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Abstract 

In this paper, the equation governing the buckling of a magnetic composite plate under the 

influence of an in-plane one-dimensional magnetic field, assuming the concept of 

flexomagnetic and considering the resulting flexural force and moment, is investigated for the 

first time by different analytical boundary conditions. To determine the equation governing 

the stability of the plate, the nonlocal strain gradient theory has been used by taking into 

account the classical plate theory. The axial magnetic force, which is originated from the 

magnetic field, is investigated. After extracting the governing differential equation, the critical 
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buckling load is obtained for different support conditions. The effect of nonlocal parameter, 

sheet aspect ratio and the effect of one-dimensional magnetic field on critical load are 

discussed. It was earned that if the nanoplate is rectangular so that the value of aspect ratio is 

less than one, the flexomagnetic response will be more noticeable. 

Keywords: Composite plate; Flexomagnetic; Critical buckling load; Nonlocal strain gradient theory; 

Analytical solution 

        Symbols 

,  ,  x y zH H H    Magnetic field 

components 

xxz    Gradient of the axial strain

 yyz    Gradient of the lateral strain 

xx    Axial stress component 

 yy    Lateral stress component 

 xy    Shear stress component 

 xx     Axial strain component 

 yy     Lateral strain component 

 xy     Shear strain component 

xxz   Hyper axial stress 

yyz   Hyper lateral stress 

zB     Transverse magnetic flux 

component 

U   Strain energy 

  Symbol of variation 

    Magnetic potential 

m      Mode number 

      Nonlocal parameter 

a       Length of the plate 

b     Width of the plate 

h     Thickness of the plate 

W     Work done by external factors 

1u Cartesian displacement along x axis

2u Cartesian displacement along y axis

3u Cartesian displacement along z axis

u Displacement of the midplane along x

v Displacement of the midplane along y 

w       Transverse displacement of the midplane

, ,x y z Length, width, and thickness coordinates 

31 15,q q Components of the third-order piezomagnetic 

tensor 

14 15,g g Components the sixth-order gradient elasticity 

tensor

14 15,f f Components of fourth-order flexomagnetic  

11 33,d d Components of the second-order magnetic 

permeability tensor
0 0 0,  ,  xx yy xyN N N Initial total in-plane axial force

 Initial Magnetic potential

,  m nX Y Residues in the solution method 

11 22 12 44 66, , , ,C C C C C Elasticity constants 

l Length scale strain gradient parameter

,xxz yyzT T     Hyper stress resultants 

, ,xx yy xyN N N Axial stress resultants 

, ,xx yy xyM M M Moment stress resultants 
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The main characteristic of magneto-electro-elastic materials is the magneto-electric effect. 

This effect makes mechanical, electrical, and magnetic energies convertible to each other. 

Like the piezoelectric layers, magneto-elastic layers can be used to control the structure. 

Because, magneto-electro-elastic materials have the ability to convert energy between three 

electric, mechanical, and magnetic fields, these materials have direct applications in sensors 

and actuators, vibration control in structures, and so on. Their magneto-electro-elastic 

correlation occurs through stress-strain relationships. The difference is that the magneto-

elastic layers can be controlled remotely by applying a magnetic field to the mechanical 

response of the structure. 

Magnetic nanosheets (MNSs) are classified into small size particles handled by the aid 

of a magnetic field. These elements regularly include magnetic parts in the macro scale, for 

instance, cobalt, nickel, iron, and their mixtures. MNSs are commonly in the range of 5-500 

nanometers in thickness or diameter. Many MNSs have recently been studied due to their 

marvelous potential features. Optical filters, catalysts consisting of nanoparticles, and 

semiconductors can be a few examples of using MNSs [1-6]. 

In response to mechanical impact, the magnetization and/or polarization can physically 

appear into materials as a result of flexo-effect. It is worth to underline that polarization leads 

to piezoelectric [7-15] or flexoelectric [16-31] effects and magnetization results in 

piezomagnetic [32-40] and flexomagnetic [41-47] impacts. The piezoelectric and 

piezomagnetic properties resulted from the elastic strain, but the flexoelectric and 

flexomagnetic come from the gradient of elastic strain. In a general definition, elastic stress 

gradient induces magnetization in centrosymmetric magnetic materials that this concept is 

described as the direct flexomagnetic effect which may be exhibited in a linear behavior. 

