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Abstract

Time series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its
applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we
propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head
convolutional neural networks and capsule mechanism. In addition to the discovery of the temporal relationship within
time series data, our approach derives better feature extraction with different scaled capsule routings and enhances
representation learning. Unlike the original CapsNet, our proposed approach does not need to reconstruct to increase the
accuracy of the model. We examine our proposed method through a set of experiments running on the domain-agnostic
TSC benchmark datasets from the UCR Time Series Archive. The results show that, compared to a number of recently
developed and currently used algorithms, we achieve 36 best accuracies out of 128 datasets. The accuracy analysis of the
proposed approach demonstrates its significance in TSC by offering very high classification confidence with the potential
of making inroads into plentiful future applications.
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1. Introduction

Tim series classification (TSC) is the problem of categorizing time series data by using machine learning
methods [1]. Time series data are sequences of time-ordered values measuring certain processes [2]. In recent
years, there has been an explosion in not only volume but also velocity and variety of time series data related
to real-world applications ranging from cybersecurity [3], network optimization [4] and health care [5][6], to

energy efficiency management [7] and human activity recognition [8]. With the significant increase in time
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series data, TSC has become one of the most important and challenging problems in data science [9][10]. TSC
differs greatly from traditional classification problems because the data values are ordered [11]. In fact, any
classification problem, considering some notion of ordering inside its data, can be regarded as a TSC problem

[12][13]. Researchers have proposed a great number of algorithms and methods to tackle this problem [11],
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which can be generally divided into two categories: traditional methods and deep learning-based methods.

One of the most popular traditional TSC approaches is the use of the nearest neighbor (NN) classifier
coupled with the Dynamic Time Warping (DTW) distance function [12]. In [14], researchers introduced an
approach, named Elastic Ensemble (EE), which combines ensembles of the individual NN classifiers with
different distance measures, which outperforms the individual classifiers. Similarly, in [15] an ensemble
method, the Bag-of-SFA-Symbols (BOSS), was proposed and demonstrated to be very promising for TSC.
BOSS combines the frequency histograms extracted from the Symbolic Fourier Approximation (SFA)
discretization with the structure-based representation of the bag-of-words model. Recently, Bagnall et al. [16]
significantly improved the TSC accuracy by constructing an ensemble of different classifiers over different
time series representations, called COTE. Then, by leveraging a new hierarchical structure with probabilistic
voting, including additional representation transformation domains as well as two new classifiers, Lines et al.
[17] further improved COTE to be known as the Hierarchical VVote Collective of Transformation-Based
Ensembles (HIVE-COTE), which is currently considered the state-of-the-art algorithm for TSC on the
University of California, Riverside (UCR) time series classification and clustering repository [18]. However,
HIVE-COTE has a notable predicament: its huge computation complexity, which makes it less practical to
tackle real-time big data mining problems. A more detailed comprehensive review of topical methods for TSC
can be found in [11].

Apart from using traditional methods, there is increasing interest in extending deep learning approaches for
TSC [8][12][13]. Particularly, researchers have borrowed ideas from image recognition challenges and their
solutions [18] to tackle TSC problems. For example, Zheng et al. [20] proposed a deep learning framework
based on Convolutional Neural Networks (CNNs) for multivariate time series classification. Moreover, the
Time LeNet [21] and Multi-scale Convolutional Neural Networks (MCNN) [22] are considered among the

first architectures to be validated on a domain-agnostic TSC benchmark such as the UCR archive [1][18]. In
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CNNs, there are convolutional layers, each convolutional layer consists of sliding filters for processing the
temporal data, which allows the network to extract non-linear features that are time-invariant and suitable for
classification. By cascading multiple layers, CNNs can automatically learn a hierarchical feature
representation from raw data. Therefore, several studies suggest CNNs for classifying electrocardiogram
(ECG) signals [23][24]. More recently, it has been shown that deeper CNN models coupled with residual
connections such as ResNet can further improve the classification accuracy [12][25].

Even though CNN-based methods achieve state-of-the-art classification performance, they primarily have
two drawbacks in common: they disregard the spatial relationship in input data, and need considerable
amounts of data samples to achieve good performance. Capsule Networks (CapsNets), as one of the attempts
to address the limitations of CNNs such as the loss of spatial information in the pooling layers, is
contradictory to the spatial relationships between the learned entities, were proposed in [26]. CapsNets learn
and capture the properties of an entity present in the input, in this case, a signal in addition to its existence, in
the form of capsules. Currently, CapsNets achieve state-of-the-art performance on the Modified National
Institute of Standards and Technology (MNIST) database and performs considerably better than a

convolutional net at recognizing highly overlapping digits.

Following and expanding this promising new research direction, we propose in this paper the TSCaps, a 3-
head neural network that combines the multi-head structure with the capsule mechanism to support the
challenging task of TSC. The proposed new approach utilizes primarily the multi-head CNNs that extract the
sufficient features, and the Capsule-based mechanism that safeguards different scaled capsule routings and
representation learning in addition to the temporal relationships within time series data. The main
contributions of this paper can be summarized as follows:

e In present literature, CapsNets are primarily investigated in the domain of image classification. In this
paper, we introduce a novel 3-head Capsule-based network to tackle the TSC problem. The proposed
new architecture allows ample feature extraction and representation learning in addition to the temporal
relationships within time series data.

¢ Unlike the original CapsNets, our proposed approach does not require arduous reconstruction technique
to augment the accuracy of the model (see Section 4.2).

e \We not only investigate the influence and the role of each head of our 3-head structure, but also explore
the overall performance of different combinations of heads. Such approach ensures that each head of
our structure is contributing to our model, and, even more importantly, it provides insights into why and
when the multi-head structure can be beneficial.

2. Introduction

2.1. Multi-head Convolutional Neural Network

Convolutional neural networks (CNNSs) are designed to perform feature extraction and mapping of data that
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are presented in the form of manifold arrays [27]. As presented in the previous section, CNNs hold immense
promise to recognize patterns in time series comprising four core elements thatexploit the
essential attributes of natural signals, namely, local connections, shared weights, pooling mechanism, and
multi-layer network structure. All of these elements establish well-defined means of feature extraction and
mapping required for TSC. Computation units attain the local basic features of time series data in the lower
network layers, while they learn higher-level representation and patterns of the data in the higher network
layers. Moreover, in comparison with traditional feed-forward networks, such as fully connected neural
networks, CNNs perform with much fewer connections, and they are easier to train [18].

The standard CNNs can be considered a one-head architecture. The multi-head CNNs [28] simply multiply
this representation learning ability. With multiple heads, the CNNs can have different filter banks and
different processing layers in each head. For instance, our proposed method utilizes a 3-head CNNs in the first
layer, which has a number of 9, 7 and 5 filters at each head respectively. If necessary, we may even choose
whether to have pooling or dropout layers for a certain head. By using multiple heads, the CNNs is
empowered with the unique ability to combine various feature learning processes for tackling input series,

which enriches the features extracted and thus enhances the final representation learning results.

2.2. Capsules

The idea of a capsule is first introduced by Hinton and his colleagues [29] as an alternative to CNNs. A
capsule is composed of a group of neurons, which deals with vectors instead of CNNs’ scalar values. This
exceptional characteristic enables a capsule to learn the features of an image in addition to its deformations
and viewing conditions [30]. After being processed based on the type of the capsule employed, the features
produced by a CNN are accepted as the input to a capsule. The output of the Capsule is made up of a set of
activity vector values commonly called instantiation parameters. The capsule's activity vector carries various
properties of a particular entity such as an object or an object part [26]. More specifically, the length of
the activity vector represents the probability of the entity's existence, while the orientation of the activity
vector holds the instantiation parameters of the entity. The instantiation parameters are used to represent
equivariance of the capsule indicating its ability to recognize pose, deformation, velocity, texture, etc. The
equivariance makes sure that the capsule takes into account spatial relationships of entities.

