocol 
approved by the Independent Bioethics Committee for Scientific 
Research at the Medical University of Gdańsk no. NKBBN/469/2012. 

3. Results 

3.1. Raman spectra 

The Raman spectra collected at 10 Hz rate (0.1 s integration time) are 
presented in Fig. 2a. Fig. 2b presents the temporal behavior of the signal 
for one recorded CCD pixel column as a function of time. 

3.2. Data processing 

Data processing was pursued to condition the signal to determine the 
presence of a periodic signal in the time-resolved measurements by 
using Welch’s method to estimate PSD. Later, our algorithm, utilizing 
phase-sensitive detection (Fig. 1), was applied to extract the part of the 
Raman spectrum correlated with the estimated blood pulse signal. 

3.2.1. Estimation of power spectral density 
Three approaches, as mentioned above (in section 2.1), namely: no 

masking at all, excluding all bands except the selected hemoglobin 
bands, attenuating by masking by 0 the bands below 800 cm− 1 were 
compared for signal conditioning to retrieve the pulse frequency by 
applying Welch’s method. In all cases, Welch’s method used a fast 
Fourier transform (FFT) of 256 samples length with a segment length of 
256 and overlapping of 64 samples, while the total number of samples 
was 6000 (10 min of the measurements at sampling frequency fs = 10 
Hz). The parameters determined PSD for the frequencies with an 

interval between successive values equal Δf = fs/256 ≈ 0.039 Hz. 
The recorded in vivo spectra exhibited a slowly time-varying signal 

due to movement artifacts and drops in total signal strength for the 
initial samples, most likely due to photobleaching. This results in a 
strong signal at DC and low-frequency components. The resulting PSDs 
are presented in Fig. 3b. The use of the original spectrum shows a very 
minimal signal concentrated around a frequency corresponding to the 
pulse rate (1.37 Hz), of about ~0.1 dB SNR (signal-to-noise ratio). The 
masking of hemoglobin spectra provides an improvement in the basic 
pulse frequency estimation, with 0.35 dB of SNR at the same peak fre
quency of about 1.37 Hz. 

The integration of inelastically scattered light at above 800 cm− 1 

provides much better estimates, at about 6 dB of SNR at the same fre
quency (Fig. 3b). Also, a second harmonic becomes evident at 2.74 Hz. 
This result is important and has substantial implications for further 
spectral analysis. It echoes a similar finding in [13], but our approach 
does not require the use of any mechanical pressure, which could induce 
additional non-analyte-specific variations in the Raman signal. To the 
best of our knowledge, this represents the first Raman spectroscopy- 
based attempt to detect the blood pulse and subsequently utilize the 
same to decode Raman spectra acquired from the blood-tissue matrix. 

The full-width at half-maximum (FWHM) at the base frequency is 
about 0.4 Hz, which may indicate that pulse frequency shows small 
changes over the time of measurement and that there are variations in 
blood pulse wave transit time over the irradiated fingertip area. Accu
racy of the PSD estimation, and the estimated FWHM at 1.37 Hz, is also 
affected by spectral leakage in fast Fourier transform and the short 
length of the recorded signal overall. An intense signal at low fre
quencies is due to a static background signal and slow movements of the 
finger (much slower than the pulse rate). Some of these adverse effects 
can be reduced by better stabilization of finger position. The physio
logical and unavoidable changes of a pulse rate during the measurement 
can be considered in the more advanced algorithm when the pulse is 
monitored by applying an independent method such as 
photoplethysmography. 