Reversely, the flexomagnetic effect occurs when the magnetic field gradient induces 
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magnetization in the material. The difference between piezomagnetic and flexomagnetic is 

not limited to the aforementioned content. Piezoelectric or piezomagnetic properties can 

appear in non-centrosymmetric crystallines only; however, flexomagneticity can exist in 

centrosymmetric structures but those without time inversion. The well-studied flexoelectricity 

is entirely similar to the flexomagneticity in this definition. 

According to existing studies, it is observed that the flexomagnetic effect in two-

dimensional media and for piezomagnetic sheets has never been studied. Not long ago, 

Sidhardh and Ray [41] and Zhang et al. [42] developed early studies on the flexomagnetic 

model of piezomagnetic nanosized one-dimensional (1D) beams. These researches presented 

a flexomagnetic model described by the Euler-Bernoulli thin beam approach evaluating 

bending properties of the material. They have applied small deformations based on the linear 

strains of Lagrangian. They have captured both direct and converse magnetization in regard 

to the one-dimensional magnetic field. To bend the beam, a uniform static force was loaded 

on the beam length. The load acted transversely. [41] investigated a beam with one end free 

and another one clamped so-called cantilever. Moreover, [42] considered several boundary 

conditions and showed a good evaluation in this regard. Both references include a deficiency 

in inspecting size and nonlocal effects. In fact, they did not figure out the effects of stress 

nonlocality that is significant in nanoscale. However, they have used surface effects to analyze 

size influences. Further growth of flexomagneticity returns to [43-47] in which the size-

dependency behavior of flexomagneticity was confirmed fully. Malikan and Eremeyev [43] 

continued [41, 42] studies but with implementing stress-driven nonlocal elasticity while 

imposing the vibrational environment for the Euler-Bernoulli beam. Their formulation was 

performed based on the linear strains and their results were carried out by different diagrams. 

In another research, Malikan and Eremeyev [44] extended [43] for nonlinear natural 
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frequencies of a flexomagnetic model that existed in a piezomagnetic nanosized beam. In this 

work, the small-scale effect was fulfilled according to the nonlocal strain gradient elasticity 

approach. Besides the mentioned researches, in a benchmark study, Malikan and Eremeyev 

[45] investigated the static nonlinear bending of a piezomagnetic small size beam with the 

inclusion of flexomagneticity. They have combined Newton-Raphson iterative solution 

technique with the analytical Galerkin weighted residual method to calculate values of large 

deflections. Their brilliant results certified that the nonlinear bending analysis is severely 

applicable for the flexomagnetic response of a micro/nano-electromechanical system. Their 

conclusions acknowledged that the existence of flexomagnetic will lead to decreasing the 

deflections. Malikan et al. [46] kept up their studies in the category of flexomagneticity. This 

new research involved the response of post-buckling of a nanobeam containing both 

piezomagnetic and flexomagnetic features. Malikan et al. [47] studied the influence of 

porosities in several manners on an axially pressurized piezomagnetic nanoscale beam 

incorporating flexomagnetic effect. They have confirmed that some kinds of porosity can 

affect the material behavior of the flexomagnetic model.  

In this research and in continuation of studies on the flexomagnetic effect, the biaxial 

buckling of a nanosized smart piezomagnetic composite sheet consisting of flexomagnetic 

property in the isotropic state has been investigated for the first time. The classical plate 

theory, linear magneto-elastic stress-strain law, and the nonlocal strain gradient theory have 

been used to calculate the biaxial stability of the nanosheet. The characteristic equation was 

derived using Hamilton’s principle and Lagrangian strain considering von Kármán 

hypothesis. To make the numerical outputs further certain, our results are compared with the 

available molecular dynamics simulations in a simple case. Numerical results are presented 

analytically and graphically using the solution of the Galerkin integral method. Attempts have 
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been made to include two boundary conditions, clamped and simply-supported, in the 

evaluations.  