By using the algorithm called “routing by agreement” between different layers [29], active capsules at the
lower level make predictions for the instantiation parameters of their higher-level capsules. When multiple
predictions agree, a higher level capsule becomes active. This allows neural activities of capsules to vary
according to varying viewpoints, instead of eliminating, which gives capsules the advantage over
normalization methods. Because of that, they can handle multiple different affine transformations of different

objects or object parts simultaneously. Furthermore, this unique property also makes capsules very effective
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for tackling segmentation, which is another challenging problem in computer vision [26].

Motivated by the above promising findings, in this paper we propose to apply the multi-head structure with
the capsule mechanism to support the task of TSC. Instead of simply assembling capsule modules, the capsule
block in our proposed architecture is completely re-designed in order to suit time series problems and achieve

state-of-the-art performance.
3. Methodology

In this section, we present the methodology of our proposed Capsule-based neural architecture for TSC,
including the overview of the proposed approach, followed by the mathematical formulation of multi-head
convolution, capsule activation, and routing. Then, we present our dynamic routing algorithm. At the end of

this section, the classifier and the training procedure are introduced.
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Fig. 1. Schematic diagram of the proposed TSCaps approach.
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3.1. Overview

The architecture of the proposed method for TSC is shown in Fig. 1. A three-head structure with two types
of heads is chosen for the TSCaps in order to make the method more robust and effective (see the comparison
and ablation study in section 4.2). The most general and sketchy overview of the approach is as follows.
Given an input series, we first use a 3-head CNN to extract its features. Then, these features are sent to
capsules for further representation learning in addition to the temporal relationships among small segments

within the time series. Finally, the Classifier produces the output of the network, which is the category
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prediction of the input.

More specifically, the TSCaps is designed to tackle feature extraction and learning from the input data. The
input data D = {(Xy,y1), (X3, ¥2), ..., Xn, yu)} is a dataset containing a collection of pairs (X;, y;) where X;
is the time series X; = [x}, x?Z, ..., x["] consisting of m ordered values with y; as its class label. By using
convolution operation, the features of the input data can be extracted; these features are then vectorized
through squashing and fed into the routing process. At the end, the Classifier utilizes the softmax function to
carry out the mapping from the space of possible inputs to a probability distribution over the class labels, and
produces the output of the method, which is the predicted label y;" by given the input X;.

3.2. The Three Heads

The three heads are the core of the proposed method, which learns the representation of data in addition to
the temporal relationships among small segments within the time series. The three heads can be further
divided into two types. Type A is under a normal CapsNet structure that consists of convolution module,
squashing module, and routing module. In Type B there is no squashing module; instead, we use another
convolution module to learn higher level representation of the input data (Fig. 1.). The key components of the

three heads are the Convolution module, the Squashing module, and the Routing module.
3.2.1. The Convolution module

Aiming to extract various features, the convolution module is designed to deal with the initial input data. In
the convolution module, the input data is convolved with a set of convolutional filter banks (to be learned in
the training process). The output of the convolutional operators enhanced by a bias (to be learned) is put
through the activation function to form the feature map for the next layer/module. Formally, given the input

data X, the i*" feature map of h'" head of the multi-head CNN is also a matrix, denoted as v!* , and it is given

by:
Uzh = fleakyjelu (fBN (fc}zl)nv(x)))' Vhe {1'2'3} (1)

Where fieaky rew 1S the activation function that can retain some useful negative values, defined as:

0
0 @)

v A

fleaky_relu(x) = {

axx, X
X, X
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where a is a coefficient for retaining negative values (we set « = 0.1 in our experiments), fzy is the batch
normalization function that accelerates the training and enhances the classification accuracy. Moreover, £ ...,

is the convolution function of the A™ head in the multi-head convolution layer, as presented in (3):

nh

feonv(X) = b' + z whX  vhe {123} (3)
k p=0

where bl is the bias for this particular feature map, k is the index of the feature maps at the convolution
module, n” is the size of the filter bank of the h*" head, and Wi’,’('h is the value at the position p of the
convolution filter bank connected to the current feature map. After the 3-head convolution process is

performed, a number of various features are acquired and sent to the next module.
3.2.2. The Squashing module

Following the convolution module, the Squashing module is developed to receive the feature maps
extracted from the convolution module, and to transfer them into vectors that capsules employed. It utilizes a
non-linear “squashing” function to carry out this transfer. Formally, the output of the A" head convolution

module is denoted as v", and the transfer is made by

sh = fsftlyuash (fr}éshape( vt )) vh € {1,2,3} %)

where s" is the output of this module for the ht" head, fr’gshape is the reshaping function that ensures the data

matches the required shape by the Capsule, and ﬁéuash is defined as:

Frauasn () = 2L = (5)

L+l 1]

3.2.3. The Routing module

It is the module that learns the features of data and takes into account the temporal relationships by using
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the “routing by agreement” algorithm (Algorithm 1). In this module, the total input to a capsule is a weighted

sum over all “prediction vectors”. For instance, the total input sjh to capsule j is computed as:

St= Y khel, &= Wit vhe{123) 6)
i

where é]-’lll- is the “prediction vectors” from the capsules in the previous module and is calculated by
multiplying ¢/, the output of capsule i in the previous module, by the weight matrix Wg and the k{lj are

coupling coefficients that are learned via the iterative routing process.
The coupling coefficients between all capsules in this module and capsule i in the previous module are

given by a “routing softmax” defined as:

e 13
kh = Vh € {1,2,3 7
5= S (123) ™)

where bl-hj are initial logits representing the log prior probabilities that capsule i should be coupled to capsule j,
and the [ represents the other capsules link with capsule i but capsule j in this module.

The initial logits can be learned through the training, so that the coupling coefficients can be refined
iteratively by measuring the agreement between the current output c]-h and the prediction éj’}i produced by
capsule i from the previous module. The output of a capsule is calculated via “squashing” its total input, as
defined in (5). The agreement is just the product df = ¢/*- &fi;, and it is added to the initial logits b}; before
computing new values for the coupling coefficients. The vector output of the Routing module is carried out
through the “routing by agreement” algorithm that is presented in Algorithm 1.

Finally, we get three sets of output as each head produces one output. These outputs are vectors in different
scales and carry various features. In order to take advantage of the variety of representations, we utilize a

concatenation process to put them into one piece while keeping critical features learned which are defined as:

Vj = fcoe_concat( [(le' TICjZ' :quS] ) (8)

where {,n, u are coefficients of the outputs from the three heads respectively. The V; is then sent to the
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Alogrithm 1: Routing by agreement algorithm

1 procedure Routing(s",7") vh € {1,2,3}
2 initial weight matrix W/t
get ¢l = R Whsh
bl =0
for r" iterations do
get kJ; by using (7)
get ¢fi; by using (6)
get S" by using (6)

get th = fsquash (S]h) computes (5)

PN I - h = ~h

classifier for final predictions. We set ¢ =1, n =1, u = 1 in our experiments.