3.2.2. Retrieval of pulse-related Raman spectrum with phase-sensitive 
detection 

The knowledge of the basic frequency (~1.37 Hz, or about 82 beats 
per minute – Fig. 3b), at which the blood-pulse-related changes are most 
evident, permits the use of the phase-sensitive (or lock-in) detection 
scheme (Kotarski and Smulko, 2009). In our case, the recorded temporal 
Raman signal is considered as a component induced by Raman scat
tering in the blood-tissue matrix, and having the identified pulse 

Fig. 3. (a) Spectrum of the selected Hb-mask overlaid over the representative Hb spectrum; (b) Resulting PSD (dB) estimation using three proposed methods: no 
integration (original), integration of inelastic scattered light, and after masking of Hb-specific features with the estimated values (dB) of signal-to-noise ratio (SNR) 
for each method. The SNR value is equal to the difference between the maximum of the PSD at 1.37 Hz and the averaged neighboring background level. The reference 
Hb spectrum was measured from Hb extracted from the lysed red blood cells. The Hb-mask was limited to the four most prominent Hb bands. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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frequency f, an additive noise component (random signal uncorrelated 
with the pulse wave, representing all the noise sources), with the slowly 
changing part representing tissue background. Using a digital 
phase-sensitive detection algorithm, the identified basic pulse frequency 
was used to create the reference harmonic signal R(t), which is a 
component of the measured Raman spectrum S(n, t) in time domain t at 
each Raman shift n, as shown in the schematic in Fig. 1. After low-pass 
filtering, the signal correlated with the base frequency is recovered, 
independently from the phase shift of the pulse signal introduced by the 
tissue. The time-domain signal is recovered for each pixel separately. 
Thus the output signal is a Raman spectrum correlated with the identi
fied base frequency. To reduce the noise, the algorithm is run not only 
for the selected basic frequency of the reference harmonic signal R(t) but 
also for multiple frequencies spanning the FWHM bandwidth of detected 
pulse frequency (±0.2 Hz) centered around the basic frequency 1.37 Hz 
(1.16–1.56 Hz). The number of 250 evenly distributed frequencies 
around 1.37 Hz was found to identify the spectrum component related to 
blood pulse in an optimal way for the considered data (via SNR value 
maximization), and the estimated PSD. We reasoned that the sum of 
harmonic signals could model the pulse, and the phase-sensitive detec
tion was run separately for each of 250 frequencies. The results were 
averaged within the set of frequencies to reach a better SNR value. The 
number of frequency bins and bandwidth can be further optimized for 
better performance of the algorithm. Optimization depends on the time 
of signal recording, frequency resolution, and pulse stability during the 
experiment, though its detailed analysis was beyond the scope of the 
present study that focuses on the use of pulse signal to determine the 
component of Raman spectrum related to blood analytes. The quanti
tative comparison here is by employing SNR, since the final de
terminations of blood analyte concentration require the development of 

multivariate regression models. The latter step is identical for our 
approach as well as any existing pre-processing approaches that seek to 
improve the SNR for final quantification. 

3.3. Algorithm results 

The resulting final recovered spectrum is presented in Fig. 4a. It re
sembles the broadband fluorescence background with several Raman 
features visible from the skin input spectrum, such as at 300, 1245, 
1440, and 1650 cm− 1 (Pezzotti et al., 2015). Although overwhelmed by 
these broadband signals, a number of other bands can be clearly seen in 
the resulting spectrum, such as at 1050, 1195, 1416 cm− 1. Most of these 
bands can be attributed to whole blood and plasma (Atkins et al., 2017), 
while bands at 910, 1070, 1127, 1270, and 1377 cm− 1 could be 
attributed to glucose (Kang et al., 2020). We present these results in 
Fig. 4b and c, comparing the measured Raman spectrum (averaged over 
20 s) with the Raman spectrum resulting from the proposed algorithm 
and smoothed by Savitzky-Golay filtering. The data were normalized to 
the global maximum. Thus, we infer that the newly observed bands in 
the output spectrum can be considered as related to the changing blood 
volume over time at the rate of pulse frequency, which underscores the 
utility of the proposed method. A large number of peaks appeared in the 
400–900 cm− 1 region, however, due to larger noise contribution, they 
could not be precisely associated with specific blood components. 