2    The Problem Modeling 

As shown in Figure 1, consider a piezomagnetic nanoplate with a, b, and h as its length, width, 

and thickness, respectively. The magneto-elastic material features are dedicated to this sheet. 

The plate is affected by the magnetic potential resulted from the one-dimensional magnetic 

field. The plate is supposed to be square/rectangular.  

 

Figure 1. A square/non-square PM nanoscale plate compressed biaxially involving FM  

The physical condition of the nanoplate is mathematically designed based on the 

classical plate theory. This is carried out as follows [48] 

( ) ( )
( )

1

,
, , ,

w x y
x y z u x y zu

x


= −


                                                                                                         (1) 
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( ) ( )
( )

2

,
, , ,

w x y
x y z v x y zu

y


= −


                                                                                                         (2) 

( ) ( )3 , , ,x y z w x yu =                                                                                                                          (3) 

Using the equations of motion of the nanosheet according to the classical theory, and relations 

(1-3), the linear forms of strain-displacement equations are obtained in terms of non-zero 

displacement derivatives as follows 

2

2xx

u w
z

x x


 
= −
 

                                                                                                                          (4) 

2

2yy

v w
z

y y


 
= −
 

                                                                                                                         (5) 

2

2xy

u v w
z

y x x y


  
= + −
   

                                                                                                                         (6) 

2

2

xx
xxz

w

z x




 
= = −

 
                                                                                                                   (7) 

2

2

yy

yyz

w

z y




 
= = −

 
                                                                                                                   (8) 

The constitutive relations that couple magneto-elastic properties can be expressed by 

tensor calculus as follows [41, 42] 

ij ijkl kl kij kC q H = −                                                                                                                    (9) 

ijk ij ijk ij kg f H = −                                                                                                                   (10) 

i ikl kl ij k ij ijkB q d H f = + +                                                                                                       (11) 

The Lagrangian variational principle can help find the equilibrium equations in the 

following 

0U W − =                                                                                                                               (12) 

It is assumed that the magnetic field exists only in line with the transverse axis. 
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Therefore, the global form of the strain energy including magneto-elastic effects can be 

established as follows 

( )xx xx yy yy xy xy xxz xxz yyz yyz z z

V

U B H dV           = + + + + + −                               (13) 

Thus, as per the infinitesimal deformations, the integration by parts gives 

1 21 2

=  +  +  + Mag MagMech Mech
U UU U

U                                                                                    (14) 

where 

1 2 2 22 2
0 0

2 2 2 2
2

yy xy xyxx

b a
Mech
U

yy xy yyzxx xxz

N N NN
u v v u

x y x y
dxdy

M M TM T
w

x yx y x y

   





   
+ + + 

    
 = −  

      + + + + +
        

                              (15) 

1

2

0 0 2

hb a
Mag z
U

h

B
dzdxdy

z
 

−


 = − 

                                                                                                     (16) 

2

0

0
0

0

2

a

xx xy xx
Mech
U

xx xxz
xxz

b

yy xy yy b
a

xy
yy yyz

yyz

w
N u N v M

x

M Tw
T w w

x x x

w
N v N u M

y
M w

M Tw
T w w

y y y


 




 


 




 

 
+ − − 

  = +
  

+ + 
   

 
+ − − 

  +
  
 + +    

                                                                  (17) 

( )
2

/2

0 0 /2

h
b a

Mag
zU

h

B dxdy 

−

 =                                                                                                         (18) 

The resultants of the biaxial in-plane forces, moment, and hyper stresses can be 

calculated by the below equations,  
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   
/2

/2

, , , ,

h

xx yy xy xx yy xy

h

N N N dz  
−

=                                                                                                          (19) 

   
/2

/2

, , , , ,

h

xx yy xy xx yy xy

h

M M M zdz  
−

=                                                                                                       (20) 