© 00 N oo o b~ W

3.3. Classifier

The Classifier carries out the mapping from its inputs to a probability distribution over the class labels by
giving the predicted class labels y' as the output of our proposed method. Particularly, in a capsule, the

instantiation vector's length represents the probability of the entity's existence, which is defined as:

efillvill

p(y; = Li | VJ'; 9) = Z1I¥:1e9k||Vj||

€

where 6 represents the parameters of the activity vector V;, and N is the number of classes that are denoted
by L; = (1,2,..,N). Therefore, it is anticipated that the correct capsule in TSCaps has a long instantiation
vector. To predict multiple classes, the separate margin loss is used for each capsule linked to a particular

class k:

1w . )
loss = ZZ(y,- max(0,m* — ||V;]|) + A (1 —y;) max(0, [|Vj|] —m™)) (10)
j=1

where y; is the truth label of j** class, and 2 is a coefficient for the margin loss. We set 1 = 0.5, m* = 0.9

and m~= 0.1 in our training. The whole training process is summarized in Algorithm 2.


http://mostwiedzy.pl

A\ MOST

10

Algorithm 2: TSCaps Optimization

Input: labeled time series dataset: D = {X, Y}

Output: predicted label y; of the input

1/ Initialization

2 Initialize the parameters 0

3 Normalize the dataset

4 Divide the dataset into certain sets:
training dataset: Dypqi, = {Xt3in, ytrain}
validation dataset: Dy, = {XV2, Y3}
testing dataset: Diege = {X™St, Ytest}

5 // Training on training and validation datasets

6 for epoch=1, M do

7 for n=1, N do

8 get the input data X; € Drain

9 feedforward the X; and get the activity vector V;

10 /I prediction

11 get the predicted label y; by computing (9)

12 get the loss by computing (10)

13 perform a gradient decent step on (loss | 0)

14 end for

15 if (epoch % 2 == 0) then

16 validate the model using D

17 save 6

18 endif

19 end for

20 /[ Testing

21 Use the trained network to predict the labels of Dyt

4. Experiments and Results

In this section, we first introduce the experimental setup and dataset description, then explore relations of
each head of multi-head capsules through ablation study, and finally analyze and compare our algorithms with

others.

4.1. Dataset Description and Experiment Settings

The UCR 2018 archive is one of the most popular time series repositories with 128 datasets of different
lengths in various application domains. In order to ensure verified fairness of the proposed approach for time-

series data with various lengths, the UCR 2018 archive is divided into 4 categories (i.e. ‘short’, ‘medium’,

‘long’, and ‘vary’) according to the length of each dataset. To be specific, the 128 datasets consist of 41
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'short' , 32 'medium’, 44 'long’, and 11 'vary' datasets (more details are shown in Table 1 and Table 2), and

‘Total' represents the whole UCR 2018 datasets archive. In our partition ‘short’ refers the length of the dataset

that is below 200, ‘medium’ ranges from 200 to 500, ‘long’ is over 500, and ‘vary’ is for dataset with
indefinite length. All experiments are run on a desktop with a Nvidia GTX 1080Ti GPU with 11 GB plus
another Nvidia GTX 1070Ti GPU with 8GB, and an AMD R5 1400 CPU with 16G RAM under the Ubuntu
18.04 OS.

Table 1: The details of ‘short’ and ‘medium’ datasets.

11
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Scale Dutaset Train Test Class Length  Type
SmoothSubspace 150 150 3 15 Simulated
ItalyPowerDemand 67 1029 24 Sensor

Chinatawn 20 W3 2 24 Traffic
MelboumePedestrian 1180 2430 10 24 Traffic
Crop TI0 16800 24 46 Image
SyntheticContral 00 @00 6 60 Simulated
SonyAIBORcbotSur2 27 933 2 65 Sensor
SonyAIBORchotSur.l 20 601 2 T Sensor
DistalPhalanxO.A.G 400 138 3 &0 Image
DistalPhalonx©Q.C. 600 276 2 &0 Image
DistalPhalanTVW 400 138 & &0 Image
MiddlePhalanx A G, 400 154 8 B0 Image
MiddlePhalanx©.C. 600 291 2 ED Image
MiddlePhalanxTW 3989 154 & B0 Image
Phalanges(.C. 1800 B3R 2 &0 Image
ProximalPhalanx0Q AG. 400 205 3 &0 Image
Proxcimal Phalanx. 600 291 2 &0 Image
ProximalPhalanxTW 400 205 & &0 Image
TwoLeadECG 21 1188 2 82 ECG
MoteStrain 20 1252 2 B4 Sensor

Shart ECG200 0 10 2 96 ECG
ElectricDevices 8926 TTIL T 96 Deviee
Medienllmnges 381 760 10 99 Image

CBF 30 800 3 128 Simoulated
SwedishLenf 500 625 15 128 Imoge
TwaPatterns 000 4000 4 128 Simulated

BME 30 150 8 128 Simoulabed

FaceAll 560 1680 14 151 lmoge
FacesUCTR 00 2050 14 151 lmage
ECGFiveDays 21 B61 2 138  ECG
ECGR000 500 4500 5 40 ECG

Plane 105 105 7 144 Sensor
PaverCans 180 180 2 144 Power
GunlPaint 50 150 2 150  Motion

GunPointAgeSpan 135 816 2 150 Motion
GunPointMaleV.F. 135 316 2 150 Motion
GunPointOIdV. Y. 136 815 2 150  Motion

UMD 36 144 3 150 Simoulated

Wafer 000 6164 2 152 Sensor
ChlorineCon, 467 3840 3 166 Sensor

Adiac 390 891 37 176 Imoge

Fungi 18 188 18 201  HEM

Wine 57 54 234 Spectro
Strawherry 613 470 2 235 Spectro
ArrowHend 36 175 3 251 Imoge

InsectWingbeatS. 220 1980 11 256  Sensor
Fifty Wards 450 455 S0 270 Imoge
WordSynanyms 267 638 25 270 Imoge
Trace 100 100 4 275 Sensor
ToeSegmentation] 40 228 2 277 Motion
Coffe 28 28 2 IRBE  Speotra
DodgerLoopDay T8 &0 T 288 Sensor
Dodger LoopGame 20 138 2 288 Sensor
DodgerLoopWeekend 20 138 2 288 Sensor
CricketX 390 390 12 300 Motion
Crickety 390 390 12 300 Motion
Cricket 390 390 12 300 Motion

Medium

FreezerRegularTrain - 150 2850 2 301  Sensor
FreegerSmallTrain 28 2850 2 301 Sensor
UWaveGiestureL.X 896 3582 B 315 Motion
UWoveGestureLY 896 3582 B 315 Motion
UWiveGestureL 2~ B96 3582 B 315 Motion
LightningT 70 78 T 818 Sensor
ToeSegmentation? 36 130 2 343 Motion
DintomSizeRe. 16 908 4 35 Imoge
FaceFour 24 88 4 350 Imoge
Symbols 25 995 6 398 lmage
Yoga 300 3000 2 426 Imege
OSULeaf 00 242 6 427 Imoge
Ham 108 105 2 431  Spectra
Meat 60 60 3 448 Spectro
Fish 175 175 7 463 Imoge

Beef 30 30 5 470 Spectro
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Table 2: The details of ‘long” and ‘vary’ datasets.