Additional measurements were conducted to assess the difference in 
method performance when comparing various skin melanin content 
(according to the Fitzpatrick scale for skin phototype (Sachdeva, 2009)), 
which expectedly impacts optical readouts. The results are compared in 
Fig. 4d–f for a human volunteer with skin phototype II (A) and volunteer 
with skin phototype IV (B). The results indicate lower PSD estimation 

Fig. 4. Results of the phase-detection algorithm: (a) Raman spectrum of bulk tissue averaged over 20 s of the measurements – input (red) and the output spectrum 
correlated with pulse frequency (vertically offset for visualization purposes) (blue) obtained by the phase-sensitive detection; input (red) and output (blue) spectra in 
two regions of interest (b) 400–950 cm− 1 and (c) 1000–1500 cm− 1, normalized to the selected local maximum value for better comparison. Important bands are 
marked with arrows, glucose-fingerprint regions are marked in bold. (d) Comparison of PSDs of Raman spectra signal for human volunteers A and B, with the inset 
showing recorded spectra. (e) Raman spectra after applying a phase-detection algorithm for phototype II (A) and phototype IV (B). (f) Region of interest showing 
similar peak positions for both human volunteer measurements. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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(Fig. 4d), with a maximum magnitude of 5.2 dB at 1.55 Hz for the second 
patient when compared with the base level, but low-frequency artifacts 
are more pronounced, resulting in an overall elevated PSD. 
Phase-sensitive detection algorithm yields a similar but more obscure 
spectrum (Fig. 4e) in comparison with the previous case, mostly due to 
the higher contribution of fluorescence in the original spectra (inset in 
Fig. 4d). Likewise, the background peaks are less clearly identifiable, 
while there are evident similarities with the blood spectral bands, 
appearing at the same Raman bands as for the patient with skin pho
totype II, zoomed-in Fig. 4f. We may conclude that skin type plays a 
crucial role in the intensity of the acquired Raman spectra. This effect, 
however, requires a more thorough analysis with an abundant number 
of volunteers, which will be the focus of our ongoing work. 

4. Discussion 

By applying the operation of a lock-in amplifier, we have identified 
the presence of and successfully isolated the pulse signal in Raman 
spectra recorded in human subjects. Our findings from this pilot study 
on a limited cohort of human subjects of various skin phototypes esti
mated the basic pulse frequency at approximately 1.37 Hz and 1.55 Hz 
for the studied patients, which ranges well within the typical blood pulse 
values. Normal blood pulse rates at rest for adults are typically between 
0.98 and 1.65 Hz (59–99 beats per minute). Additional studies, pre
sented in the supplementary information, confirmed that the basic pulse 
frequency, identified by Raman spectra processing, is very close to a 
simultaneous measurement obtained from a FitBit device (FitBit Inc., 
USA) positioned at the wrist. We have detected that there are specific 
bands of the spectrum which are more correlated with the blood pulse 
signal than others, such as the bands over 800 cm− 1, reflecting the most 
prominent blood bands observed in Hb (Fig. 3a). We note that the 
estimation of the pulse frequency may be slightly different from the 
actual value, due to factors notably the pulse wave transit time in cap
illaries in the irradiated skin volume and the change in patient heart rate 
during the measurement. This results in broadening of the pulse base 
frequency, with FWHM of about 0.4 Hz. The applied discrete Fourier 
transform (FFT algorithm) of the sampled Raman spectra is also 
responsible for the observed broadening due to the spectral leakage 
effect. 

An application of the phase-sensitive detection allowed for the 
retrieval of the blood pulse correlated signal. The retrieved signal ex
hibits broadband changes rather than only singular spectral lines. One 
can reasonably infer that the resulting spectrum is due to a combination 
of multiple optical effects within the skin layers that correlate with the 
blood-tissue matrix dynamics. One such factor may be turbidity-induced 
variations, resulting in the loss of Raman signal strength, or change in 
fluorescence of blood and/or the bulk tissue. Additionally, red blood 
cells’ aggregation-disaggregation in capillaries that changes the scat
tering coefficient may also play a role (Tuchin, 2008). Another factor, 
which may contribute to the retrieved spectrum, is the differential na
ture of oxy- and deoxy-hemoglobin spectra. Finally, the hemodynamic 
pressure that induces expansion of the vessels may interfere with the 
signal. It is important to note that the changes seen in the measured 
Raman spectra come from a probing volume that is approximately 
hemispherical in shape, with 0.5 mm diameter and ca. 1–2 mm depth 
(Agenant et al., 2014). This irradiated area consists of an ensemble of 
skin surface layer and subdermal region, interstitial fluid, capillaries 
filled with blood, etc., all of which contribute to the signal. 