   
/2

/2

, ,

h

xxz yyz xxz yyz

h

T T dz 
−

=                                                                                                                        (21) 

Due to the existence of outer loads, there would be thermodynamics work performed 

on the system. To determine it, we have, 

222 2
0 0 0

0 0

1

2

b a

xx yy xy

w w w
W N N N dxdy

x y xy

       
= − + +                

                                                                  (22) 

in which 
0
xyN  shows shear in-plane force and is eliminated in this work. Hence, 

0 0

0 0

b a

xx yy

w w w w
W N N dxdy

x x y y

 


      
= − +   

       
                                                                                  (23) 

 Let us rewrite the constitutive equation of the piezomagnetic nanoplate as follows, 

11 12 31

12 22 31

44 15

44 15

66

0 0 0 0 0

00 0 0 0

0 00 0 0 0

0 00 0 0 0

0 0 00 0 0 0

xx xx

yy yy x

xz xz y

yz yz z

xy xy

C C q

C C q H

q HC

HqC

C

 

 

 

 

 

      
      

       
       = −        

                
            

                                  (24) 

where 

0xz yz = =  

In Eq. (24), the elastic and piezomagnetic properties of the nanoplate can be obtained 

using the following relations, 
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2
13

11
11 33

2
12

13
12

44 33

4466

66

C
C

C C

C C
 C

CC

CC

C

 
−  

  
    

= −   
   
   
   

  

 (25) 

13 33
31 31

33

15
15

C q
q q

= C
q

q

 
  −   
   
    

 

     (26) 

And the constitutive equation of the flexomagneticity effect can be written as follows, 

14

15 14

15 15

14 14 15

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 00

0 0 0

xxz xxz

yyz yyz x

xzz xzz y

yzz yzz z

xyz xyz

f

g f H

g f H

g g f H

 

 

 

 

 

     
                     = −                      

         

  (27) 

in which 

0xzz yzz xyz  = = =

11 15

11 15

33 31 31

15

15

14 14

0 0 00 0 0

0 0 0 0 0 0

0 000 0

0 0 0 0

0 0 0 0

0 00

xx

yyx x

xzy y

yzz z

xy

xxz

yyz

xzz

yzz

xyz

d qB H

B d H q

B Hd q q

f

f

f f





















 
                 

= + +       
       

         
 
 

 
 

   
  
  
     
 
 

  (28) 

in which 

0yz xz xzz yzz xyz    = = = = =
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11
11

2
33

3333

33

d
d

= q
dd

C

 
    
   

+    
 

                                                                                                                   (29) 

The magnetic potential-component relationship can be expanded as follows, 

z

x

k y

xH

H H
y

H

z

 
− 
   

   
= = −   

   
   

− 
 

                                                                                                                                 (30) 

To prescribe the electrical boundary conditions, one gets 

,  0
2 2

   
 + =  − =   
   

h h
                                                                                                       (31) 

The theoretical 1D magnetic field is supplemented by some mathematical efforts among 

Eqs. (18), (28), (30) and (31) as follows 

2 2 2
231

2 2
33 4 22

q h w w h
z z

hd x y

     
 = − − + + +           

                                                                                   (32) 

and then 

2 2
31

2 2
33

z

q w w
H z

hd x y

  
= + −    

                                                                                                                 (33) 

Now it is possible to expand the stress field components, hyper stresses, and magnetic 

flux as follows 

2 2 2 2
31

11 12 312 2 2 2
33

2 2 2 2
31

12 22 312 2 2 2
33

xx

yy

xy

qu w v w w w
C z C z q z

x y hdx y x y

qu w v w w w
C z C z q z

x y hdx y x y










           
− + − − + −                      

 
             

= − + − − + −                       
   2

66 2
u v w

C z
y x x y

 
 
 
 

 
 

 
 

    + −        

               (34) 
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xxz
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hdx y x y

qw w w w
g f z

hdx y x y





 

        
− + − + −                      

=   
            

− + − + −                  

                                                   (35) 