13
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Scale Dataset. Train Test Class Length Type
FordA 3601 1320 2 500 Sensor
FordB 3636 810 2 500 Sensor
ShapeletSim 20 180 2 500 Simulated
BeetleFly 20 20 2 512 Image
BirdChicken 20 20 2 512 Image
Earthquakes 322 139 2 512 Sensor
Herring fid 64 2 512 Image
ShapesAll GO0 600 60 512 Image
Olive(il 30 30 4 570 Spectro
Car 60 60 4 577 Sensor
Insect EPGRegularT. 62 249 3 601 EPG
Insect EPGSmallT. 17 249 3 G01 EPG
Lightning2 60 61 2 637 Sensor
Computers 250 250 2 20 Device
LargeKitchenApp. 375 37 3 T20 Device
RefrigerationDeviees 375 375 3 20 Device
ScreenType 375 375 3 20 Device
SmallKitchenApp. 375 375 3 T20 Device
NonlnvasiveFetal ECG. 1800 1965 42 750 ECG
NonlnvasiveFetal ECG. 1800 1965 42 750 ECG
Worms 181 ki 5 900 Motion
WormsTwoClass 181 ki 2 900 Motion
Long UWaveGestureL. All B96 3582 8 045 Motion
Mallat 55 2345 8 1024 Simulated
Phoneme 214 1896 39 1024 Sensor
StarLightCurves 1000 8236 3 1024 Sensor
MixedShapesRegularT. 500 2425 5 1024 Image
MixedShapesSmallT. 100 2425 5 1024 Image
Haptics 155 308 5 1002 Mation
EOGHorizontalSignal 362 362 12 1250 EOG
EOGVerticalSignal 362 362 12 1250 EOG
ACSF1 w0 100 10 1460 Device
SemgHand G.Ch2 300 600 2 1500 Spectrum
SemgHandM.Ch2 450 450 ] 1500 Spectrum
SemgHandS.Ch2 450 450 5 1500 Speetrum
CinCECGTorso 40 1380 4 1639 Sensor
EthanelLevel G04 500 4 1751 Spectro
InlineSkate 100 550 7 1882 Motion
HouseTwenty 40 119 2 2000 Device
PigAirwayPre. 104 208 52 2000 Hemodynamics
PigArtPre. 104 208 52 2000  Hemodynamics
PigCVP W04 208 52 2000 Hemodynamics
HandOutlines 1000 370 2 2709 Image
Rock 20 50 4 2844 Spectrum
AllGestureWiimoteX 300 700 10 Vary Sensor
AllGestureWiimote Y 300 700 U] Vary Sensor
AllGestureWiimoteZ 300 700 10 Vary Sensor
GestureMidAirD1 208 130 26 Vary Trajectory
GestureMid AirD2 208 130 26 Vary Trajectory
Vary GestureMidAirD3 208 130 26 Vary Trajectory
GesturePebbleZ1 132 172 6 Vary Sensor
GesturePebbleZ2 146 158 [ Vary Sensor
PickupGestureW.2 50 50 10 Vary Sensor
PLAID 537 537 11 Vary Device
ShakeGestureW.Z A0 50 10 Vary Sensor
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Table 3: Results on various structure in ablation study.

Scale Dataset, Head 1 Head 2 Head3 Head 1&2 Head 1&3 Head 2&3 Ours without Caps Qurs with Recon  Ours
ECG200 0.9100  0.9000  0.9000  0.9200 0.9100 0.92 0.63 0.93 0.93
Short ECG 5000 0.944222 0.938444 0.590222 0.946444 0.945222  0.944444 0.589333 0.948444 0.948444
ChlorineCon.  |0.849479 0.816146 0.816416 0.863281 0.850260  0.849479 0.409375 0.87474 0.87474
MeanACC 0.901234 0.884863 0.768879 0.909908  0.901827  0.904641 0.542903 0.917728 0.917728
Strawberry 0.97297 0.959459 0.945946 0.981081 0.981081  0.978378 0.810811 0.986486 0.986486
Medium ArrowHead 0.845714 0.834286 0.828571 0.857143 0.851429 0.845714 0.668571 0.868571 0.868571
DodgerLoopW. 0.55  0.337 0.5 0.65 0.6375 0.6125 0.2 0.7 0.7625
MeanACC 0.789561 0.777082 0.758172 0.829408 0.823337  0.812197 0.559794 0.851686 0.872519
OliveOil 0.9  0.866667 0.866667 0.933333  0.933333 0.9 0.7 0.966667 0.966667
Long SemgH.G 0.873333 0.85 0.831667 0.906667 0.896667 0.893333 0.313333 0.916667 0.916667
Rock 0.76 0.76 0.72 0.84 0.84 0.8 0.34 0.86 0.86
MeanACC 0.844444 0.825556 0.806111 0.893333 0.89 0.864444 0.451111 0.914445 0.914445
AllGestruerW.X |0.701492 0.697142 (.694286 0.717143  0.714286  0.714286 0.285714 0.742857 0.742857
Vary | GestureMidAirD1 |0.669231 0.653846 0.646154 0.715385 0.7 0.692308 0.430769 0.723077 0.723077
PickupGestureW.Z| 0.78 0.76 0.72 0.8 0.8 0.76 0.22 0.8 0.8
MeanACC 0.716908 0.703663 0.686813 0.744176  0.738095  0.722198 0.312161 0.755311 0.755311

* MeanACC — mean accuracy

4.2. Ablation Study

To investigate effects and performance of different structures and types for the heads of our proposed
approach, we employ an ablation study in our experiments on 12 datasets, including 3 ‘short’ datasets, 3
‘medium’ datasets, 3 "long’ datasets, and 3 “‘vary’ datasets (see Table 3).

First, we compare our proposed network structure (Ours) with pure multi-head CNNs (Ours without Caps),
which verifies contributions of capsules. Then we add to the comparison analysis the original CapsNets
structure (Ours with Recon) that utilizes a reconstruction module to enhance its performance. Table 3 shows
that compared with Ours without Caps, Ours achieves noticeable better performance on every dataset
demonstrating the effects of the capsule mechanism. For instance, the test accuracies on ECG200 dataset of
these two structures are 0.63 and 0.93, respectively. Moreover, when employing the reconstruction module
(Ours with Recon), the network doesn’t perform better: it even underperforms Ours by 0.06 on the
DodgerLoopW dataset.

Next, if focusing on a single head network structure, it can be seen (Table 3) that the Head 1 outperforms

other two single heads on each dataset. For example, the accuracies of the three single heads on ECG500
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dataset are 0.944222, 0.9384444, and 0.590222 respectively. The Head 3 performs worst among these three
single heads because the performance of a single head heavily depends on the scale of its size. The larger of
the head’s scale the more shapelets and features can be extracted from the given input data.

Additionally, we find that the performance of multiple-head structure is always better than the single head
structure. Specifically, the three-head structure beats the two-head ones, while the two-head network beats the
single-head approaches. We also find that combining Head 1 and Head 2 achieves the best performance,
which indicates that Head 2 (with two Convolution Modules, i.e. no Squashing Module) is effective and
beneficial for the proposed approach.

Through comparisons between various network structures, we find that the multi-head configurations can
take advantages of the variety of their head to extract diverse features from input data, resulting in a more
robust and accurate model.

Finally, the computational complexity is compared between Ours and Ours with Recon, where Ours with

Recon is composed of three layers, i.e. a fully-connected layer with 128 channels, a fully-connected layer with

256 channels, and a fully-connected layer with the number of channels equal to the length of a given dataset

when the two approaches achieve similar performance. The latter approach is certain to cost the larger amount
of computing resources due to its extra reconstruction module. For instance, the parameters of Ours and Ours
with Recon are 11.8684M and 12.2932M on SemgH.G dataset, respectively (see Table 3). Consequently, the
computational time costs of Ours are around 2 times less than Ours with Recon on different datasets, e.g. the
test time cost on SemgH.G dataset are 14.3279s and 28.538s on CPU, respectively. At the same time, their
accuracies on each dataset are almost the same. Therefore we conclude that our proposed approach makes full
use of the variety of its heads to extract diverse features, and achieves the best accuracy without the
reconstruction module, which largely reduces the complexity of our approach while still ensure its high

performance.