One significant advantage of this method over the tissue modulation 
approach (Chaiken et al., 2001) is the absence of external stimuli, which 
are associated with an inconsistent response of the modulated tissue, 
such as a difference in blood perfusion, tissue movements, and hysteresis 
of tissue deformation. Although our study considered originally the 
applicability of this method mostly for blood glucose concentration 
measurements, it opens up the possibility to measure other blood com
ponents as well, since it is the whole blood (plasma and blood cells) that 

undergoes dynamic volume changes with the pulse. The algorithmic 
procedure of exposing the part of Raman spectra related to red blood 
cells and plasma is valid for any component when modulated by blood 
pulse (the specific spectral lines and the background component induced 
by fluorescence). Hence, the proposed procedure can be further 
advanced by applying conventional methods such as noise filtering or 
background subtraction. 

5. Conclusions 

In this pilot experimental study, we have sought to elucidate the 
Raman spectra that are correlated with the blood pulse. By combining 
the well-established phase-sensitive detection method and utilization of 
a naturally occurring heart rhythm (as a reference frequency source for 
the detection algorithm), we were able to diminish the influence of the 
static tissue while enhancing the dynamic pulse-related Raman spec
trum of blood. Such a method may pave the way for the non-invasive 
detection of numerous analytes of clinical importance through the 
skin. Our results show retrieval of the pulse frequency at 1.37 Hz, which 
is well within the clinical range. This represents the first determination 
of blood pulse, solely based on non-invasive Raman spectral measure
ments. Secondly, from the same measurements, we have retrieved the 
Raman signal showing multiple blood constituent-related spectral fea
tures. Similar results were achieved for other patients with distinct skin 
phototypes, underscoring the robustness of our developed method. The 
retrieved blood signal correlated with the pulse would be much clearer if 
the pulse-related signal was more intense, and pulse frequency was more 
stable. It is possible to improve this component of the Raman spectrum 
by mechanically stabilizing the part of the irradiated human body and 
optimizing the optical setup of collecting scattered light from the tissue. 
Spatially-offset Raman spectroscopy may be used to achieve this aim 
(Ma et al., 2011), along with improvements of other components such as 
a more quantum efficient camera and optical probe with higher 
throughput. It has been recently shown that using confocal collection 
(Lundsgaard-Nielsen et al., 2018) arrangement improves calibration for 
interstitial fluid glucose measurements due to the lack of interference 
from the surface tissue layers. This could also be utilized here to collect 
more intense signals to correlate with dynamic changes of tissue 
composition due to blood pulse. Direct observation of glucose bands was 
recently reported in a seminal study (Kang et al., 2020) utilizing trans
cutaneous Raman spectroscopy. We have found similar bands after 
applying our method, which may also indicate direct evidence for the 
presence of glucose bands in the pulse-correlated Raman signal of 
tissues. 

The limitations of this pilot study surround the limited number of 
human volunteers on whom the measurements were performed, pre
cluding a detailed statistical examination of the developed approach. We 
anticipate undertaking more comprehensive studies expanding on the 
current cohort of human subjects. Ultimately, we believe that the pre
sented approach for Raman spectroscopy utilizing the blood pulse will 
form an important step in advancing such measurements for non- 
invasive medical diagnostics. Together with other recent advances in 
Raman spectroscopy for blood glucose determination (Lundsgaard-
Nielsen et al., 2018; (Pleus et al., 2021), our approach should specif
ically accelerate the pursuit of a non-invasive and wearable blood 
glucose sensor. 
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