2 2 2 2
31

33 312 2 2 2
33

2 2

14 2 2

z

q w w u w v w
B d z q z z

h x yd x y x y

w w
f

x y

         
= + − + − + −                

  
− +    

                                      (36) 

Making the use of Eqs. (34-36), Eqs. (19-21) are re-written as follows  

11 12 31

12 22 31

66

xx

yy

xy

u v
A A q

x y
N

u v
N A A q

x y
N

u v
A

y x





  
+ + 

   
       

= + +   
    

       
 + 

    

                                                                                          (37) 
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D D

x y
M

w w
M D D

x y
M

w
D

x y

  
+ 

   
       

= − +   
    

    


 
   

                                                                                                (38) 
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xxz

yyz

w w
g h f

x yT

T w w
g h f

x y





   
− + +          

=   
       

− + +      

                                                                                      (39) 

where 

( )
2

2

, 1,2,4,6

−

= =
h

ijij

h

A C dz   i j
                                                                                                    (40) 
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( )
22

231

332

, 1,2

−

 
 = + =
 
 


h

ijij

h

q
D C z dz    i j

a                                                                                           (41) 

2

2
6666

2−

= 
h

h

D C z dz
                                                                                                                        (42) 

2

14 14

2−

= 
h

h

H g dz
                                                                                                                             (43) 

Let us collect the terms in Eqs. (15) and (16) related to the governing equations, hence, 

0
xyxx

NN

x y


+ =

 
                                                                                                                                 (44) 

0
yy xyN N

y x

 
+ =

 
                                                                                                                                 (45) 

2 2 22 2 2 2
0 0

2 2 2 2 2 2
2 0

yy xy yyzxx xxz
xx yy

M M TM T w w
N N

x y x y x y x y

     
+ + + + + + =

       
                                            (46) 

In the above equation, there are general biaxial compressive loads divided into two parts, 

mechanical and magnetic ones as follows, 

0 =  +Mech
x

a
x

M
x

gN k N N                                                                                                                                 (47) 

0 =  +Mech
y

a
y

M
y

gN k N N                                                                                                                                 (48) 

 Conforming to the Lorentz’ law, one can write 

31

MagN q =                                                                                                                                 (49) 

In mechanics, there are two general solutions to determine the strength behavior of 

nanostructures: 1- Laboratory methods and 2- Mathematical modeling. Since nanodimensional 

laboratory methods are expensive and have their own difficulties; Therefore, three main 

methods of mathematical modeling are considered, which are: a- Atomic modeling, b- 

Combined molecular and mechanical modeling, and c- Modeling based on continuum 
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mechanics. In terms of time constraints and the maximum number of atoms in the simulation, 

the first two methods are more expensive compared to modeling based on continuum 

mechanics, and also the unique relationships and formulations of the two methods are more 

complex. Therefore, this indicates that continuum mechanics can be used as a suitable solution 

to study physical phenomena in the field of nanotechnology. 

One of the most important issues in the field of continuum mechanics is the discussion 

of the effects of size and its effect on the mechanical behavior of different materials. These 

effects will have a predominant impact on the mechanical behavior of matter when the particle 

size becomes very small, and theories based on classical continuum mechanics are unable to 

take such effects into account. This is especially evident in atomic space where the size of 

structures is not very large compared to the intra-atomic properties of materials. In fact, the 

effects of size occur due to the interaction of two scales of internal characteristic length such 

as distance between particles and external characteristic length such as crack length. One of the 

generalized theories of continuum mechanics that study such a phenomenon is the theory of 

nonlocal elasticity of the strain gradient [49]. 