Table 4: Statistical results obtained by various algorithms.
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Scale Ranks Existing TS.CHIEF Vanilla:ResNet ResNet- ResNet- ResNet- ResNet ResNet Inception- ROCKET Ours
SOTA [25) Transformer Transl  Trans2 Trans3 50SC 152 SC -Time
Win 19 2 6 3 7 12 3 5 10 10 11
Tie 13 8 31 23 21 22 6 6 11 12 25
Total Lose 53 78 91 102 100 94 119 117 107 106 92
Best 32 10 37 26 28 34 9 11 21 22 36
AVG.rank 6.222656 7.730496 4.238281 5261719 58125 5.723656 7.312500 7.359375 5.785156 5.613281 4.941406
Short Best 13 4 18 15 15 15 4 4 7 7 17
AVG_rank 5.902439  7.780488 4.182927  4.878049 5.731707 5.317073 7.060975 7.146341 6.634146 6.341463 5.024390
Medium Best 8 4 7 6 4 11 5 2 7 7 10
AVG rank 5.296875  6.390625 5.093750  4.828125 6.781250 5.937500 7.406350 8.078125 5.937500 4.921875 5.328125
Best 11 2 9 4 6 6 0 3 3 6 8
bone AVG.rank 6.125000 7.965909 3.909091  5.886364 5522727 6.102273 7.522727 7.284091 5.545455 5.534091 4.602273
Best 0 0 3 1 3 2 0 2 4 2 1
Very AVG_rank 10.500000 10.500000 3.272727 5.454545 4.454545 5.090909 3.136364 7.136364 3.136336 5.227273 4.863636

4.3. Experimental Analysis

To evaluate the performance of our proposed approach, we select for the comparison process seven best
existing approaches that claim the state-of-the-art results as presented in the highly cited paper [11] and the
most recent arXiv preprint 2020 [25] (see Table 4). Following the standard approach most researchers take,
we use ‘win’, ‘tie’, ‘lose’ and the average ranking (AVG_rank) to rank algorithms taking part in the
experimental evaluation process (please refer to the APPENDIX for detailed scores of each algorithm on
each dataset). The ‘win’, ‘tie” and ‘lose’ index represents the number of datasets that an approach performs
better than, equivalent to, or worse than others, respectively. The ‘best’ cases are the sum of ‘win’ and ‘tie’
scores. The average ranking scores are defined according to the average Geo-ranking approach, measuring the
average difference between the accuracies of a model and the best accuracies among all models. We calculate
the mean accuracy by averaging the measures over 30 runs on each test set.

Table 4 shows the statistical results achieved by nominated algorithms on selected 44 datasets in the UCR
2018 archive. For each dataset, the existing SOTA represents the best algorithm on that dataset [25], including
DTW [12], BOSS [15], COTE [16], and EE [14]. It should be noted, that both SOTA and TS-CHIEF
algorithms [32] don’t consider the last 43 of 128 datasets (detailes can be found in [25] [32]).

As it can be observed in Table 4, Vanilla:ResNet-Transformer attains the first position in the 'best' and

AVG rank evaluations. Our is a close second, only one score less in the 'best’ cases, i.e. 36 'best’ scores. To be

specific, our algorithm wins in 11 cases and performs no worse than any other algorithm in 25 cases.

17
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Similarly, our proposed approach also follows the latter in the AVG rank metric. Also, ResNet-Tranl and

ResNet-Trans3 take the third place in the AVG rank and 'best’ metrics, respectively. Table 4 additionally

demonstrates that it is hard for TS-CHIEF [32] to extract efficient features from a variety of datasets despite

its combination of heterogeneous and integrated embedding forest, and it fails in the competition with scoring

only 2 'win' values.

To further investigate the performance of our proposed approach, we compare it with other algorithms

using the scores of ‘best’ and AVG\ rank on ‘short’, ‘medium’, ‘long’, and ‘vary’ datasets. Table 4 illustrates

that Vanilla:ResNet- Transformer is still the best among algorithms on 'short' datasets in terms of 'best' and

AVG rank values. Our proposed approach gains the second and third position in the 'best' and AVG_rank

evaluations, respectively. ResNet-Transl takes the second and third position in the 'best’ and AVG rank

evaluations, respectively. TS-CHIEF is undoubtedly the worst performer.

When focusing on 'medium' datasets, one can find that ResNet-Trans3 achieves the best performance in

terms of the highest 'best' scores of 11. Our procedure follows closely the latter and obtains 10 'best' scores.

On the other hand, in terms of AVG rank metric, ResNet-Transl achieves the lowest AVG rank scores of

4.828125. ROCKET [31] makes use of a linear classifiers using random convolutional kernels to attain the

second position. However, compared with the performance on 'short' datasets, Vanilla:ResNet-Transformer

and Ours both perform poorly and they slipped in relative rankings. For example, Vanilla:ResNet-

Transformer moves from the first to the third position. The reason may be behind their structure that is less

sensitive to 'medium' length signal information. In addition, ResNet 152 SC [32] that relies on complex

residual structure fails in the competition.

Considering 'long' datasets, Vanilla:ResNet-Transformer and our proposed approach have significantly

improved in the AVG rank performance metric compared with the performance on 'medium’ datasets. Their

positions are found as the first and second, namely 3.909091 and 4.602273 AVG_rank scores, respectively.

This is because the former takes advantage of its transformer structure to relate different position of ‘long'

sequences, while the latter (Ours) fusions different scaled features through the multi-head capsule structure.

ResNet-Tran2 and ROCKET are behind in terms of the AVG rank performance evaluation.

Furthermore, when paying more attention to ‘vary’ datasets compared with the performance on ‘long’

datasets, Vanilla:ResNet-Transformer and Ours are both down in terms of the AVG rank values. On the

contrary, InceptionTime makes use of the inception structure to mine sufficient features from 'vary' datasets,

ensuring the best performance in the 'best' and AVG_rank cases.

Lastly, we also visualize the methods’ comparison employing the critical difference diagram proposed by
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Demsar [33]. The diagram shows a thick horizontal line when a group of classifiers are not-significantly

different in terms of accuracy, and a given classifier is better the closer to the right hand site of the thick line it

is located (has smaller scaler). Fig. 3 illustrates the comparison results.

11 10 9 8 7 6 5 4 3 2 1
TS-CHIEF | | Vanilla:ResNet-Transformer
ResNet152 SC I ours
ResNet50 SC ResNet-Transl
Existing SOTA ROCKET
ResNet-Trans2 ResNet-Trans3

InceptionTime

Fig. 3. Critical difference diagram showing pairwise statistical difference comparison of state-of-the-art classifiers on 128 UCR datasets.
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0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Vanilla:ResNet-Transformer

Fig. 3._Accuracy plot showing the performance difference between Vanilla:ResNet-Transformer and Ours.

Finally, to further visualize the difference between Vanilla:ResNet-Transformer and Ours, Fig. 3 depicts

the accuracy plot of Ours against Vanilla:ResNet- Transformer for each of the whole 128 UCR datasets. The

results show that Ours gains 'win'/'tie'/ 'loss' in 33/55/42 cases respectively, with p-value well over 0.5 (about

0.9451). Meanwhile, the mean accuracy (MeanACC) of Ours is 0.0013 higher than that of Vanilla:ResNet-

Transformer. This indicates that there is no significant performance difference between them. It can be stated,

that the performance of Our proposed approach is the same as Vanilla:ResNet- Transformer, both of which

have huge potential to deal with a variety of datasets. Additionaly, Ours compared with InceptionTime (see
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Fig. 4) obtains ‘win'/tie'/'loss' in 62/11/55 cases on whole UCR datasets,

achieves 'win'/'tie'/'loss' of 68/10/50 cases compared with ROCKET.
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Fig. 4. Accuracy plot showing the performance difference between InceptionTime and Ours.
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Fig. 5. Accuracy plot showing the performance difference between ROCKET and Ours.

Fig. 5 depicts that Ours also
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5. Conclusions

In this paper, we propose the Capsule-based neural structure for TSC. The proposed method takes
advantages of multi-head convolutional neural networks and capsule mechanism integration, to achieve better
feature extraction and different scaled capsule routings and representation learning in addition to the temporal
relationships discovery within time-series data. As our proposed architecture is able to explore sufficient
shapelets hidden in the data, we do not need to employ the reconstruction technique to enhance the accuracies
of the model. Therefore, unlike the original CapNets, our approach is more computing friendly. We compare

our proposed method with the current state-of-the-art approaches by using the whole URC dataset. The

comparison results show that our proposed procedure achieves very reasonable performance by wining 11

classification tasks and drawing in 25, and that it provides the highest average accuracy over all 128 tested

datasets. The accuracy analysis of the proposed approach demonstrates its significance in TSC by offering

very high classification confidence with the potential of making inroads into plentiful future applications.

Our future work will involve exploring ways to reduce the complexity of our proposed approach and make
it more practical. We believe that detailed study of elaborately hand-crafted features and automatically
learned features needs to be performed first. Then, we plan to distill the prior knowledge encoded in these
features and introduce such knowledge into neural networks to enhance the model with long-term

dependencies that are hard to learn with a limited dataset.
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Reviewers’ Comments

Reviewer #1: This paper introduces a novel 3-head Capsule-based network to tackle the TSC problem. The
proposed new architecture allows feature extraction and representation learning in addition to the temporal
relationships within time series data. By removing the reconstruction module, the approach is much less
complex than traditional capsule networks. An ablation study is included. The results are presented on a
small subset of the UCR archive which makes the analysis not very accurate.

Another problem is not including one of the most recent state-of-the-art neural networks called
InceptionTime  (that the authors do cite but not include in the comparison:
https://link.springer.com/article/10.1007/s10618-020-00710-y).

Reference 31 should be removed from the paper and from the list of compared methods. The approach uses
the test loss when training. See: https://github.com/titu1994/LSTM-FCN/issues/7

You should also not compare approaches based on mean accuracy as this is not informative at all. You
should try and stick with a unified method for comparing multiple classifiers over multiple datasets. When
comparing only two classifiers, you should use a pairwise accuracy plot. Finally, the paper could benefit from
re-writing with better english phrases and include the most recent TSC approaches such as: TS-CHIEF,
ROCKET and InceptionTime.

To summarize, | suggest that the authors take their time into re-writing the paper, including all state-of-
the-art approaches and finish experiments on the whole archive instead of choosing subsets.

Reviewer #2: The authors propose an interesting neural topology for time series classification. This
network is composed of three CNNs (3-heads) with a capsule mechanism. The proposed method is evaluated
on 44 standard datasets. The approach is interesting and clear enough for me and the results are convicting.
However, | have some specific comments:

- Table 2 is too small for reading. Please increase the font size. Moreover, the average value on the bottom
of the table is missing. Add this value. Moreover, | don't see the significance to report the results with the six
decimals. I think that three values are OK.

- | don't think that the computational complexity experiment gives some useful information. Moreover, the
units are not clear for me. It is in second? | suggest to remove this experiment or describe it better.

- Table 4 is also too small for reading. Please increase the font size. Moreover, the evaluation metrics are
not obvious for me. Please justify better them including the references. | prefer, to have the table Al from

Appendix instead.
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Appendix
Table Al: The experiment results on 128 UCR datasets.
%
Ditaset Existing S CHIEF Vanilla:ResNet- ResNet-  ResNet-  ResNet-  ResNet ResNet  Inception- ROCKET  Oums
SOTA [25] Transformer Transl Trans2 Trans3 50 5C 1528C  -Time

Adiac 0.8570 0.7980 0.843990 0.849105 0.849105 0.849105 0.844000 0823000 0841432 0.783376 0849103
ArrowHead 0.8800 0.8327 0.891429 0.891429 (.891429 0.897143 0885700 0862000 0845714 (0.814286 0.868571
Beef 0.9000 0.7061 0.866667 0.866667 (.866667 0.8666G6T7 0.733300 0766700 0.700000 0.833333 0.900000
BeetleFly 0.9500 0.9136 1.000000 0.900000 1.000000 0.700000 0.900000 0900000 0.800000 0.900000  0.950000
BirdChicken 0.9500 0.9091 1.000000 0.950000  0.930000 1.000000 0.900000 1.000000 0950000 08900000 1.000000
Car 0.9330 0.8545 0.950000 0.883333  0.866667 0.300000 0.883300 0900000 0883333 0846667 0.883333
CBF 1.0000 0.9979 1.000000 0.997778 1.000000 1.000000 0904400 0991100 0998880 1.000000 1.000000
ChlorineCon. 0.8720 0.7167 0.849479 0.863281  0.409375 0.861719 0.784400 0.785200 0.876563 (0.814531 0.880435
CinCECGTorso 0.9949 0.9832 0.871739 0.656522  0.890580 0.310870  0.891300 0.858000 0.853623 0.836159  0.950000
Coffee 1.0000 1.0000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Computers 0.8480 0.7051 0.860000 0.844000 0.908000 0.840000 0.740000 0696000 0.796000 0.761200  0.840000
CricketX 0.8210 0.8138 0.838462 0.800000 0.810256  0.800000 0.735900 0.733300 0.853846 081987 0.838462
CricketY 0.8256 0.8019 0.838462 0.820513 (0.825641 0.807692 0.735000 0.753800 0.851282 (.852308 0.838462
CricketZ 0.8134 0.8340 0.820513 0.805128  0.128205 0.100000 0.728200 0.761500 0.861538 (.855897 (0.820513
DiatomSizeRe. 0.9670 0.9730 0.993464 0.996732 0.379085 0.996732 0937900 0934600 0934641 0969935 0.996732
DistalPhalanx0.A.G 0.8350 0.7462 0.812950 0.776978 0.467626 0.776978 0.784200 0.784200 0.733813 0.758093 0.784173
DistalPhalanx().C. 0.8200 0.7823 0.822464 0.822464 0.822464 (0.793478 0815200 0808000 0782609 0769565 0.800725
Distal PhalanxTW 0.6120 0.6704 0.564935 0.577922  0.551948  0.623377 0.719400 0683500 0.683453  0.718705 0.683453
Earthquakes 0.8010 0.7482 0.755396 0.755396  0.762500 0.735396 0.777000 0.798600 0.741007 0.748201 0.762590
ECG200 0.9200 0.8618 0940000 0.950000 0.940000  0.930000 0870000 0940000 0.930000  0.906000  0.930000
ECG5000 0.9482 0.9454 0.941556 0.943356 0944222 0940444 0945800 0944200 0940889 0947156 0.948444
ECGFiveDays 1.0000 1.0000 1.000000 1.000000 1.000000 1.000000 0816500 0.902400 1.000000 1.000000 1.000000
ElectricDevices 0.7993 0.7353 0.774219 0.771625 0.737489 0.766178 0.731300 0.729700 0723901 0.729413 0.769784
FaceAll 0.9290 0.8414 0.881065 0.848521 0.949704 0.252071 0.749700 0.782800 0807101 0.946509 0.881065
FaceFour 1.0000 1.0000 0.954545 0.963909 0977273  0.215909 0.727300 0909100 0954545 0977273 0954545
FacesUCR. 0.9580 0.9663 0.957561 0.947805 0.926829 0.951220 0.777100 0856600 0.971220 0961415 0.951220
FiftyWords 0.8110 0.8450 — — — — 0.798700 0.786800 0.830769 0.830330 0.830330
Fish 0.9890 0.9943 1.000000 0977143  0.960000 0.994286 0977100 0977100 0982857 0979429 0.977143
FordA 0.9727 0.9410 0.948485 0.946212 0517424 0940909  0.938600 0923500 0961364 0944394  0.948485
FordB 0.9173 0.8206 0.838272 0.830864 0.838272 (.823457 0.822200 0807400 0861728 0.805062 0838272
GunPoint 1.0000 1.0000 1.000000 1.000000 1.000000 1.000000 1.000000 0993300 1.000000 1.000000 1.000000
Ham 0.7810 0.7152 0.761905 0.780952 0.619048 0.514286 0.790500 0.742900 0714286 0.725714 0.761903
HandOutlines 0.9487 0.9322 0.937838 0.948649 0.835135 0.945046 0951400 0929700 0.954054 0942432  0.945946
Haptics 0.5510 0.5168 0.564935 0.543455 0.600649 0.194805 0.516200 0496800 0548701 0524026 0.564933
Herring, 0.7030 0.5881 0.703125 0.734375 0636250 0.703125  0.687500 0.656300 0671875  0.692188 0.750000
InlineSkate 0.6127 0.5269 0.516364 0494545 0494545 0.165455 0.403600 0430000 0490909 0456909  0.520000
InsectWingheatS. 0.6525 0.6429 0.522222 0.642424  (0.535859 0.536364 0617700 0621200 0638220 0.656818 0.651010
ItalyPowerDemand 0.9700 0.9703 0.965015 0.969874  0.962099 0.971817 0960200 0960200 0965015 0969582 0963071
LargeKitchenApp. 0.8960 0.8068 0.928000 0.898667 0.936000 0.933333 0.808000 0.757300 0904000 0.900533 0.898667
Lightning2 0.8853 0.7481 0.852459 0.852459  0.734098 (.868852 0.852500 0.852500 0770492  0.759016  (.78G6885
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Dataset Existing TS.CHIEF Vanilla:ResNet  ResNet-  ResNet-  ResNet-  ResNet ResNet  Inception- ROCKET  Ours
SOTA [24] Transformer Transl Trans2 Trans3 40 5C 152 5C  -Time