2 2 2 2
2

2 2 2 2
1 1ij ijkl klC l

x y x y
  

            
− + = − +                     

                                                                     (50) 

In the absence of thickness effect ( z ) on Eq. (50), Eqs. (37-39) shall be rewritten in 

terms of Eq. (50) as [50-55], 

11 12 31

2 2 2 2
2

12 22 312 2 2 2
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1 1
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A A q

x y
N

u v
N l A A q

x yx y x y
N
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A

y x



 

  
+ + 

   
                  

− + = − + + +                            
       

 + 
    

                        (51) 
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

  
+ 

   
                  

− + = − − + +                            
    


 

   

                         (52) 
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− + +                       

− + = − +                               
− + +      

                (53) 

If we compare the x-y in-plane magnetic field and deformations with those in line with 

thickness, then the in-plane derivatives can be eliminated. Thus, by means of Eqs. (46) and 

(51-53), the characteristic equation of buckling of the PM nanocomposite plate representing 

FM, can be simplified as follows, 

( ) ( )

( )

( ) ( )

( ) ( )
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+ + + + + 
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+ + + + + +

  

0




=


 



                                           (54) 

3   Solving approach 

3.1   Analytical process 

The solution of Eq. (54) gives the numerical values of critical buckling loads for the PM-FM 

nanocomposite plate. This section supplements an analytical process in conjunction with the 
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two analytical boundary/edge conditions that are simply supported and clamped. The essential 

and natural edge conditions can be mentioned as follows, 

Simply-supported (S): 

w (0, y) = w (a, y) = 0                                                                                                            (55a) 

w (x, 0) = w (x, b) = 0                                                                                                            (55b) 

Mx (x, 0) = Mx (x, b) = 0                                                                                                            (56a) 

My (0, y) = My (a, y) = 0                                                                                                            (56b) 

Clamped (C): 

w (0, y) = w (a, y) = 0                                                                                                             (57a) 

w (x, 0) = w (x, b) = 0                                                                                                            (57b) 

The closed-form approximate function is devoted to applying the analytical solution as 

follows, 

( ) ( )
1 1

mn m n

m n

w W X x Y y
 

= =

=                                                                                                       (58) 

The natural and essential conditions mentioned by Eqs. (55-57) can be satisfied by the 

next equation in which the admissible functions are demonstrated by Table 1 [33, 56], 

( ) ( )( )
0 0

a b

m nw X x Y y dydx                                                                                                                 (59) 

Table 1. Simply-supported and clamped analytical boundary conditions for plates 

Analytical edge conditions 

Notation x=0 y=0 x=a y=b Xm (x) Yn (y) 

SSSS S S S S sin x
a

 
 
 

 sin y
b

 
 
 
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CCCC C C C C 
2sin x

a

 
 
 

 2sin y
b

 
 
 

 

3.2   Solution validity 

To validate the proposed model, the isotropic nanosheet without piezo-flexomagnetic 

properties is considered and its critical load is shown and tabulated in Table 2 for the values 

provided for the simple boundary conditions and various values of length and width. The 

solution method is tested through molecular dynamics [57] and a good agreement can be seen.  

E=1TPa, υ=0.3, h=0.34 nm, μ=1.85nm2, l=0, β=a/b=1, k1=1, k2=1, SSSS [57] 
 

Table 2. A fully simply-supported nanoplate compressed biaxially  

Critical buckling load (Pa.m) 

Present 

(CPT) 
MD [57] a=b 

1.1570 1.0837 4.99 

0.6979 0.6536 8.080 

0.4658 0.4331 10.77 

0.2829 0.2609 14.65 

0.1874 0.1714 18.51 

0.1325 0.1191 22.35 

0.0981 0.0889 26.22 

0.0756 0.0691 30.04 

0.0601 0.0554 33.85 

0.0484 0.0449 37.81 

 

4    Discussion and results 

In this section, the importance of the flexomagnetic property will be evaluated in detail by 

changing important and key parameters, and we will find the conditions during which this 

effect manifests itself most. First, the magneto-elastic properties of the sheet are presented in 

Table 3 [33, 41, 42]. Variable parameters are expressed below each figure. 

Table 3. Magneto-elastic constants for the proposed PM-FM CoFe2O4 nanoplate 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


C11= C22=226GPa, C12=125GPa, C13=124GPa,  

C33=216GPa, C44=44.2GPa, C66=50.5GPa, 

f31=10-9 N/A 

q31=290.1 N/A.m, q33=349.9 N/A.m 

d33=83.5×10-6 N/A2 

The most important problem in terms of micro/nanoscale discussions is nothing but 

determining the amount of nonlocal and strain gradient length scale (SGLS) parameters. Some 

researchers found that these factors shall not have constant values and are dependent on several 

objects [58, 59]. In the case of SGLS, [59] indicated that geometrical sizes, particularly 

thickness has strongly affected the value of SGLS. However, in the matter of values of the 

nonlocal parameter, the effective factors influenced it, can be the type of boundary conditions. 

On that account, in this part, we realize the values of SGLS concerning the thickness of the 

plate and the values of the nonlocal parameter with reference to the previous works between 0-

2 nm. 

More importantly, in most figures, the behavior of the plate in the uniaxial compression 

mode is compared to that of the two-axis. The sheet will have an isotropic behavior and 

therefore no difference in the square state if the axial load of the uniaxial axis is longitudinal 

or lateral. Abbreviated terms such as PFM and PM define the sheet with piezomagnetic-

flexomagnetic and piezomagnetic properties, respectively. Magnetic potential values are 

obtained in milli-Amperes, which in turn indicates the greater importance of the magnetic field 

at the nanoscale. The β parameter has also been used to determine the length to width ratio 

(aspect ratio). 

Figures 2a and 2b show how changes in the SGLS will affect the flexomagnetic 

properties of the sheet. The first argument that the appearance of the two figures shows can be 
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the greater difference between PM and PFM results in uniaxial buckling. This means that if the 

magnetic sheet is subjected to in-plane loading of buckling in only one direction, its 

flexomagnetic property will be greater. As it turns out, the increasing slope of the critical load 

results from increasing the SGLS parameter for the CCCC boundary conditions is greater than 

the SSSS ones. This excess is also more obtained for uniaxial buckling. On the other hand, 

comparing the results of the two boundary conditions proves that the flexomagnetic effect is 

greater for the CCCC quadrilateral plate than the SSSS one. The last conclusion from these 

figures can be the impact of SGLS on the flexomagnetic response of the nanoplate. When l/h=0 

which means we eliminate the SGLS, the PFM/PM result for the uniaxial case would be 1.069 

and for l/h=1, it would be 1.070. These differences confirm that the larger the SGLS parameter 

values, the bit more emphasize the flexomagnetic property. 

 

Fig. 2a. SGLS parameter vs. critical load of buckling (ψ=1mA, e0a=1nm, β=1, b/h=15, 

CCCC) 
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Fig. 2b. SGLS parameter vs. critical load of buckling (ψ=1mA, e0a=1nm, β=1, b/h=15, 

SSSS) 

After examining Figures 2a and 2b and obtaining some important results, with the help 

of Figures 3a and 3b we will investigate the effect of changes in the nonlocal parameter. The 

effect of this parameter, as has been proved many times, is a reducing effect on the stiffness of 

the material, and therefore increasing it here will lead to reducing the critical load. According 

to these two figures, we can say that if the numerical value of the nonlocal parameter is large, 

in both uniaxial and biaxial buckling, we will see the results of the PM and PFM approach to 

each other. As a result, it can be stated that nonlocality will have a considerable effect on 

flexomagnetic behavior. However, unlike the SGLS parameter, which has a positive effect on 

the flexomagnetic behavior of the sheet, the nonlocal parameter will have a negative effect and 

leads to less importance of this magneto-elastic property of the material. 
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Fig. 3a. Nonlocal parameter vs. critical load of buckling in two states of magnetic (ψ=1mA, 

l=0.5h, b/h=15, β=1, CCCC) 

 

Fig. 3b. Nonlocal parameter vs. critical load of buckling in two states of magnetic (ψ=1mA, 

l=0.5h, b/h=15, β=1, SSSS) 

Although the effect of the magnetic potential will be more predictable due to the 

application of a linear magnetic field, its study is not without merit. Figures 4a and 4b deal with 
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uniaxial buckling, it will be more affected by the magnetic field. In general, increasing the 

numerical values of the magnetic potential will increase the stiffness of the material, but this is 

more the case in uniaxial buckling than in the biaxial one. The interesting thing about these 

two figures is that if the potential of the magnetic field is negative, the critical load of the PM 

plate will be greater than that of the PFM sheet. As a result, the positive or negative potential 

of the magnetic field indicates that the PM or PFM material is stiffer. 