Lightning? 0.8630 0. 7634 0.821018 0840315 0383562 0835616 0840300  0.704500 0835616 0823288  (.833616
Mallat 0.9800 0.9750 0.977399 0975267 0.034328 0079104 0932600  0.944100 0955224 0955040 0.055224
Meat 1.0000 (.8879 1.000000 1.000000  1.000000 1.000000 1.000000 0983300 0933335 0948335 1000000
Medicallmages 0.7920 0.7958 0.780263 (0.765789  0.750211 0780474 0786800  0.780300 0794737 0.799474  0.732805
MiddlePhalanx0.A.G. 0.8144 0.5832 0.655844 0.662338  0.623377  0.662338 0636400 0623400 0551948 0590260  0.623377
MiddlePhalanx(.C. (L8076 0.8535 (.848797 (848797 0848797 0830052 0852200 0.859100 (0817860 0838488  0.810097
MiddlePhalanxTW 0.6120 0.5502 0.564035 0577922 0551948 0.62337T7 0623400 0500000 0512087 0560300  0.610390
MaoteStrain 0.9500 0.9475 0.040895 0.916933  0.037700  0.200000 0840300 0886600 0886581 0914617  (.881789
NonlnvasiveFetal ECG. 0.9610 0.9113 0.953181 0953181 0.947385 0948092 0540000 0.940500 0960514 0952077 (.953181
NonInvasiveFetalECG. 0.0550 0.9450 0.055216 0954108 0048601 0932672 0052200 0.954700 0063868 0960059  0.052672
OliveOil 0.9333 0.8879 0.966667 0.900000  0.933333  0.000000  0.733300 0766700 0833333 0916667  0.966667
(5 ULeaf (0580 0.9914 0987603 0.991736 (0087605 0991736  (8GTS00 0851200 0942145 0940900 0.950413
Phalanges().C (L8300 (.8450 0.855478 (848485  0.854312 0850816 0857800 0.850000 0849630  0.834266  0.850816
Phoneme 0.34%2 0.3691 0.363924 0191983 0.357505  0.848100  0.241000  0.241600 0341245 0279852 0.348101
Plane 1.0000 1.0000 1.000000 1000000 (.371442  1.000000 1000000 1.000000 1.000000 1000000 1.000000
Proximal Phalanx0.A.G 0.8832 084097 (.88TRO5 0.892683 (882027 0.892683 (887800 (0873200 0848730 0835610  0.88TR0S
PraximalPhalanx0.C. 0.9180 0.8382 0.931271  0.931271 (.GR3840  0.924300 0092400 0927800  0.931271 0898060  0.000344
ProximalPhalanxTW (18150 (18186 0.819512 (814634  0.819512 0.819512 0804900 0819500 0775610 0516585 0.819512
RefrigerationDevices 0.5813 0.5583 0.605333 0616000 0592000 O.GL866T 0552000 0544000 0517333 0537333 0.605333
SereenType 0.7070 0.5081 0.669333 0.645333 0666667  0.680000 0464000 0472000 0580333 0485333 (.666667
ShapeletSim 1.0000 1.0000 1.000000 0911111 0888880 0477778 0553600 0633300 093556 L.000000 0577778
ShapesAll 0.0183 0.9300 0.923333 (0BTEEET 0921667 0.933333 0883000 0860000 0028333 0906833 0.918333
SmallKitchenApp. 0.8030 0.8221 0.808000 0.810667  0.829333  0.813333  0.733300 0688000 0760000 0818400  0.813333
SonyAIBORobotSur.1 (10850 0.8264 0.988353 0.97T8369  0.708819 0985025 0880200  0.960100 0868552 0922463  0.773353
SonyATBORohotSur 2 0.9620 0.9248 00976015 0974816 0984260 0976015 0814300 0845800 0046485 0912502 0.950682
StarLightCurves 09730 0.9824 (.9788T3 0979237 0978873 0975838 0880600  0.980600 0079350 0980962  0.979237
Strawherry 0.8760 (.9663 0.986486 0.986486 0986486 0.986486 00951100 0883800 0983784 0981351 0986486
SwedishLeaf 0.9664 0.9655 0.977200 0.972800 0969600  0.966400  0.06G8000 0961600 0974400 0964000  0.972800
Symbols [1.9668 009766 0.979500 0970854 0976884 0252261 0871900 0.9GGR00  0.980805 0974271 0.950754
SyntheticControl 1.0000 0.9979 1.000000 (1996667 1000000 1.000000 07135300 0670000 0996667 0999667 1000000
ToeSegmentationl 0.9737 0.9653 0.069298 0.969208  0.078070  0.991228 0916700 0921100 0964912 0968421 0.064012
ToeSegmentation2 09615 09353 0.976923 1953846 0953846 0.976923 0838500 0884600 0038462 0923846 0.546154
Trace 1.0000 1.0000 1.000000 1.000000  1.000000 1.000000 1.000000 1.000000 1.000000 1000000 1.000000
TwoLeadECG 1.0000 0.9946 1.000000  1.000000 1.000000 1.000000 0985500  0.995600 0995610 0999122 0.995610
TwoPatterns 1.0000 1.0000 1.000000 1.000000 1.000000 1.000000 0515700  0.515400  1.000000 1000000 1.000000
UWaveGestureL. All 0.9685 (1. 9689 (.856784 0933277 0939978 08THI18 0037500 0943600 0951982 097377 0.939978
UWaveGestureL X 0.8308 0.8411 0.780849 0.814620  0.810009 0808766 0.707400 0700400 0824958 0.854746  (.810099
UWaveGestureLY [.7585 07723 (.664592 O.TIG360  0.671413 0678930 0751300 0.713300  OT67160 0773981  0.6645992
UWaveGestureL. Z 07725 (). 7844 0.756002 0761027 0760469 0762144 0728000 0705200  0.764095 0791904  0.760469
Wafer 1.0000 0.9991 0.098540 0.908215  0.098540  0.999027 0997700 0996600 0998540 0998232 (.098215
Wine [L.8850 (18906 0.851852 ETO3T0 0870370 0.907407  OGG6700  0.833300 0611111 0.812963  0.851852
WordSynonyms 0.7790 (0. 7874 0.661442 0650470 0636364 06TRG83 0683000 06TTI00 0733542 0753448 0.678683
Worms 0.8052 0.8017 0.831169 0.779221 0818182 0.230740 0818200 0.844200 0779221 0.740260  (.811812
WarmsTwoClass 0.8312 0.8158 0.831160 0779221 0818182 0259740 0806600  0.844200 0.792208  0.797405  0.701299
Yoga 0.9183 (0.8347 0.006333 0905667 0884000 0866667 0000000 0882700 0001667 0910367  0.003667
ACSF1 — — 0.960000 0.910000  0.930000  0.170000  0.780000 0790000 0920000 0886000 (.B80000
AllGestureWiimoteX — — 0.770000 0.T60000 0762857 0754286 0494300 0520000  0.790000 0.790000  0.742857
AllGestureWiimoteY — — 0.814286 (0.708571 0808571 0800000 0600000 0562000 0.832857 0972714 (.B08GT1
AllGestureWiimateZ — — 0.782857 0.752857 0767143 0748571 0651400  (.38T100 0811429 0766143 (.757143
BME — — 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0993335 1000000 1.000000
Chinatown — — 0.985507 0985507 0985507 0985507 (724600 0756600 0085423 0982507  0.985507
Crop — — 0.743869 0.742738 0746012 0740476 0755000 0753200 0772202 0751345 0.774702
DodgerLoopD. — — 0537500 0550000 0462300 0500000 0487500 0512500 0150000 0572500 0.762500
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Dataset Existing TS CHIEF VanillaResNet  ResNet-  ResNet-  ResNet-  ResNet ResNet  Inception- ROCKET  Ours
SOTA [25) Transformer Transl Trans? Transd 50 8C 1525C  -Time

DodgerLoopG. — — 0876812 0801304 0550725 0905797 (6RL200 0681200 0835072 D8TIIEE  0.920290
DodgerLoopW. — — 0.963 768 0.978261 0949275 0963768  0.942000 0971000 0971014 0974638 0.985507
EOGHorizontal Signal — — 0.610497 0.591160 0602210 0610497  0.279000  0.263200  0.5%3923  0.638950 0.602210
EOGVerticalSignal — — 0450276 0488050  0.146400 0480663  0.223800 0256000 0475138  0.541436 0450276
EthanolLevel — — 0524000 0.868000 0.820000 0820000 0840000 OFI0000  0.814000  0.582800  0.820000
FreezerRegularTrain — — 0.999649 0.999208  0.999298 0.999649 0996100 0997500  0.9%6491  0.997614  0.994035
FreezerSmallTrain — — 0.975088 0.958047 0906667 0771579 0.979300 0035400 0867368 0.040579  0.820702
Fungi — — 1.000000  1.000000 0994624 0075269 0887100 08919400  1.000000  1.000000 1.000000
GestureMid AirD1 — — 0.713385 0.723077 0723077 0700000 0530800 0600000 0.746154 0716923 0.723077
GestureMid AirD2 — — 0.746154 0692308 0676923 0700000 0623100 0553800  0.730769 066076 0692308
GestureMid AirD3 — — 0. 353846 0369231 0338462 0338462 0415400 0461500 0400000 0414615  0.407692
GesturePebbleZ1 — — 0.936047 0.831395  0.936047 0906977 0918600 0918600 0924419 0905814  0.866279
GesturePebbleZ2 — — 0873418 0841772 0.911392 0879747 (.854400 0835400 0886076 0.830380  0.797468
GunPointAgeSpan — — 0.996835 0.09965835  1.000000 0848101 0987300 0984200 0957342 0096835  0.931013
GunPointMaleV . F. — — 1.000000  1.000000 0.996835 0996335 0993700  0.993700  0.993671  0.998418  1.000000
GunPointOldV.Y. — — L.000000 1.000000 1.000000 0990476 0931000 0981000  [L965079 0.991111  L.0000O0D
HouseTwenty — — 0.953193 0907563 0983193 0991597 (0831900 0840800 0974790 0963866 0.974790
Insect EPGRegularT. — — 1.000000  1.000000 1.000000 1.000000 0.971900  0.963900 1.000000 1.000000 1.000000
Insect EPGSmall T — — 0.955823 0027711 DATIEES 0477012 0.043800 0879500 0043775 0070116 1.000000
MelbournePedestrian — — 0.912245 0.911837  0.004898 0901633 0360400 0356300 0.913899 0904387  0.911837
MixedShapesRegularT. — — 0.973670 0.969807  0.975670 0.980206 0965400 0950900  0.970309 0971052  0.969897
MixedShapesSmallT. — — 0.910103 0918763 0928660 0.940619  0.902700 0863500 0914639  0.938227  0.910103
PickupGestureW.Z — — 0.800000 0.780000  0.780000  0.780000  0.740000  O.800000  0.760000  0.830000  0.800000
PigAirwayPre. — — 0.336538 0.091540 0173077 0153846  0.144200 0168300  0.543269 0.095192  0.336538
PighrtPre. — — 1.000000 0168269  0.043269 0533654 0351000 0528300 0995192 0053846  0.918270
PigCVP — — 0.908654 0.081731  0.211538 0019231 0427000 0528800 0961538  0.934135  0.908654
PLAID — — 0.944134 0921783 0147114 0.945996 0.823100  OB11900 0944134 0902607  0.944134
PowerCons — — 0933333 0944444 DO27TTE 0927778 0933300 0572200 0944444 0.940000  1.000000
Rock — — 0.780000 0.920000 0.820000  0.760000 0780000 0.840000  0.800000  0.900000  0.860000
SemgHandG.Ch2 — — 0.866667 0.916667 0.848333 0651667  O.786700 0776700  0.816667  0.926833 0.916667
SemgHandM.Ch2 — — 0.513333 0504444 0391111 0463885  0.524400 0526700 0482222 0645111 0.593333
SemgHand3.Ch2 — — 0.T46667 0.740000 0666667  0.788889  0.664400 0688000  0.824444 0881111 0.873333
ShakeGestureW. 2 — — 0.940000 0.940000 0.940000 0.940000 (OE80000  0.940000 0.900000  0.898000  0.940000
SmoothSubspace — — 1.000000 1.000000  0.953333 1000000  0.993300 08986700 0993333 0978667  1.000000
UMD — — 1.000000  1.000000 1.000000 1000000 0.826400 0.784700 0986111 0.992361 1.000000
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