 

Fig. 4a. Magnetic potential vs. critical load of buckling in two states of magnetic (e0a=1nm, 

l=0.5h, b/h=15, β=1, CCCC) 

1

2

3

4

5

6

7

8

9

10

11

12

-2 -1 0 1 2 3 4 5 6 7 8 9 10

C
ri

ti
ca

l 
lo

ad
 (

P
a.

m
)

ψ (mA)

kx=1, ky=1, PFM

kx=1, ky=0, PFM

kx=1, ky=1, PM

kx=1, ky=0, PM

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

Fig. 4b. Magnetic potential vs. critical load of buckling in two states of magnetic (e0a=1nm, 

l=0.5h, b/h=15, β=1, SSSS) 

In the continuation of the discussion and results, we would like to examine the 

rectangularity of the sheet and its effect on the flexomagnetic response of the material. 

According to Figures 5a and 5b, we see that increasing the β coefficient leads to a reduction of 

the critical load and the overall stiffness of the material, which is true in both boundary 

conditions. But the most important result that can be found from these two figures is that in the 

case of a rectangular nanoplate, if the values of β are greater than 1, the results of PM are closer 

to the results of PFM, and this will increase with more amount of β. Rectangular nanosheets 

with a large value of β coefficient will not have a significant flexomagnetic effect. However, if 

the value of aspect ratio is less than 1, although the sheet is rectangular, the difference between 

the results of the PM plate and the PFM one is remarkable. 

Figures 6a and 6b are plotted to examine the results of Figures 5a and 5b for uniaxial 
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will have an increasing trend. Perhaps the physical reason is that because the uniaxial critical 

load is applied along the x-axis, and since β greater than 1 means that the longitudinal 

dimension of the nanoplate is larger, then increasing the value of aspect ratio will increase the 

critical load. 

 

Fig. 5a. Aspect ratio vs. critical load of biaxial buckling in two states of magnetic (ψ=1mA, 

l=0.5h, e0a=1nm, b/h=15, CCCC) 

 

Fig. 5b. Aspect ratio vs. critical load of biaxial buckling in two states of magnetic (ψ=1mA, 

l=0.5h, e0a=1nm, b/h=15, SSSS) 
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Fig. 6a. Aspect ratio vs. critical load of uniaxial buckling in two states of magnetic (ψ=1mA, 

l=0.5h, e0a=1nm, b/h=15, kx=1, ky=0, CCCC) 

 

Fig. 6b. Aspect ratio vs. critical load of uniaxial buckling in two states of magnetic (ψ=1mA, 

l=0.5h, e0a=1nm, b/h=15, kx=1, ky=0, SSSS) 

5    Conclusions 

A biaxial buckling analysis-based mathematical modeling was depicted for converse 

flexomagnetic influence on a piezomagnetic nanoparticle composition of cobalt and ferrite. 
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The equation of motion was obtained based on the classical plate theory and plane strain 

assumptions. And after the analytical solution of the equation, the analytical relation was 

obtained for the first mode of the buckling load of this sheet based on the clamped and simply-

supported edge conditions. A MATLAB code was written to calculate the 2D domain 

flexomagneticity response. The following results are obtained by providing some examples and 

due to varying in values of fundamental parameters:

• The uniaxial buckling makes the flexomagnetic response of the nanoplate more notable.

• For the case of uniaxial buckling, the magnetic field has affected further the critical

buckling load.

• In terms of biaxial buckling, while β<1, the flexomagnetic response is more obvious in

contrast to β>1.

• Under uniaxial loading, whenever the nanoplate is rectangular and β<1, an increase of

aspect ratio leads to softening and this is vice versa for rectangular nanoplate with β>1.
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